Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ablo4pnp Structured version   Unicode version

Theorem ablo4pnp 29945
Description: A commutative/associative law for Abelian groups. (Contributed by Jeff Madsen, 11-Jun-2010.)
Hypotheses
Ref Expression
abl4pnp.1  |-  X  =  ran  G
abl4pnp.2  |-  D  =  (  /g  `  G
)
Assertion
Ref Expression
ablo4pnp  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) ) )  ->  ( ( A G B ) D ( C G F ) )  =  ( ( A D C ) G ( B D F ) ) )

Proof of Theorem ablo4pnp
StepHypRef Expression
1 df-3an 975 . . . . 5  |-  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X )  <->  ( ( A  e.  X  /\  B  e.  X
)  /\  C  e.  X ) )
2 abl4pnp.1 . . . . . 6  |-  X  =  ran  G
3 abl4pnp.2 . . . . . 6  |-  D  =  (  /g  `  G
)
42, 3ablomuldiv 24967 . . . . 5  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A G B ) D C )  =  ( ( A D C ) G B ) )
51, 4sylan2br 476 . . . 4  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  C  e.  X ) )  -> 
( ( A G B ) D C )  =  ( ( A D C ) G B ) )
65adantrrr 724 . . 3  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) ) )  ->  ( ( A G B ) D C )  =  ( ( A D C ) G B ) )
76oveq1d 6297 . 2  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) ) )  ->  ( ( ( A G B ) D C ) D F )  =  ( ( ( A D C ) G B ) D F ) )
8 ablogrpo 24962 . . . . . . 7  |-  ( G  e.  AbelOp  ->  G  e.  GrpOp )
92grpocl 24878 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A G B )  e.  X )
1093expib 1199 . . . . . . 7  |-  ( G  e.  GrpOp  ->  ( ( A  e.  X  /\  B  e.  X )  ->  ( A G B )  e.  X ) )
118, 10syl 16 . . . . . 6  |-  ( G  e.  AbelOp  ->  ( ( A  e.  X  /\  B  e.  X )  ->  ( A G B )  e.  X ) )
1211anim1d 564 . . . . 5  |-  ( G  e.  AbelOp  ->  ( ( ( A  e.  X  /\  B  e.  X )  /\  ( C  e.  X  /\  F  e.  X
) )  ->  (
( A G B )  e.  X  /\  ( C  e.  X  /\  F  e.  X
) ) ) )
13 3anass 977 . . . . 5  |-  ( ( ( A G B )  e.  X  /\  C  e.  X  /\  F  e.  X )  <->  ( ( A G B )  e.  X  /\  ( C  e.  X  /\  F  e.  X
) ) )
1412, 13syl6ibr 227 . . . 4  |-  ( G  e.  AbelOp  ->  ( ( ( A  e.  X  /\  B  e.  X )  /\  ( C  e.  X  /\  F  e.  X
) )  ->  (
( A G B )  e.  X  /\  C  e.  X  /\  F  e.  X )
) )
1514imp 429 . . 3  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) ) )  ->  ( ( A G B )  e.  X  /\  C  e.  X  /\  F  e.  X ) )
162, 3ablodivdiv4 24969 . . 3  |-  ( ( G  e.  AbelOp  /\  (
( A G B )  e.  X  /\  C  e.  X  /\  F  e.  X )
)  ->  ( (
( A G B ) D C ) D F )  =  ( ( A G B ) D ( C G F ) ) )
1715, 16syldan 470 . 2  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) ) )  ->  ( ( ( A G B ) D C ) D F )  =  ( ( A G B ) D ( C G F ) ) )
182, 3grpodivcl 24925 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  C  e.  X )  ->  ( A D C )  e.  X )
19183expib 1199 . . . . . . 7  |-  ( G  e.  GrpOp  ->  ( ( A  e.  X  /\  C  e.  X )  ->  ( A D C )  e.  X ) )
2019anim1d 564 . . . . . 6  |-  ( G  e.  GrpOp  ->  ( (
( A  e.  X  /\  C  e.  X
)  /\  ( B  e.  X  /\  F  e.  X ) )  -> 
( ( A D C )  e.  X  /\  ( B  e.  X  /\  F  e.  X
) ) ) )
21 an4 822 . . . . . 6  |-  ( ( ( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) )  <->  ( ( A  e.  X  /\  C  e.  X )  /\  ( B  e.  X  /\  F  e.  X
) ) )
22 3anass 977 . . . . . 6  |-  ( ( ( A D C )  e.  X  /\  B  e.  X  /\  F  e.  X )  <->  ( ( A D C )  e.  X  /\  ( B  e.  X  /\  F  e.  X
) ) )
2320, 21, 223imtr4g 270 . . . . 5  |-  ( G  e.  GrpOp  ->  ( (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) )  -> 
( ( A D C )  e.  X  /\  B  e.  X  /\  F  e.  X
) ) )
2423imp 429 . . . 4  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) ) )  ->  ( ( A D C )  e.  X  /\  B  e.  X  /\  F  e.  X ) )
252, 3grpomuldivass 24927 . . . 4  |-  ( ( G  e.  GrpOp  /\  (
( A D C )  e.  X  /\  B  e.  X  /\  F  e.  X )
)  ->  ( (
( A D C ) G B ) D F )  =  ( ( A D C ) G ( B D F ) ) )
2624, 25syldan 470 . . 3  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) ) )  ->  ( ( ( A D C ) G B ) D F )  =  ( ( A D C ) G ( B D F ) ) )
278, 26sylan 471 . 2  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) ) )  ->  ( ( ( A D C ) G B ) D F )  =  ( ( A D C ) G ( B D F ) ) )
287, 17, 273eqtr3d 2516 1  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) ) )  ->  ( ( A G B ) D ( C G F ) )  =  ( ( A D C ) G ( B D F ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   ran crn 5000   ` cfv 5586  (class class class)co 6282   GrpOpcgr 24864    /g cgs 24867   AbelOpcablo 24959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-1st 6781  df-2nd 6782  df-grpo 24869  df-gid 24870  df-ginv 24871  df-gdiv 24872  df-ablo 24960
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator