MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfacrplem Structured version   Unicode version

Theorem ablfacrplem 16540
Description: Lemma for ablfacrp2 16542. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
ablfacrp.b  |-  B  =  ( Base `  G
)
ablfacrp.o  |-  O  =  ( od `  G
)
ablfacrp.k  |-  K  =  { x  e.  B  |  ( O `  x )  ||  M }
ablfacrp.l  |-  L  =  { x  e.  B  |  ( O `  x )  ||  N }
ablfacrp.g  |-  ( ph  ->  G  e.  Abel )
ablfacrp.m  |-  ( ph  ->  M  e.  NN )
ablfacrp.n  |-  ( ph  ->  N  e.  NN )
ablfacrp.1  |-  ( ph  ->  ( M  gcd  N
)  =  1 )
ablfacrp.2  |-  ( ph  ->  ( # `  B
)  =  ( M  x.  N ) )
Assertion
Ref Expression
ablfacrplem  |-  ( ph  ->  ( ( # `  K
)  gcd  N )  =  1 )
Distinct variable groups:    x, B    x, G    x, O    x, M    x, N    ph, x
Allowed substitution hints:    K( x)    L( x)

Proof of Theorem ablfacrplem
Dummy variables  g  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nprmdvds1 13780 . . . . . . 7  |-  ( p  e.  Prime  ->  -.  p  ||  1 )
21adantl 463 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  ->  -.  p  ||  1 )
3 ablfacrp.1 . . . . . . . 8  |-  ( ph  ->  ( M  gcd  N
)  =  1 )
43adantr 462 . . . . . . 7  |-  ( (
ph  /\  p  e.  Prime )  ->  ( M  gcd  N )  =  1 )
54breq2d 4292 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  ->  ( p  ||  ( M  gcd  N
)  <->  p  ||  1 ) )
62, 5mtbird 301 . . . . 5  |-  ( (
ph  /\  p  e.  Prime )  ->  -.  p  ||  ( M  gcd  N
) )
7 ablfacrp.k . . . . . . . . . . . . . 14  |-  K  =  { x  e.  B  |  ( O `  x )  ||  M }
8 ablfacrp.g . . . . . . . . . . . . . . 15  |-  ( ph  ->  G  e.  Abel )
9 ablfacrp.m . . . . . . . . . . . . . . . 16  |-  ( ph  ->  M  e.  NN )
109nnzd 10734 . . . . . . . . . . . . . . 15  |-  ( ph  ->  M  e.  ZZ )
11 ablfacrp.o . . . . . . . . . . . . . . . 16  |-  O  =  ( od `  G
)
12 ablfacrp.b . . . . . . . . . . . . . . . 16  |-  B  =  ( Base `  G
)
1311, 12oddvdssubg 16317 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  Abel  /\  M  e.  ZZ )  ->  { x  e.  B  |  ( O `  x )  ||  M }  e.  (SubGrp `  G ) )
148, 10, 13syl2anc 654 . . . . . . . . . . . . . 14  |-  ( ph  ->  { x  e.  B  |  ( O `  x )  ||  M }  e.  (SubGrp `  G
) )
157, 14syl5eqel 2517 . . . . . . . . . . . . 13  |-  ( ph  ->  K  e.  (SubGrp `  G ) )
1615ad2antrr 718 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e.  Prime )  /\  p  ||  ( # `  K
) )  ->  K  e.  (SubGrp `  G )
)
17 eqid 2433 . . . . . . . . . . . . 13  |-  ( Gs  K )  =  ( Gs  K )
1817subggrp 15664 . . . . . . . . . . . 12  |-  ( K  e.  (SubGrp `  G
)  ->  ( Gs  K
)  e.  Grp )
1916, 18syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  p  e.  Prime )  /\  p  ||  ( # `  K
) )  ->  ( Gs  K )  e.  Grp )
2017subgbas 15665 . . . . . . . . . . . . 13  |-  ( K  e.  (SubGrp `  G
)  ->  K  =  ( Base `  ( Gs  K
) ) )
2116, 20syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e.  Prime )  /\  p  ||  ( # `  K
) )  ->  K  =  ( Base `  ( Gs  K ) ) )
22 ablfacrp.2 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( # `  B
)  =  ( M  x.  N ) )
239nnnn0d 10624 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  M  e.  NN0 )
24 ablfacrp.n . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  N  e.  NN )
2524nnnn0d 10624 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  N  e.  NN0 )
2623, 25nn0mulcld 10629 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( M  x.  N
)  e.  NN0 )
2722, 26eqeltrd 2507 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( # `  B
)  e.  NN0 )
28 fvex 5689 . . . . . . . . . . . . . . . . 17  |-  ( Base `  G )  e.  _V
2912, 28eqeltri 2503 . . . . . . . . . . . . . . . 16  |-  B  e. 
