Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ablo4pnp Structured version   Unicode version

Theorem ablo4pnp 28748
Description: A commutative/associative law for Abelian groups. (Contributed by Jeff Madsen, 11-Jun-2010.)
Hypotheses
Ref Expression
abl4pnp.1  |-  X  =  ran  G
abl4pnp.2  |-  D  =  (  /g  `  G
)
Assertion
Ref Expression
ablo4pnp  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) ) )  ->  ( ( A G B ) D ( C G F ) )  =  ( ( A D C ) G ( B D F ) ) )

Proof of Theorem ablo4pnp
StepHypRef Expression
1 df-3an 967 . . . . 5  |-  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X )  <->  ( ( A  e.  X  /\  B  e.  X
)  /\  C  e.  X ) )
2 abl4pnp.1 . . . . . 6  |-  X  =  ran  G
3 abl4pnp.2 . . . . . 6  |-  D  =  (  /g  `  G
)
42, 3ablomuldiv 23779 . . . . 5  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A G B ) D C )  =  ( ( A D C ) G B ) )
51, 4sylan2br 476 . . . 4  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  C  e.  X ) )  -> 
( ( A G B ) D C )  =  ( ( A D C ) G B ) )
65adantrrr 724 . . 3  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) ) )  ->  ( ( A G B ) D C )  =  ( ( A D C ) G B ) )
76oveq1d 6109 . 2  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) ) )  ->  ( ( ( A G B ) D C ) D F )  =  ( ( ( A D C ) G B ) D F ) )
8 ablogrpo 23774 . . . . . . 7  |-  ( G  e.  AbelOp  ->  G  e.  GrpOp )
92grpocl 23690 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A G B )  e.  X )
1093expib 1190 . . . . . . 7  |-  ( G  e.  GrpOp  ->  ( ( A  e.  X  /\  B  e.  X )  ->  ( A G B )  e.  X ) )
118, 10syl 16 . . . . . 6  |-  ( G  e.  AbelOp  ->  ( ( A  e.  X  /\  B  e.  X )  ->  ( A G B )  e.  X ) )
1211anim1d 564 . . . . 5  |-  ( G  e.  AbelOp  ->  ( ( ( A  e.  X  /\  B  e.  X )  /\  ( C  e.  X  /\  F  e.  X
) )  ->  (
( A G B )  e.  X  /\  ( C  e.  X  /\  F  e.  X
) ) ) )
13 3anass 969 . . . . 5  |-  ( ( ( A G B )  e.  X  /\  C  e.  X  /\  F  e.  X )  <->  ( ( A G B )  e.  X  /\  ( C  e.  X  /\  F  e.  X
) ) )
1412, 13syl6ibr 227 . . . 4  |-  ( G  e.  AbelOp  ->  ( ( ( A  e.  X  /\  B  e.  X )  /\  ( C  e.  X  /\  F  e.  X
) )  ->  (
( A G B )  e.  X  /\  C  e.  X  /\  F  e.  X )
) )
1514imp 429 . . 3  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) ) )  ->  ( ( A G B )  e.  X  /\  C  e.  X  /\  F  e.  X ) )
162, 3ablodivdiv4 23781 . . 3  |-  ( ( G  e.  AbelOp  /\  (
( A G B )  e.  X  /\  C  e.  X  /\  F  e.  X )
)  ->  ( (
( A G B ) D C ) D F )  =  ( ( A G B ) D ( C G F ) ) )
1715, 16syldan 470 . 2  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) ) )  ->  ( ( ( A G B ) D C ) D F )  =  ( ( A G B ) D ( C G F ) ) )
182, 3grpodivcl 23737 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  C  e.  X )  ->  ( A D C )  e.  X )
19183expib 1190 . . . . . . 7  |-  ( G  e.  GrpOp  ->  ( ( A  e.  X  /\  C  e.  X )  ->  ( A D C )  e.  X ) )
2019anim1d 564 . . . . . 6  |-  ( G  e.  GrpOp  ->  ( (
( A  e.  X  /\  C  e.  X
)  /\  ( B  e.  X  /\  F  e.  X ) )  -> 
( ( A D C )  e.  X  /\  ( B  e.  X  /\  F  e.  X
) ) ) )
21 an4 820 . . . . . 6  |-  ( ( ( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) )  <->  ( ( A  e.  X  /\  C  e.  X )  /\  ( B  e.  X  /\  F  e.  X
) ) )
22 3anass 969 . . . . . 6  |-  ( ( ( A D C )  e.  X  /\  B  e.  X  /\  F  e.  X )  <->  ( ( A D C )  e.  X  /\  ( B  e.  X  /\  F  e.  X
) ) )
2320, 21, 223imtr4g 270 . . . . 5  |-  ( G  e.  GrpOp  ->  ( (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) )  -> 
( ( A D C )  e.  X  /\  B  e.  X  /\  F  e.  X
) ) )
2423imp 429 . . . 4  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) ) )  ->  ( ( A D C )  e.  X  /\  B  e.  X  /\  F  e.  X ) )
252, 3grpomuldivass 23739 . . . 4  |-  ( ( G  e.  GrpOp  /\  (
( A D C )  e.  X  /\  B  e.  X  /\  F  e.  X )
)  ->  ( (
( A D C ) G B ) D F )  =  ( ( A D C ) G ( B D F ) ) )
2624, 25syldan 470 . . 3  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) ) )  ->  ( ( ( A D C ) G B ) D F )  =  ( ( A D C ) G ( B D F ) ) )
278, 26sylan 471 . 2  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) ) )  ->  ( ( ( A D C ) G B ) D F )  =  ( ( A D C ) G ( B D F ) ) )
287, 17, 273eqtr3d 2483 1  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  F  e.  X ) ) )  ->  ( ( A G B ) D ( C G F ) )  =  ( ( A D C ) G ( B D F ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   ran crn 4844   ` cfv 5421  (class class class)co 6094   GrpOpcgr 23676    /g cgs 23679   AbelOpcablo 23771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4406  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-ral 2723  df-rex 2724  df-reu 2725  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-op 3887  df-uni 4095  df-iun 4176  df-br 4296  df-opab 4354  df-mpt 4355  df-id 4639  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-riota 6055  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-1st 6580  df-2nd 6581  df-grpo 23681  df-gid 23682  df-ginv 23683  df-gdiv 23684  df-ablo 23772
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator