MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablsub4 Structured version   Unicode version

Theorem ablsub4 16422
Description: Commutative/associative subtraction law for Abelian groups. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
ablsubadd.b  |-  B  =  ( Base `  G
)
ablsubadd.p  |-  .+  =  ( +g  `  G )
ablsubadd.m  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
ablsub4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .+  Y
)  .-  ( Z  .+  W ) )  =  ( ( X  .-  Z )  .+  ( Y  .-  W ) ) )

Proof of Theorem ablsub4
StepHypRef Expression
1 ablgrp 16402 . . . . 5  |-  ( G  e.  Abel  ->  G  e. 
Grp )
213ad2ant1 1009 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  G  e.  Grp )
3 simp2l 1014 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  X  e.  B )
4 simp2r 1015 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  Y  e.  B )
5 ablsubadd.b . . . . 5  |-  B  =  ( Base `  G
)
6 ablsubadd.p . . . . 5  |-  .+  =  ( +g  `  G )
75, 6grpcl 15669 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y
)  e.  B )
82, 3, 4, 7syl3anc 1219 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  ( X  .+  Y )  e.  B )
9 simp3l 1016 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  Z  e.  B )
10 simp3r 1017 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  W  e.  B )
115, 6grpcl 15669 . . . 4  |-  ( ( G  e.  Grp  /\  Z  e.  B  /\  W  e.  B )  ->  ( Z  .+  W
)  e.  B )
122, 9, 10, 11syl3anc 1219 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  ( Z  .+  W )  e.  B )
13 eqid 2454 . . . 4  |-  ( invg `  G )  =  ( invg `  G )
14 ablsubadd.m . . . 4  |-  .-  =  ( -g `  G )
155, 6, 13, 14grpsubval 15699 . . 3  |-  ( ( ( X  .+  Y
)  e.  B  /\  ( Z  .+  W )  e.  B )  -> 
( ( X  .+  Y )  .-  ( Z  .+  W ) )  =  ( ( X 
.+  Y )  .+  ( ( invg `  G ) `  ( Z  .+  W ) ) ) )
168, 12, 15syl2anc 661 . 2  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .+  Y
)  .-  ( Z  .+  W ) )  =  ( ( X  .+  Y )  .+  (
( invg `  G ) `  ( Z  .+  W ) ) ) )
17 ablcmn 16403 . . . . 5  |-  ( G  e.  Abel  ->  G  e. CMnd
)
18173ad2ant1 1009 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  G  e. CMnd )
19 simp2 989 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  ( X  e.  B  /\  Y  e.  B )
)
205, 13grpinvcl 15701 . . . . 5  |-  ( ( G  e.  Grp  /\  Z  e.  B )  ->  ( ( invg `  G ) `  Z
)  e.  B )
212, 9, 20syl2anc 661 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( invg `  G ) `  Z
)  e.  B )
225, 13grpinvcl 15701 . . . . 5  |-  ( ( G  e.  Grp  /\  W  e.  B )  ->  ( ( invg `  G ) `  W
)  e.  B )
232, 10, 22syl2anc 661 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( invg `  G ) `  W
)  e.  B )
245, 6cmn4 16416 . . . 4  |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( ( ( invg `  G ) `
 Z )  e.  B  /\  ( ( invg `  G
) `  W )  e.  B ) )  -> 
( ( X  .+  Y )  .+  (
( ( invg `  G ) `  Z
)  .+  ( ( invg `  G ) `
 W ) ) )  =  ( ( X  .+  ( ( invg `  G
) `  Z )
)  .+  ( Y  .+  ( ( invg `  G ) `  W
) ) ) )
2518, 19, 21, 23, 24syl112anc 1223 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .+  Y
)  .+  ( (
( invg `  G ) `  Z
)  .+  ( ( invg `  G ) `
 W ) ) )  =  ( ( X  .+  ( ( invg `  G
) `  Z )
)  .+  ( Y  .+  ( ( invg `  G ) `  W
) ) ) )
26 simp1 988 . . . . 5  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  G  e.  Abel )
275, 6, 13ablinvadd 16419 . . . . 5  |-  ( ( G  e.  Abel  /\  Z  e.  B  /\  W  e.  B )  ->  (
( invg `  G ) `  ( Z  .+  W ) )  =  ( ( ( invg `  G
) `  Z )  .+  ( ( invg `  G ) `  W
) ) )
2826, 9, 10, 27syl3anc 1219 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( invg `  G ) `  ( Z  .+  W ) )  =  ( ( ( invg `  G
) `  Z )  .+  ( ( invg `  G ) `  W
) ) )
2928oveq2d 6215 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .+  Y
)  .+  ( ( invg `  G ) `
 ( Z  .+  W ) ) )  =  ( ( X 
.+  Y )  .+  ( ( ( invg `  G ) `
 Z )  .+  ( ( invg `  G ) `  W
) ) ) )
305, 6, 13, 14grpsubval 15699 . . . . 5  |-  ( ( X  e.  B  /\  Z  e.  B )  ->  ( X  .-  Z
)  =  ( X 
.+  ( ( invg `  G ) `
 Z ) ) )
313, 9, 30syl2anc 661 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  ( X  .-  Z )  =  ( X  .+  (
( invg `  G ) `  Z
) ) )
325, 6, 13, 14grpsubval 15699 . . . . 5  |-  ( ( Y  e.  B  /\  W  e.  B )  ->  ( Y  .-  W
)  =  ( Y 
.+  ( ( invg `  G ) `
 W ) ) )
334, 10, 32syl2anc 661 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  ( Y  .-  W )  =  ( Y  .+  (
( invg `  G ) `  W
) ) )
3431, 33oveq12d 6217 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .-  Z
)  .+  ( Y  .-  W ) )  =  ( ( X  .+  ( ( invg `  G ) `  Z
) )  .+  ( Y  .+  ( ( invg `  G ) `
 W ) ) ) )
3525, 29, 343eqtr4d 2505 . 2  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .+  Y
)  .+  ( ( invg `  G ) `
 ( Z  .+  W ) ) )  =  ( ( X 
.-  Z )  .+  ( Y  .-  W ) ) )
3616, 35eqtrd 2495 1  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .+  Y
)  .-  ( Z  .+  W ) )  =  ( ( X  .-  Z )  .+  ( Y  .-  W ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   ` cfv 5525  (class class class)co 6199   Basecbs 14291   +g cplusg 14356   Grpcgrp 15528   invgcminusg 15529   -gcsg 15531  CMndccmn 16397   Abelcabel 16398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4510  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-ral 2803  df-rex 2804  df-reu 2805  df-rmo 2806  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-op 3991  df-uni 4199  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-id 4743  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6160  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-1st 6686  df-2nd 6687  df-0g 14498  df-mnd 15533  df-grp 15663  df-minusg 15664  df-sbg 15665  df-cmn 16399  df-abl 16400
This theorem is referenced by:  abladdsub4  16423  ablpnpcan  16429  mdetuni0  18558  minveclem2  21044  baerlem3lem1  35675
  Copyright terms: Public domain W3C validator