Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abrexdom Structured version   Unicode version

Theorem abrexdom 31760
Description: An indexed set is dominated by the indexing set. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
abrexdom.1  |-  ( y  e.  A  ->  E* x ph )
Assertion
Ref Expression
abrexdom  |-  ( A  e.  V  ->  { x  |  E. y  e.  A  ph }  ~<_  A )
Distinct variable group:    x, A, y
Allowed substitution hints:    ph( x, y)    V( x, y)

Proof of Theorem abrexdom
StepHypRef Expression
1 df-rex 2788 . . . 4  |-  ( E. y  e.  A  ph  <->  E. y ( y  e.  A  /\  ph )
)
21abbii 2563 . . 3  |-  { x  |  E. y  e.  A  ph }  =  { x  |  E. y ( y  e.  A  /\  ph ) }
3 rnopab 5099 . . 3  |-  ran  { <. y ,  x >.  |  ( y  e.  A  /\  ph ) }  =  { x  |  E. y ( y  e.  A  /\  ph ) }
42, 3eqtr4i 2461 . 2  |-  { x  |  E. y  e.  A  ph }  =  ran  { <. y ,  x >.  |  ( y  e.  A  /\  ph ) }
5 dmopabss 5066 . . . . 5  |-  dom  { <. y ,  x >.  |  ( y  e.  A  /\  ph ) }  C_  A
6 ssexg 4571 . . . . 5  |-  ( ( dom  { <. y ,  x >.  |  (
y  e.  A  /\  ph ) }  C_  A  /\  A  e.  V
)  ->  dom  { <. y ,  x >.  |  ( y  e.  A  /\  ph ) }  e.  _V )
75, 6mpan 674 . . . 4  |-  ( A  e.  V  ->  dom  {
<. y ,  x >.  |  ( y  e.  A  /\  ph ) }  e.  _V )
8 funopab 5634 . . . . . . 7  |-  ( Fun 
{ <. y ,  x >.  |  ( y  e.  A  /\  ph ) } 
<-> 
A. y E* x
( y  e.  A  /\  ph ) )
9 abrexdom.1 . . . . . . . 8  |-  ( y  e.  A  ->  E* x ph )
10 moanimv 2330 . . . . . . . 8  |-  ( E* x ( y  e.  A  /\  ph )  <->  ( y  e.  A  ->  E* x ph ) )
119, 10mpbir 212 . . . . . . 7  |-  E* x
( y  e.  A  /\  ph )
128, 11mpgbir 1669 . . . . . 6  |-  Fun  { <. y ,  x >.  |  ( y  e.  A  /\  ph ) }
1312a1i 11 . . . . 5  |-  ( A  e.  V  ->  Fun  {
<. y ,  x >.  |  ( y  e.  A  /\  ph ) } )
14 funfn 5630 . . . . 5  |-  ( Fun 
{ <. y ,  x >.  |  ( y  e.  A  /\  ph ) } 
<->  { <. y ,  x >.  |  ( y  e.  A  /\  ph ) }  Fn  dom  { <. y ,  x >.  |  ( y  e.  A  /\  ph ) } )
1513, 14sylib 199 . . . 4  |-  ( A  e.  V  ->  { <. y ,  x >.  |  ( y  e.  A  /\  ph ) }  Fn  dom  {
<. y ,  x >.  |  ( y  e.  A  /\  ph ) } )
16 fnrndomg 8961 . . . 4  |-  ( dom 
{ <. y ,  x >.  |  ( y  e.  A  /\  ph ) }  e.  _V  ->  ( { <. y ,  x >.  |  ( y  e.  A  /\  ph ) }  Fn  dom  { <. y ,  x >.  |  ( y  e.  A  /\  ph ) }  ->  ran  {
<. y ,  x >.  |  ( y  e.  A  /\  ph ) }  ~<_  dom  { <. y ,  x >.  |  ( y  e.  A  /\  ph ) } ) )
177, 15, 16sylc 62 . . 3  |-  ( A  e.  V  ->  ran  {
<. y ,  x >.  |  ( y  e.  A  /\  ph ) }  ~<_  dom  { <. y ,  x >.  |  ( y  e.  A  /\  ph ) } )
18 ssdomg 7622 . . . 4  |-  ( A  e.  V  ->  ( dom  { <. y ,  x >.  |  ( y  e.  A  /\  ph ) }  C_  A  ->  dom  {
<. y ,  x >.  |  ( y  e.  A  /\  ph ) }  ~<_  A ) )
195, 18mpi 21 . . 3  |-  ( A  e.  V  ->  dom  {
<. y ,  x >.  |  ( y  e.  A  /\  ph ) }  ~<_  A )
20 domtr 7629 . . 3  |-  ( ( ran  { <. y ,  x >.  |  (
y  e.  A  /\  ph ) }  ~<_  dom  { <. y ,  x >.  |  ( y  e.  A  /\  ph ) }  /\  dom  { <. y ,  x >.  |  ( y  e.  A  /\  ph ) }  ~<_  A )  ->  ran  { <. y ,  x >.  |  ( y  e.  A  /\  ph ) }  ~<_  A )
2117, 19, 20syl2anc 665 . 2  |-  ( A  e.  V  ->  ran  {
<. y ,  x >.  |  ( y  e.  A  /\  ph ) }  ~<_  A )
224, 21syl5eqbr 4459 1  |-  ( A  e.  V  ->  { x  |  E. y  e.  A  ph }  ~<_  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370   E.wex 1659    e. wcel 1870   E*wmo 2267   {cab 2414   E.wrex 2783   _Vcvv 3087    C_ wss 3442   class class class wbr 4426   {copab 4483   dom cdm 4854   ran crn 4855   Fun wfun 5595    Fn wfn 5596    ~<_ cdom 7575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-ac2 8891
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-se 4814  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-1st 6807  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-er 7371  df-map 7482  df-en 7578  df-dom 7579  df-card 8372  df-acn 8375  df-ac 8545
This theorem is referenced by:  abrexdom2  31761
  Copyright terms: Public domain W3C validator