MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfaclem3 Unicode version

Theorem ablfaclem3 15600
Description: Lemma for ablfac 15601. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
ablfac.b  |-  B  =  ( Base `  G
)
ablfac.c  |-  C  =  { r  e.  (SubGrp `  G )  |  ( Gs  r )  e.  (CycGrp 
i^i  ran pGrp  ) }
ablfac.1  |-  ( ph  ->  G  e.  Abel )
ablfac.2  |-  ( ph  ->  B  e.  Fin )
ablfac.o  |-  O  =  ( od `  G
)
ablfac.a  |-  A  =  { w  e.  Prime  |  w  ||  ( # `  B ) }
ablfac.s  |-  S  =  ( p  e.  A  |->  { x  e.  B  |  ( O `  x )  ||  (
p ^ ( p 
pCnt  ( # `  B
) ) ) } )
ablfac.w  |-  W  =  ( g  e.  (SubGrp `  G )  |->  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd  s )  =  g ) } )
Assertion
Ref Expression
ablfaclem3  |-  ( ph  ->  ( W `  B
)  =/=  (/) )
Distinct variable groups:    s, p, x, A    g, r, s, S    g, p, w, x, B, r, s    O, p, x    C, g, p, s, w, x    W, p, w, x    ph, p, s, w, x    g, G, p, r, s, w, x
Allowed substitution hints:    ph( g, r)    A( w, g, r)    C( r)    S( x, w, p)    O( w, g, s, r)    W( g, s, r)

Proof of Theorem ablfaclem3
Dummy variables  a 
b  c  f  h  q  t  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 11267 . . . 4  |-  ( ph  ->  ( 1 ... ( # `
 B ) )  e.  Fin )
2 ablfac.a . . . . 5  |-  A  =  { w  e.  Prime  |  w  ||  ( # `  B ) }
3 prmnn 13037 . . . . . . . 8  |-  ( w  e.  Prime  ->  w  e.  NN )
433ad2ant2 979 . . . . . . 7  |-  ( (
ph  /\  w  e.  Prime  /\  w  ||  ( # `
 B ) )  ->  w  e.  NN )
5 prmz 13038 . . . . . . . . 9  |-  ( w  e.  Prime  ->  w  e.  ZZ )
6 ablfac.1 . . . . . . . . . . 11  |-  ( ph  ->  G  e.  Abel )
7 ablgrp 15372 . . . . . . . . . . 11  |-  ( G  e.  Abel  ->  G  e. 
Grp )
8 ablfac.b . . . . . . . . . . . 12  |-  B  =  ( Base `  G
)
98grpbn0 14789 . . . . . . . . . . 11  |-  ( G  e.  Grp  ->  B  =/=  (/) )
106, 7, 93syl 19 . . . . . . . . . 10  |-  ( ph  ->  B  =/=  (/) )
11 ablfac.2 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  Fin )
12 hashnncl 11600 . . . . . . . . . . 11  |-  ( B  e.  Fin  ->  (
( # `  B )  e.  NN  <->  B  =/=  (/) ) )
1311, 12syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( ( # `  B
)  e.  NN  <->  B  =/=  (/) ) )
1410, 13mpbird 224 . . . . . . . . 9  |-  ( ph  ->  ( # `  B
)  e.  NN )
15 dvdsle 12850 . . . . . . . . 9  |-  ( ( w  e.  ZZ  /\  ( # `  B )  e.  NN )  -> 
( w  ||  ( # `
 B )  ->  w  <_  ( # `  B
) ) )
165, 14, 15syl2anr 465 . . . . . . . 8  |-  ( (
ph  /\  w  e.  Prime )  ->  ( w  ||  ( # `  B
)  ->  w  <_  (
# `  B )
) )
17163impia 1150 . . . . . . 7  |-  ( (
ph  /\  w  e.  Prime  /\  w  ||  ( # `
 B ) )  ->  w  <_  ( # `
 B ) )
1814nnzd 10330 . . . . . . . . 9  |-  ( ph  ->  ( # `  B
)  e.  ZZ )
