MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablsubsub Structured version   Unicode version

Theorem ablsubsub 16312
Description: Law for double subtraction. (Contributed by NM, 7-Apr-2015.)
Hypotheses
Ref Expression
ablsubadd.b  |-  B  =  ( Base `  G
)
ablsubadd.p  |-  .+  =  ( +g  `  G )
ablsubadd.m  |-  .-  =  ( -g `  G )
ablsubsub.g  |-  ( ph  ->  G  e.  Abel )
ablsubsub.x  |-  ( ph  ->  X  e.  B )
ablsubsub.y  |-  ( ph  ->  Y  e.  B )
ablsubsub.z  |-  ( ph  ->  Z  e.  B )
Assertion
Ref Expression
ablsubsub  |-  ( ph  ->  ( X  .-  ( Y  .-  Z ) )  =  ( ( X 
.-  Y )  .+  Z ) )

Proof of Theorem ablsubsub
StepHypRef Expression
1 ablsubsub.g . . . 4  |-  ( ph  ->  G  e.  Abel )
2 ablgrp 16287 . . . 4  |-  ( G  e.  Abel  ->  G  e. 
Grp )
31, 2syl 16 . . 3  |-  ( ph  ->  G  e.  Grp )
4 ablsubsub.x . . 3  |-  ( ph  ->  X  e.  B )
5 ablsubsub.y . . 3  |-  ( ph  ->  Y  e.  B )
6 ablsubsub.z . . 3  |-  ( ph  ->  Z  e.  B )
7 ablsubadd.b . . . 4  |-  B  =  ( Base `  G
)
8 ablsubadd.p . . . 4  |-  .+  =  ( +g  `  G )
9 ablsubadd.m . . . 4  |-  .-  =  ( -g `  G )
107, 8, 9grpsubsub 15619 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .-  ( Y  .-  Z ) )  =  ( X  .+  ( Z  .-  Y ) ) )
113, 4, 5, 6, 10syl13anc 1220 . 2  |-  ( ph  ->  ( X  .-  ( Y  .-  Z ) )  =  ( X  .+  ( Z  .-  Y ) ) )
127, 8, 9grpaddsubass 15620 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Z  e.  B  /\  Y  e.  B
) )  ->  (
( X  .+  Z
)  .-  Y )  =  ( X  .+  ( Z  .-  Y ) ) )
133, 4, 6, 5, 12syl13anc 1220 . 2  |-  ( ph  ->  ( ( X  .+  Z )  .-  Y
)  =  ( X 
.+  ( Z  .-  Y ) ) )
147, 8, 9abladdsub 16309 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Z  e.  B  /\  Y  e.  B )
)  ->  ( ( X  .+  Z )  .-  Y )  =  ( ( X  .-  Y
)  .+  Z )
)
151, 4, 6, 5, 14syl13anc 1220 . 2  |-  ( ph  ->  ( ( X  .+  Z )  .-  Y
)  =  ( ( X  .-  Y ) 
.+  Z ) )
1611, 13, 153eqtr2d 2481 1  |-  ( ph  ->  ( X  .-  ( Y  .-  Z ) )  =  ( ( X 
.-  Y )  .+  Z ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1369    e. wcel 1756   ` cfv 5423  (class class class)co 6096   Basecbs 14179   +g cplusg 14243   Grpcgrp 15415   -gcsg 15418   Abelcabel 16283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-1st 6582  df-2nd 6583  df-0g 14385  df-mnd 15420  df-grp 15550  df-minusg 15551  df-sbg 15552  df-cmn 16284  df-abl 16285
This theorem is referenced by:  ablsubsub4  16313  ablnncan  16315  ip2subdi  18078
  Copyright terms: Public domain W3C validator