MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablsubsub Structured version   Unicode version

Theorem ablsubsub 17152
Description: Law for double subtraction. (Contributed by NM, 7-Apr-2015.)
Hypotheses
Ref Expression
ablsubadd.b  |-  B  =  ( Base `  G
)
ablsubadd.p  |-  .+  =  ( +g  `  G )
ablsubadd.m  |-  .-  =  ( -g `  G )
ablsubsub.g  |-  ( ph  ->  G  e.  Abel )
ablsubsub.x  |-  ( ph  ->  X  e.  B )
ablsubsub.y  |-  ( ph  ->  Y  e.  B )
ablsubsub.z  |-  ( ph  ->  Z  e.  B )
Assertion
Ref Expression
ablsubsub  |-  ( ph  ->  ( X  .-  ( Y  .-  Z ) )  =  ( ( X 
.-  Y )  .+  Z ) )

Proof of Theorem ablsubsub
StepHypRef Expression
1 ablsubsub.g . . . 4  |-  ( ph  ->  G  e.  Abel )
2 ablgrp 17127 . . . 4  |-  ( G  e.  Abel  ->  G  e. 
Grp )
31, 2syl 17 . . 3  |-  ( ph  ->  G  e.  Grp )
4 ablsubsub.x . . 3  |-  ( ph  ->  X  e.  B )
5 ablsubsub.y . . 3  |-  ( ph  ->  Y  e.  B )
6 ablsubsub.z . . 3  |-  ( ph  ->  Z  e.  B )
7 ablsubadd.b . . . 4  |-  B  =  ( Base `  G
)
8 ablsubadd.p . . . 4  |-  .+  =  ( +g  `  G )
9 ablsubadd.m . . . 4  |-  .-  =  ( -g `  G )
107, 8, 9grpsubsub 16451 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .-  ( Y  .-  Z ) )  =  ( X  .+  ( Z  .-  Y ) ) )
113, 4, 5, 6, 10syl13anc 1232 . 2  |-  ( ph  ->  ( X  .-  ( Y  .-  Z ) )  =  ( X  .+  ( Z  .-  Y ) ) )
127, 8, 9grpaddsubass 16452 . . 3  |-  ( ( G  e.  Grp  /\  ( X  e.  B  /\  Z  e.  B  /\  Y  e.  B
) )  ->  (
( X  .+  Z
)  .-  Y )  =  ( X  .+  ( Z  .-  Y ) ) )
133, 4, 6, 5, 12syl13anc 1232 . 2  |-  ( ph  ->  ( ( X  .+  Z )  .-  Y
)  =  ( X 
.+  ( Z  .-  Y ) ) )
147, 8, 9abladdsub 17149 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Z  e.  B  /\  Y  e.  B )
)  ->  ( ( X  .+  Z )  .-  Y )  =  ( ( X  .-  Y
)  .+  Z )
)
151, 4, 6, 5, 14syl13anc 1232 . 2  |-  ( ph  ->  ( ( X  .+  Z )  .-  Y
)  =  ( ( X  .-  Y ) 
.+  Z ) )
1611, 13, 153eqtr2d 2449 1  |-  ( ph  ->  ( X  .-  ( Y  .-  Z ) )  =  ( ( X 
.-  Y )  .+  Z ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1405    e. wcel 1842   ` cfv 5569  (class class class)co 6278   Basecbs 14841   +g cplusg 14909   Grpcgrp 16377   -gcsg 16379   Abelcabl 17123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-1st 6784  df-2nd 6785  df-0g 15056  df-mgm 16196  df-sgrp 16235  df-mnd 16245  df-grp 16381  df-minusg 16382  df-sbg 16383  df-cmn 17124  df-abl 17125
This theorem is referenced by:  ablsubsub4  17153  ablnncan  17155  ip2subdi  18977
  Copyright terms: Public domain W3C validator