_V
30 hashclb 12112 . . . . . . . . . . . . . . . 16  |-  ( B  e.  _V  ->  ( B  e.  Fin  <->  ( # `  B
)  e.  NN0 )
)
3129, 30ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( B  e.  Fin  <->  ( # `  B
)  e.  NN0 )
3227, 31sylibr 212 . . . . . . . . . . . . . 14  |-  ( ph  ->  B  e.  Fin )
33 ssrab2 3425 . . . . . . . . . . . . . . 15  |-  { x  e.  B  |  ( O `  x )  ||  M }  C_  B
347, 33eqsstri 3374 . . . . . . . . . . . . . 14  |-  K  C_  B
35 ssfi 7521 . . . . . . . . . . . . . 14  |-  ( ( B  e.  Fin  /\  K  C_  B )  ->  K  e.  Fin )
3632, 34, 35sylancl 655 . . . . . . . . . . . . 13  |-  ( ph  ->  K  e.  Fin )
3736ad2antrr 718 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e.  Prime )  /\  p  ||  ( # `  K
) )  ->  K  e.  Fin )
3821, 37eqeltrrd 2508 . . . . . . . . . . 11  |-  ( ( ( ph  /\  p  e.  Prime )  /\  p  ||  ( # `  K
) )  ->  ( Base `  ( Gs  K ) )  e.  Fin )
39 simplr 747 . . . . . . . . . . 11  |-  ( ( ( ph  /\  p  e.  Prime )  /\  p  ||  ( # `  K
) )  ->  p  e.  Prime )
40 simpr 458 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e.  Prime )  /\  p  ||  ( # `  K
) )  ->  p  ||  ( # `  K
) )
4121fveq2d 5683 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  p  e.  Prime )  /\  p  ||  ( # `  K
) )  ->  ( # `
 K )  =  ( # `  ( Base `  ( Gs  K ) ) ) )
4240, 41breqtrd 4304 . . . . . . . . . . 11  |-  ( ( ( ph  /\  p  e.  Prime )  /\  p  ||  ( # `  K
) )  ->  p  ||  ( # `  ( Base `  ( Gs  K ) ) ) )
43 eqid 2433 . . . . . . . . . . . 12  |-  ( Base `  ( Gs  K ) )  =  ( Base `  ( Gs  K ) )
44 eqid 2433 . . . . . . . . . . . 12  |-  ( od
`  ( Gs  K ) )  =  ( od
`  ( Gs  K ) )
4543, 44odcau 16083 . . . . . . . . . . 11  |-  ( ( ( ( Gs  K )  e.  Grp  /\  ( Base `  ( Gs  K ) )  e.  Fin  /\  p  e.  Prime )  /\  p  ||  ( # `  ( Base `  ( Gs  K ) ) ) )  ->  E. g  e.  ( Base `  ( Gs  K ) ) ( ( od
`  ( Gs  K ) ) `  g )  =  p )
4619, 38, 39, 42, 45syl31anc 1214 . . . . . . . . . 10  |-  ( ( ( ph  /\  p  e.  Prime )  /\  p  ||  ( # `  K
) )  ->  E. g  e.  ( Base `  ( Gs  K ) ) ( ( od `  ( Gs  K ) ) `  g )  =  p )
4721rexeqdv 2914 . . . . . . . . . 10  |-  ( ( ( ph  /\  p  e.  Prime )  /\  p  ||  ( # `  K
) )  ->  ( E. g  e.  K  ( ( od `  ( Gs  K ) ) `  g )  =  p  <->  E. g  e.  ( Base `  ( Gs  K ) ) ( ( od
`  ( Gs  K ) ) `  g )  =  p ) )
4846, 47mpbird 232 . . . . . . . . 9  |-  ( ( ( ph  /\  p  e.  Prime )  /\  p  ||  ( # `  K
) )  ->  E. g  e.  K  ( ( od `  ( Gs  K ) ) `  g )  =  p )
4917, 11, 44subgod 16049 . . . . . . . . . . . . 13  |-  ( ( K  e.  (SubGrp `  G )  /\  g  e.  K )  ->  ( O `  g )  =  ( ( od
`  ( Gs  K ) ) `  g ) )
5016, 49sylan 468 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  p  ||  ( # `  K
) )  /\  g  e.  K )  ->  ( O `  g )  =  ( ( od
`  ( Gs  K ) ) `  g ) )
51 fveq2 5679 . . . . . . . . . . . . . . . 16  |-  ( x  =  g  ->  ( O `  x )  =  ( O `  g ) )
5251breq1d 4290 . . . . . . . . . . . . . . 15  |-  ( x  =  g  ->  (
( O `  x
)  ||  M  <->  ( O `  g )  ||  M
