MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablosn Unicode version

Theorem ablosn 20844
Description: The Abelian group operation for the singleton group. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
ablsn.1  |-  A  e. 
_V
Assertion
Ref Expression
ablosn  |-  { <. <. A ,  A >. ,  A >. }  e.  AbelOp

Proof of Theorem ablosn
StepHypRef Expression
1 ablsn.1 . . 3  |-  A  e. 
_V
21grposn 20712 . 2  |-  { <. <. A ,  A >. ,  A >. }  e.  GrpOp
31dmsnop 5053 . . 3  |-  dom  { <. <. A ,  A >. ,  A >. }  =  { <. A ,  A >. }
41, 1xpsn 5552 . . 3  |-  ( { A }  X.  { A } )  =  { <. A ,  A >. }
53, 4eqtr4i 2276 . 2  |-  dom  { <. <. A ,  A >. ,  A >. }  =  ( { A }  X.  { A } )
6 elsn 3559 . . 3  |-  ( x  e.  { A }  <->  x  =  A )
7 elsn 3559 . . 3  |-  ( y  e.  { A }  <->  y  =  A )
8 oveq12 5719 . . . 4  |-  ( ( x  =  A  /\  y  =  A )  ->  ( x { <. <. A ,  A >. ,  A >. } y )  =  ( A { <. <. A ,  A >. ,  A >. } A
) )
9 oveq2 5718 . . . . 5  |-  ( x  =  A  ->  (
y { <. <. A ,  A >. ,  A >. } x )  =  ( y { <. <. A ,  A >. ,  A >. } A ) )
10 oveq1 5717 . . . . 5  |-  ( y  =  A  ->  (
y { <. <. A ,  A >. ,  A >. } A )  =  ( A { <. <. A ,  A >. ,  A >. } A ) )
119, 10sylan9eq 2305 . . . 4  |-  ( ( x  =  A  /\  y  =  A )  ->  ( y { <. <. A ,  A >. ,  A >. } x )  =  ( A { <. <. A ,  A >. ,  A >. } A
) )
128, 11eqtr4d 2288 . . 3  |-  ( ( x  =  A  /\  y  =  A )  ->  ( x { <. <. A ,  A >. ,  A >. } y )  =  ( y {
<. <. A ,  A >. ,  A >. } x
) )
136, 7, 12syl2anb 467 . 2  |-  ( ( x  e.  { A }  /\  y  e.  { A } )  ->  (
x { <. <. A ,  A >. ,  A >. } y )  =  ( y { <. <. A ,  A >. ,  A >. } x ) )
142, 5, 13isabloi 20785 1  |-  { <. <. A ,  A >. ,  A >. }  e.  AbelOp
Colors of variables: wff set class
Syntax hints:    /\ wa 360    = wceq 1619    e. wcel 1621   _Vcvv 2727   {csn 3544   <.cop 3547    X. cxp 4578   dom cdm 4580  (class class class)co 5710   AbelOpcablo 20778
This theorem is referenced by:  rngosn  20901
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-grpo 20688  df-ablo 20779
  Copyright terms: Public domain W3C validator