MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablodivdiv4 Structured version   Unicode version

Theorem ablodivdiv4 23729
Description: Law for double group division. (Contributed by NM, 29-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
abldiv.1  |-  X  =  ran  G
abldiv.3  |-  D  =  (  /g  `  G
)
Assertion
Ref Expression
ablodivdiv4  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A D B ) D C )  =  ( A D ( B G C ) ) )

Proof of Theorem ablodivdiv4
StepHypRef Expression
1 ablogrpo 23722 . . 3  |-  ( G  e.  AbelOp  ->  G  e.  GrpOp )
2 simpl 457 . . . 4  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  G  e.  GrpOp
)
3 abldiv.1 . . . . . 6  |-  X  =  ran  G
4 abldiv.3 . . . . . 6  |-  D  =  (  /g  `  G
)
53, 4grpodivcl 23685 . . . . 5  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  e.  X )
653adant3r3 1198 . . . 4  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D B )  e.  X
)
7 simpr3 996 . . . 4  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  C  e.  X )
8 eqid 2438 . . . . 5  |-  ( inv `  G )  =  ( inv `  G )
93, 8, 4grpodivval 23681 . . . 4  |-  ( ( G  e.  GrpOp  /\  ( A D B )  e.  X  /\  C  e.  X )  ->  (
( A D B ) D C )  =  ( ( A D B ) G ( ( inv `  G
) `  C )
) )
102, 6, 7, 9syl3anc 1218 . . 3  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A D B ) D C )  =  ( ( A D B ) G ( ( inv `  G ) `
 C ) ) )
111, 10sylan 471 . 2  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A D B ) D C )  =  ( ( A D B ) G ( ( inv `  G ) `
 C ) ) )
12 simpr1 994 . . . 4  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  A  e.  X )
13 simpr2 995 . . . 4  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  B  e.  X )
14 simp3 990 . . . . 5  |-  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X )  ->  C  e.  X )
153, 8grpoinvcl 23664 . . . . 5  |-  ( ( G  e.  GrpOp  /\  C  e.  X )  ->  (
( inv `  G
) `  C )  e.  X )
161, 14, 15syl2an 477 . . . 4  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( inv `  G ) `  C )  e.  X
)
1712, 13, 163jca 1168 . . 3  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A  e.  X  /\  B  e.  X  /\  ( ( inv `  G ) `
 C )  e.  X ) )
183, 4ablodivdiv 23728 . . 3  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  ( ( inv `  G
) `  C )  e.  X ) )  -> 
( A D ( B D ( ( inv `  G ) `
 C ) ) )  =  ( ( A D B ) G ( ( inv `  G ) `  C
) ) )
1917, 18syldan 470 . 2  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D ( B D ( ( inv `  G
) `  C )
) )  =  ( ( A D B ) G ( ( inv `  G ) `
 C ) ) )
203, 8, 4grpodivinv 23682 . . . . 5  |-  ( ( G  e.  GrpOp  /\  B  e.  X  /\  C  e.  X )  ->  ( B D ( ( inv `  G ) `  C
) )  =  ( B G C ) )
211, 20syl3an1 1251 . . . 4  |-  ( ( G  e.  AbelOp  /\  B  e.  X  /\  C  e.  X )  ->  ( B D ( ( inv `  G ) `  C
) )  =  ( B G C ) )
22213adant3r1 1196 . . 3  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( B D ( ( inv `  G ) `  C
) )  =  ( B G C ) )
2322oveq2d 6102 . 2  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D ( B D ( ( inv `  G
) `  C )
) )  =  ( A D ( B G C ) ) )
2411, 19, 233eqtr2d 2476 1  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A D B ) D C )  =  ( A D ( B G C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   ran crn 4836   ` cfv 5413  (class class class)co 6086   GrpOpcgr 23624   invcgn 23626    /g cgs 23627   AbelOpcablo 23719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-reu 2717  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-1st 6572  df-2nd 6573  df-grpo 23629  df-gid 23630  df-ginv 23631  df-gdiv 23632  df-ablo 23720
This theorem is referenced by:  ablodiv32  23730  ablonnncan  23731  ablo4pnp  28698
  Copyright terms: Public domain W3C validator