![]() |
Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > Mathboxes > abnotataxb | Structured version Unicode version |
Description: Assuming not a, b, there exists a proof a-xor-b.) (Contributed by Jarvin Udandy, 31-Aug-2016.) |
Ref | Expression |
---|---|
abnotataxb.1 |
![]() ![]() ![]() |
abnotataxb.2 |
![]() ![]() |
Ref | Expression |
---|---|
abnotataxb |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abnotataxb.2 |
. . . . 5
![]() ![]() | |
2 | abnotataxb.1 |
. . . . 5
![]() ![]() ![]() | |
3 | 1, 2 | pm3.2i 455 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | olci 391 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | xor 886 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 4, 5 | mpbir 209 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | df-xor 1352 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 6, 7 | mpbir 209 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-xor 1352 |
This theorem is referenced by: aisfbistiaxb 30103 |
Copyright terms: Public domain | W3C validator |