19183ad2ant1 978 . . . . . . . 8  |-  ( (
ph  /\  w  e.  Prime  /\  w  ||  ( # `
 B ) )  ->  ( # `  B
)  e.  ZZ )
20 fznn 11070 . . . . . . . 8  |-  ( (
# `  B )  e.  ZZ  ->  ( w  e.  ( 1 ... ( # `
 B ) )  <-> 
( w  e.  NN  /\  w  <_  ( # `  B
) ) ) )
2119, 20syl 16 . . . . . . 7  |-  ( (
ph  /\  w  e.  Prime  /\  w  ||  ( # `
 B ) )  ->  ( w  e.  ( 1 ... ( # `
 B ) )  <-> 
( w  e.  NN  /\  w  <_  ( # `  B
) ) ) )
224, 17, 21mpbir2and 889 . . . . . 6  |-  ( (
ph  /\  w  e.  Prime  /\  w  ||  ( # `
 B ) )  ->  w  e.  ( 1 ... ( # `  B ) ) )
2322rabssdv 3383 . . . . 5  |-  ( ph  ->  { w  e.  Prime  |  w  ||  ( # `  B ) }  C_  ( 1 ... ( # `
 B ) ) )
242, 23syl5eqss 3352 . . . 4  |-  ( ph  ->  A  C_  ( 1 ... ( # `  B
) ) )
25 ssfi 7288 . . . 4  |-  ( ( ( 1 ... ( # `
 B ) )  e.  Fin  /\  A  C_  ( 1 ... ( # `
 B ) ) )  ->  A  e.  Fin )
261, 24, 25syl2anc 643 . . 3  |-  ( ph  ->  A  e.  Fin )
27 dfin5 3288 . . . . . . . 8  |-  (Word  C  i^i  ( W `  ( S `  q )
) )  =  {
y  e. Word  C  | 
y  e.  ( W `
 ( S `  q ) ) }
28 ablfac.o . . . . . . . . . . . . . 14  |-  O  =  ( od `  G
)
29 ablfac.s . . . . . . . . . . . . . 14  |-  S  =  ( p  e.  A  |->  { x  e.  B  |  ( O `  x )  ||  (
p ^ ( p 
pCnt  ( # `  B
) ) ) } )
30 ssrab2 3388 . . . . . . . . . . . . . . . 16  |-  { w  e.  Prime  |  w  ||  ( # `  B ) }  C_  Prime
312, 30eqsstri 3338 . . . . . . . . . . . . . . 15  |-  A  C_  Prime
3231a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  A  C_  Prime )
338, 28, 29, 6, 11, 32ablfac1b 15583 . . . . . . . . . . . . 13  |-  ( ph  ->  G dom DProd  S )
34 fvex 5701 . . . . . . . . . . . . . . . . 17  |-  ( Base `  G )  e.  _V
358, 34eqeltri 2474 . . . . . . . . . . . . . . . 16  |-  B  e. 
_V
3635rabex 4314 . . . . . . . . . . . . . . 15  |-  { x  e.  B  |  ( O `  x )  ||  ( p ^ (
p  pCnt  ( # `  B
) ) ) }  e.  _V
3736, 29dmmpti 5533 . . . . . . . . . . . . . 14  |-  dom  S  =  A
3837a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  dom  S  =  A )
3933, 38dprdf2 15520 . . . . . . . . . . . 12  |-  ( ph  ->  S : A --> (SubGrp `  G ) )
4039ffvelrnda 5829 . . . . . . . . . . 11  |-  ( (
ph  /\  q  e.  A )  ->  ( S `  q )  e.  (SubGrp `  G )
)
41 ablfac.c . . . . . . . . . . . 12  |-  C  =  { r  e.  (SubGrp `  G )  |  ( Gs  r )  e.  (CycGrp 
i^i  ran pGrp  ) }
42 ablfac.w . . . . . . . . . . . 12  |-  W  =  ( g  e.  (SubGrp `  G )  |->  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd  s )  =  g ) } )
438, 41, 6, 11, 28, 2, 29, 42ablfaclem1 15598 . . . . . . . . . . 11  |-  ( ( S `  q )  e.  (SubGrp `  G
)  ->  ( W `  ( S `  q
) )  =  {
s  e. Word  C  | 
( G dom DProd  s  /\  ( G DProd  s )  =  ( S `  q ) ) } )
