MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablodivdiv Structured version   Unicode version

Theorem ablodivdiv 23796
Description: Law for double group division. (Contributed by NM, 29-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
abldiv.1  |-  X  =  ran  G
abldiv.3  |-  D  =  (  /g  `  G
)
Assertion
Ref Expression
ablodivdiv  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D ( B D C ) )  =  ( ( A D B ) G C ) )

Proof of Theorem ablodivdiv
StepHypRef Expression
1 ablogrpo 23790 . . 3  |-  ( G  e.  AbelOp  ->  G  e.  GrpOp )
2 abldiv.1 . . . 4  |-  X  =  ran  G
3 abldiv.3 . . . 4  |-  D  =  (  /g  `  G
)
42, 3grpodivdiv 23754 . . 3  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D ( B D C ) )  =  ( A G ( C D B ) ) )
51, 4sylan 471 . 2  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D ( B D C ) )  =  ( A G ( C D B ) ) )
6 3ancomb 974 . . 3  |-  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X )  <->  ( A  e.  X  /\  C  e.  X  /\  B  e.  X )
)
72, 3grpomuldivass 23755 . . . . 5  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  C  e.  X  /\  B  e.  X )
)  ->  ( ( A G C ) D B )  =  ( A G ( C D B ) ) )
81, 7sylan 471 . . . 4  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  C  e.  X  /\  B  e.  X )
)  ->  ( ( A G C ) D B )  =  ( A G ( C D B ) ) )
92, 3ablomuldiv 23795 . . . 4  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  C  e.  X  /\  B  e.  X )
)  ->  ( ( A G C ) D B )  =  ( ( A D B ) G C ) )
108, 9eqtr3d 2477 . . 3  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  C  e.  X  /\  B  e.  X )
)  ->  ( A G ( C D B ) )  =  ( ( A D B ) G C ) )
116, 10sylan2b 475 . 2  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A G ( C D B ) )  =  ( ( A D B ) G C ) )
125, 11eqtrd 2475 1  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( A D ( B D C ) )  =  ( ( A D B ) G C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   ran crn 4860   ` cfv 5437  (class class class)co 6110   GrpOpcgr 23692    /g cgs 23695   AbelOpcablo 23787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4422  ax-sep 4432  ax-nul 4440  ax-pow 4489  ax-pr 4550  ax-un 6391
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2739  df-rex 2740  df-reu 2741  df-rab 2743  df-v 2993  df-sbc 3206  df-csb 3308  df-dif 3350  df-un 3352  df-in 3354  df-ss 3361  df-nul 3657  df-if 3811  df-pw 3881  df-sn 3897  df-pr 3899  df-op 3903  df-uni 4111  df-iun 4192  df-br 4312  df-opab 4370  df-mpt 4371  df-id 4655  df-xp 4865  df-rel 4866  df-cnv 4867  df-co 4868  df-dm 4869  df-rn 4870  df-res 4871  df-ima 4872  df-iota 5400  df-fun 5439  df-fn 5440  df-f 5441  df-f1 5442  df-fo 5443  df-f1o 5444  df-fv 5445  df-riota 6071  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-1st 6596  df-2nd 6597  df-grpo 23697  df-gid 23698  df-ginv 23699  df-gdiv 23700  df-ablo 23788
This theorem is referenced by:  ablodivdiv4  23797  ablonncan  23800
  Copyright terms: Public domain W3C validator