) )
5352, 7elrab2 3108 . . . . . . . . . . . . . 14  |-  ( g  e.  K  <->  ( g  e.  B  /\  ( O `  g )  ||  M ) )
5453simprbi 461 . . . . . . . . . . . . 13  |-  ( g  e.  K  ->  ( O `  g )  ||  M )
5554adantl 463 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  p  ||  ( # `  K
) )  /\  g  e.  K )  ->  ( O `  g )  ||  M )
5650, 55eqbrtrrd 4302 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  p  ||  ( # `  K
) )  /\  g  e.  K )  ->  (
( od `  ( Gs  K ) ) `  g )  ||  M
)
57 breq1 4283 . . . . . . . . . . 11  |-  ( ( ( od `  ( Gs  K ) ) `  g )  =  p  ->  ( ( ( od `  ( Gs  K ) ) `  g
)  ||  M  <->  p  ||  M
) )
5856, 57syl5ibcom 220 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  p  e.  Prime )  /\  p  ||  ( # `  K
) )  /\  g  e.  K )  ->  (
( ( od `  ( Gs  K ) ) `  g )  =  p  ->  p  ||  M
) )
5958rexlimdva 2831 . . . . . . . . 9  |-  ( ( ( ph  /\  p  e.  Prime )  /\  p  ||  ( # `  K
) )  ->  ( E. g  e.  K  ( ( od `  ( Gs  K ) ) `  g )  =  p  ->  p  ||  M
) )
6048, 59mpd 15 . . . . . . . 8  |-  ( ( ( ph  /\  p  e.  Prime )  /\  p  ||  ( # `  K
) )  ->  p  ||  M )
6160ex 434 . . . . . . 7  |-  ( (
ph  /\  p  e.  Prime )  ->  ( p  ||  ( # `  K
)  ->  p  ||  M
) )
6261anim1d 559 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  ->  ( (
p  ||  ( # `  K
)  /\  p  ||  N
)  ->  ( p  ||  M  /\  p  ||  N ) ) )
63 prmz 13750 . . . . . . . 8  |-  ( p  e.  Prime  ->  p  e.  ZZ )
6463adantl 463 . . . . . . 7  |-  ( (
ph  /\  p  e.  Prime )  ->  p  e.  ZZ )
65 hashcl 12110 . . . . . . . . . 10  |-  ( K  e.  Fin  ->  ( # `
 K )  e. 
NN0 )
6636, 65syl 16 . . . . . . . . 9  |-  ( ph  ->  ( # `  K
)  e.  NN0 )
6766nn0zd 10733 . . . . . . . 8  |-  ( ph  ->  ( # `  K
)  e.  ZZ )
6867adantr 462 . . . . . . 7  |-  ( (
ph  /\  p  e.  Prime )  ->  ( # `  K
)  e.  ZZ )
6924nnzd 10734 . . . . . . . 8  |-  ( ph  ->  N  e.  ZZ )
7069adantr 462 . . . . . . 7  |-  ( (
ph  /\  p  e.  Prime )  ->  N  e.  ZZ )
71 dvdsgcdb 13711 . . . . . . 7  |-  ( ( p  e.  ZZ  /\  ( # `  K )  e.  ZZ  /\  N  e.  ZZ )  ->  (
( p  ||  ( # `
 K )  /\  p  ||  N )  <->  p  ||  (
( # `  K )  gcd  N ) ) )
7264, 68, 70, 71syl3anc 1211 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  ->  ( (
p  ||  ( # `  K
)  /\  p  ||  N
)  <->  p  ||  ( (
# `  K )  gcd  N ) ) )
7310adantr 462 . . . . . . 7  |-  ( (
ph  /\  p  e.  Prime )  ->  M  e.  ZZ )
74 dvdsgcdb 13711 . . . . . . 7  |-  ( ( p  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( p  ||  M  /\  p  ||  N )  <-> 
p  ||  ( M  gcd  N ) ) )
7564, 73, 70, 74syl3anc 1211 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  ->  ( (
p  ||  M  /\  p  ||  N )  <->  p  ||  ( M  gcd  N ) ) )
7662, 72, 753imtr3d 267 . . . . 5  |-  ( (
ph  /\  p  e.  Prime )  ->  ( p  ||  ( ( # `  K
)  gcd  N )  ->  p  ||  ( M  gcd  N ) ) )
776, 76mtod 177 . . . 4  |-  ( (
ph  /\  p  e.  Prime )  ->  -.  p  ||  ( ( # `  K
)  gcd  N )
)
7877nrexdv 2809 . . 3  |-  ( ph  ->  -.  E. p  e. 
