Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abnotataxb Structured version   Unicode version

Theorem abnotataxb 38216
Description: Assuming not a, b, there exists a proof a-xor-b.) (Contributed by Jarvin Udandy, 31-Aug-2016.)
Hypotheses
Ref Expression
abnotataxb.1  |-  -.  ph
abnotataxb.2  |-  ps
Assertion
Ref Expression
abnotataxb  |-  ( ph  \/_ 
ps )

Proof of Theorem abnotataxb
StepHypRef Expression
1 abnotataxb.2 . . . . 5  |-  ps
2 abnotataxb.1 . . . . 5  |-  -.  ph
31, 2pm3.2i 456 . . . 4  |-  ( ps 
/\  -.  ph )
43olci 392 . . 3  |-  ( (
ph  /\  -.  ps )  \/  ( ps  /\  -.  ph ) )
5 xor 899 . . 3  |-  ( -.  ( ph  <->  ps )  <->  ( ( ph  /\  -.  ps )  \/  ( ps  /\  -.  ph )
) )
64, 5mpbir 212 . 2  |-  -.  ( ph 
<->  ps )
7 df-xor 1401 . 2  |-  ( (
ph  \/_  ps )  <->  -.  ( ph  <->  ps )
)
86, 7mpbir 212 1  |-  ( ph  \/_ 
ps )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 187    \/ wo 369    /\ wa 370    \/_ wxo 1400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-xor 1401
This theorem is referenced by:  aisfbistiaxb  38220
  Copyright terms: Public domain W3C validator