4440, 43syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  A )  ->  ( W `  ( S `  q ) )  =  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd  s
)  =  ( S `
 q ) ) } )
45 ssrab2 3388 . . . . . . . . . 10  |-  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd  s )  =  ( S `  q ) ) } 
C_ Word  C
4644, 45syl6eqss 3358 . . . . . . . . 9  |-  ( (
ph  /\  q  e.  A )  ->  ( W `  ( S `  q ) )  C_ Word  C )
47 dfss1 3505 . . . . . . . . 9  |-  ( ( W `  ( S `
 q ) ) 
C_ Word  C  <->  (Word  C  i^i  ( W `  ( S `
 q ) ) )  =  ( W `
 ( S `  q ) ) )
4846, 47sylib 189 . . . . . . . 8  |-  ( (
ph  /\  q  e.  A )  ->  (Word  C  i^i  ( W `  ( S `  q ) ) )  =  ( W `  ( S `
 q ) ) )
4927, 48syl5eqr 2450 . . . . . . 7  |-  ( (
ph  /\  q  e.  A )  ->  { y  e. Word  C  |  y  e.  ( W `  ( S `  q ) ) }  =  ( W `  ( S `
 q ) ) )
5049, 44eqtrd 2436 . . . . . 6  |-  ( (
ph  /\  q  e.  A )  ->  { y  e. Word  C  |  y  e.  ( W `  ( S `  q ) ) }  =  {
s  e. Word  C  | 
( G dom DProd  s  /\  ( G DProd  s )  =  ( S `  q ) ) } )
51 eqid 2404 . . . . . . . . 9  |-  ( Base `  ( Gs  ( S `  q ) ) )  =  ( Base `  ( Gs  ( S `  q ) ) )
52 eqid 2404 . . . . . . . . 9  |-  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp  i^i  ran pGrp  ) }  =  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp  i^i  ran pGrp  ) }
536adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  A )  ->  G  e.  Abel )
54 eqid 2404 . . . . . . . . . . 11  |-  ( Gs  ( S `  q ) )  =  ( Gs  ( S `  q ) )
5554subgabl 15410 . . . . . . . . . 10  |-  ( ( G  e.  Abel  /\  ( S `  q )  e.  (SubGrp `  G )
)  ->  ( Gs  ( S `  q )
)  e.  Abel )
5653, 40, 55syl2anc 643 . . . . . . . . 9  |-  ( (
ph  /\  q  e.  A )  ->  ( Gs  ( S `  q ) )  e.  Abel )
5732sselda 3308 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  A )  ->  q  e.  Prime )
5854subgbas 14903 . . . . . . . . . . . . . 14  |-  ( ( S `  q )  e.  (SubGrp `  G
)  ->  ( S `  q )  =  (
Base `  ( Gs  ( S `  q )
) ) )
5940, 58syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  q  e.  A )  ->  ( S `  q )  =  ( Base `  ( Gs  ( S `  q ) ) ) )
6059fveq2d 5691 . . . . . . . . . . . 12  |-  ( (
ph  /\  q  e.  A )  ->  ( # `
 ( S `  q ) )  =  ( # `  ( Base `  ( Gs  ( S `
 q ) ) ) ) )
618, 28, 29, 6, 11, 32ablfac1a 15582 . . . . . . . . . . . 12  |-  ( (
ph  /\  q  e.  A )  ->  ( # `
 ( S `  q ) )  =  ( q ^ (
q  pCnt  ( # `  B
) ) ) )
6260, 61eqtr3d 2438 . . . . . . . . . . 11  |-  ( (
ph  /\  q  e.  A )  ->  ( # `
 ( Base `  ( Gs  ( S `  q ) ) ) )  =  ( q ^ (
q  pCnt  ( # `  B
) ) ) )
6362oveq2d 6056 . . . . . . . . . . . . 13  |-  ( (
ph  /\  q  e.  A )  ->  (
q  pCnt  ( # `  ( Base `  ( Gs  ( S `
 q ) ) ) ) )  =  ( q  pCnt  (
q ^ ( q 
pCnt  ( # `  B
) ) ) ) )