Prime  p  ||  ( (
# `  K )  gcd  N ) )
79 exprmfct 13779 . . 3  |-  ( ( ( # `  K
)  gcd  N )  e.  ( ZZ>= `  2 )  ->  E. p  e.  Prime  p 
||  ( ( # `  K )  gcd  N
) )
8078, 79nsyl 121 . 2  |-  ( ph  ->  -.  ( ( # `  K )  gcd  N
)  e.  ( ZZ>= ` 
2 ) )
8124nnne0d 10354 . . . . . 6  |-  ( ph  ->  N  =/=  0 )
82 simpr 458 . . . . . . 7  |-  ( ( ( # `  K
)  =  0  /\  N  =  0 )  ->  N  =  0 )
8382necon3ai 2641 . . . . . 6  |-  ( N  =/=  0  ->  -.  ( ( # `  K
)  =  0  /\  N  =  0 ) )
8481, 83syl 16 . . . . 5  |-  ( ph  ->  -.  ( ( # `  K )  =  0  /\  N  =  0 ) )
85 gcdn0cl 13681 . . . . 5  |-  ( ( ( ( # `  K
)  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( ( # `  K )  =  0  /\  N  =  0 ) )  ->  (
( # `  K )  gcd  N )  e.  NN )
8667, 69, 84, 85syl21anc 1210 . . . 4  |-  ( ph  ->  ( ( # `  K
)  gcd  N )  e.  NN )
87 elnn1uz2 10919 . . . 4  |-  ( ( ( # `  K
)  gcd  N )  e.  NN  <->  ( ( (
# `  K )  gcd  N )  =  1  \/  ( ( # `  K )  gcd  N
)  e.  ( ZZ>= ` 
2 ) ) )
8886, 87sylib 196 . . 3  |-  ( ph  ->  ( ( ( # `  K )  gcd  N
)  =  1  \/  ( ( # `  K
)  gcd  N )  e.  ( ZZ>= `  2 )
) )
8988ord 377 . 2  |-  ( ph  ->  ( -.  ( (
# `  K )  gcd  N )  =  1  ->  ( ( # `  K )  gcd  N
)  e.  ( ZZ>= ` 
2 ) ) )
9080, 89mt3d 125 1  |-  ( ph  ->  ( ( # `  K
)  gcd  N )  =  1 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1362    e. wcel 1755    =/= wne 2596   E.wrex 2706   {crab 2709   _Vcvv 2962    C_ wss 3316   class class class wbr 4280   ` cfv 5406  (class class class)co 6080   Fincfn 7298   0cc0 9270   1c1 9271    x. cmul 9275   NNcn 10310   2c2 10359   NN0cn0 10567   ZZcz 10634   ZZ>=cuz 10849   #chash 12087    || cdivides 13518    gcd cgcd 13673   Primecprime 13746   Basecbs 14157   ↾s cress 14158   Grpcgrp 15393  SubGrpcsubg 15655   odcod 16008   Abelcabel 16258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347  ax-pre-sup 9348
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-fal 1368  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-disj 4251  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-1o 6908  df-2o 6909  df-oadd 6912  df-omul 6913  df-er 7089  df-ec 7091  df-qs 7095  df-map 7204  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-sup 7679  df-oi 7712  df-card 8097  df-acn 8100  df-cda 8325  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-div 9982  df-nn 10311  df-2 10368  df-3 10369  df-n0 10568  df-z 10635  df-uz 10850  df-q 10942  df-rp 10980  df-fz 11425  df-fzo 11533  df-fl 11626  df-mod 11693  df-seq 11791  df-exp 11850  df-fac 12036  df-bc 12063  df-hash 12088  df-cj 12572  df-re 12573  df-im 12574  df-sqr 12708  df-abs 12709  df-clim 12950  df-sum 13148  df-dvds 13519  df-gcd 13674  df-prm 13747  df-pc 13887  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-ress 14164  df-plusg 14234  df-0g 14363  df-mnd 15398  df-submnd 15448  df-grp 15525  df-minusg 15526  df-sbg 15527  df-mulg 15528  df-subg 15658  df-eqg 15660  df-ga 15788  df-od 16012  df-cmn 16259  df-abl 16260
This theorem is referenced by:  ablfacrp2  16542
  Copyright terms: Public domain W3C validator