MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablo4 Structured version   Unicode version

Theorem ablo4 23779
Description: Commutative/associative law for Abelian groups. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
ablcom.1  |-  X  =  ran  G
Assertion
Ref Expression
ablo4  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X )  /\  ( C  e.  X  /\  D  e.  X
) )  ->  (
( A G B ) G ( C G D ) )  =  ( ( A G C ) G ( B G D ) ) )

Proof of Theorem ablo4
StepHypRef Expression
1 simprll 761 . . . . . 6  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  A  e.  X
)
2 simprlr 762 . . . . . 6  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  B  e.  X
)
3 simprrl 763 . . . . . 6  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  C  e.  X
)
41, 2, 33jca 1168 . . . . 5  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )
5 ablcom.1 . . . . . 6  |-  X  =  ran  G
65ablo32 23778 . . . . 5  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X )
)  ->  ( ( A G B ) G C )  =  ( ( A G C ) G B ) )
74, 6syldan 470 . . . 4  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( ( A G B ) G C )  =  ( ( A G C ) G B ) )
87oveq1d 6111 . . 3  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( ( ( A G B ) G C ) G D )  =  ( ( ( A G C ) G B ) G D ) )
9 ablogrpo 23776 . . . 4  |-  ( G  e.  AbelOp  ->  G  e.  GrpOp )
105grpocl 23692 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A G B )  e.  X )
11103expb 1188 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( A G B )  e.  X
)
1211adantrr 716 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( A G B )  e.  X
)
13 simprrl 763 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  C  e.  X
)
14 simprrr 764 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  D  e.  X
)
1512, 13, 143jca 1168 . . . . 5  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( ( A G B )  e.  X  /\  C  e.  X  /\  D  e.  X ) )
165grpoass 23695 . . . . 5  |-  ( ( G  e.  GrpOp  /\  (
( A G B )  e.  X  /\  C  e.  X  /\  D  e.  X )
)  ->  ( (
( A G B ) G C ) G D )  =  ( ( A G B ) G ( C G D ) ) )
1715, 16syldan 470 . . . 4  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( ( ( A G B ) G C ) G D )  =  ( ( A G B ) G ( C G D ) ) )
189, 17sylan 471 . . 3  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( ( ( A G B ) G C ) G D )  =  ( ( A G B ) G ( C G D ) ) )
195grpocl 23692 . . . . . . . . 9  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  C  e.  X )  ->  ( A G C )  e.  X )
20193expb 1188 . . . . . . . 8  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  C  e.  X )
)  ->  ( A G C )  e.  X
)
2120adantrlr 722 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  C  e.  X ) )  -> 
( A G C )  e.  X )
2221adantrrr 724 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( A G C )  e.  X
)
23 simprlr 762 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  B  e.  X
)
2422, 23, 143jca 1168 . . . . 5  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( ( A G C )  e.  X  /\  B  e.  X  /\  D  e.  X ) )
255grpoass 23695 . . . . 5  |-  ( ( G  e.  GrpOp  /\  (
( A G C )  e.  X  /\  B  e.  X  /\  D  e.  X )
)  ->  ( (
( A G C ) G B ) G D )  =  ( ( A G C ) G ( B G D ) ) )
2624, 25syldan 470 . . . 4  |-  ( ( G  e.  GrpOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( ( ( A G C ) G B ) G D )  =  ( ( A G C ) G ( B G D ) ) )
279, 26sylan 471 . . 3  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( ( ( A G C ) G B ) G D )  =  ( ( A G C ) G ( B G D ) ) )
288, 18, 273eqtr3d 2483 . 2  |-  ( ( G  e.  AbelOp  /\  (
( A  e.  X  /\  B  e.  X
)  /\  ( C  e.  X  /\  D  e.  X ) ) )  ->  ( ( A G B ) G ( C G D ) )  =  ( ( A G C ) G ( B G D ) ) )
29283impb 1183 1  |-  ( ( G  e.  AbelOp  /\  ( A  e.  X  /\  B  e.  X )  /\  ( C  e.  X  /\  D  e.  X
) )  ->  (
( A G B ) G ( C G D ) )  =  ( ( A G C ) G ( B G D ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   ran crn 4846  (class class class)co 6096   GrpOpcgr 23678   AbelOpcablo 23773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-fo 5429  df-fv 5431  df-ov 6099  df-grpo 23683  df-ablo 23774
This theorem is referenced by:  gxdi  23788  rngoa4  23887  vca4  23946  nvadd4  24010  ipdirilem  24234
  Copyright terms: Public domain W3C validator