MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablonnncan1 Structured version   Unicode version

Theorem ablonnncan1 23780
Description: Cancellation law for group division. (nnncan1 9643 analog.) (Contributed by NM, 7-Mar-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
abldiv.1  |-  X  =  ran  G
abldiv.3  |-  D  =  (  /g  `  G
)
Assertion
Ref Expression
ablonnncan1  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A D B ) D ( A D C ) )  =  ( C D B ) )

Proof of Theorem ablonnncan1
StepHypRef Expression
1 simpr1 994 . . . 4  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  A  e.  X )
2 simpr2 995 . . . 4  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  B  e.  X )
3 ablogrpo 23769 . . . . . 6  |-  ( G  e.  AbelOp  ->  G  e.  GrpOp )
4 abldiv.1 . . . . . . 7  |-  X  =  ran  G
5 abldiv.3 . . . . . . 7  |-  D  =  (  /g  `  G
)
64, 5grpodivcl 23732 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  C  e.  X )  ->  ( A D C )  e.  X )
73, 6syl3an1 1251 . . . . 5  |-  ( ( G  e.  AbelOp  /\  A  e.  X  /\  C  e.  X )  ->  ( A D C )  e.  X )
873adant3r2 1197 . . . 4  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D C )  e.  X
)
91, 2, 83jca 1168 . . 3  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A  e.  X  /\  B  e.  X  /\  ( A D C )  e.  X ) )
104, 5ablodiv32 23777 . . 3  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  ( A D C )  e.  X ) )  ->  ( ( A D B ) D ( A D C ) )  =  ( ( A D ( A D C ) ) D B ) )
119, 10syldan 470 . 2  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A D B ) D ( A D C ) )  =  ( ( A D ( A D C ) ) D B ) )
124, 5ablonncan 23779 . . . 4  |-  ( ( G  e.  AbelOp  /\  A  e.  X  /\  C  e.  X )  ->  ( A D ( A D C ) )  =  C )
13123adant3r2 1197 . . 3  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D ( A D C ) )  =  C )
1413oveq1d 6104 . 2  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A D ( A D C ) ) D B )  =  ( C D B ) )
1511, 14eqtrd 2473 1  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A D B ) D ( A D C ) )  =  ( C D B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   ran crn 4839   ` cfv 5416  (class class class)co 6089   GrpOpcgr 23671    /g cgs 23674   AbelOpcablo 23766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-rep 4401  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-op 3882  df-uni 4090  df-iun 4171  df-br 4291  df-opab 4349  df-mpt 4350  df-id 4634  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-riota 6050  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-1st 6575  df-2nd 6576  df-grpo 23676  df-gid 23677  df-ginv 23678  df-gdiv 23679  df-ablo 23767
This theorem is referenced by:  nvnnncan1  24026
  Copyright terms: Public domain W3C validator