6414adantr 452 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  q  e.  A )  ->  ( # `
 B )  e.  NN )
6557, 64pccld 13179 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  q  e.  A )  ->  (
q  pCnt  ( # `  B
) )  e.  NN0 )
6665nn0zd 10329 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  q  e.  A )  ->  (
q  pCnt  ( # `  B
) )  e.  ZZ )
67 pcid 13201 . . . . . . . . . . . . . 14  |-  ( ( q  e.  Prime  /\  (
q  pCnt  ( # `  B
) )  e.  ZZ )  ->  ( q  pCnt  ( q ^ ( q 
pCnt  ( # `  B
) ) ) )  =  ( q  pCnt  (
# `  B )
) )
6857, 66, 67syl2anc 643 . . . . . . . . . . . . 13  |-  ( (
ph  /\  q  e.  A )  ->  (
q  pCnt  ( q ^ ( q  pCnt  (
# `  B )
) ) )  =  ( q  pCnt  ( # `
 B ) ) )
6963, 68eqtrd 2436 . . . . . . . . . . . 12  |-  ( (
ph  /\  q  e.  A )  ->  (
q  pCnt  ( # `  ( Base `  ( Gs  ( S `
 q ) ) ) ) )  =  ( q  pCnt  ( # `
 B ) ) )
7069oveq2d 6056 . . . . . . . . . . 11  |-  ( (
ph  /\  q  e.  A )  ->  (
q ^ ( q 
pCnt  ( # `  ( Base `  ( Gs  ( S `
 q ) ) ) ) ) )  =  ( q ^
( q  pCnt  ( # `
 B ) ) ) )
7162, 70eqtr4d 2439 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  A )  ->  ( # `
 ( Base `  ( Gs  ( S `  q ) ) ) )  =  ( q ^ (
q  pCnt  ( # `  ( Base `  ( Gs  ( S `
 q ) ) ) ) ) ) )
7254subggrp 14902 . . . . . . . . . . . 12  |-  ( ( S `  q )  e.  (SubGrp `  G
)  ->  ( Gs  ( S `  q )
)  e.  Grp )
7340, 72syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  q  e.  A )  ->  ( Gs  ( S `  q ) )  e.  Grp )
7411adantr 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  q  e.  A )  ->  B  e.  Fin )
758subgss 14900 . . . . . . . . . . . . . 14  |-  ( ( S `  q )  e.  (SubGrp `  G
)  ->  ( S `  q )  C_  B
)
7640, 75syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  q  e.  A )  ->  ( S `  q )  C_  B )
77 ssfi 7288 . . . . . . . . . . . . 13  |-  ( ( B  e.  Fin  /\  ( S `  q ) 
C_  B )  -> 
( S `  q
)  e.  Fin )
7874, 76, 77syl2anc 643 . . . . . . . . . . . 12  |-  ( (
ph  /\  q  e.  A )  ->  ( S `  q )  e.  Fin )
7959, 78eqeltrrd 2479 . . . . . . . . . . 11  |-  ( (
ph  /\  q  e.  A )  ->  ( Base `  ( Gs  ( S `
 q ) ) )  e.  Fin )
8051pgpfi2 15195 . . . . . . . . . . 11  |-  ( ( ( Gs  ( S `  q ) )  e. 
Grp  /\  ( Base `  ( Gs  ( S `  q ) ) )  e.  Fin )  -> 
( q pGrp  ( Gs  ( S `  q ) )  <->  ( q  e. 
Prime  /\  ( # `  ( Base `  ( Gs  ( S `
 q ) ) ) )  =  ( q ^ ( q 
pCnt  ( # `  ( Base `  ( Gs  ( S `
 q ) ) ) ) ) ) ) ) )
8173, 79, 80syl2anc 643 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  A )  ->  (
q pGrp  ( Gs  ( S `
 q ) )  <-> 
( q  e.  Prime  /\  ( # `  ( Base `  ( Gs  ( S `
 q ) ) ) )  =  ( q ^ ( q 
pCnt  ( # `  ( Base `  ( Gs  ( S `
 q ) ) ) ) ) ) ) ) )
8257, 71, 81mpbir2and 889 . . . . . . . . 9  |-  ( (
ph  /\  q  e.  A )  ->  q pGrp  ( Gs  ( S `  q ) ) )
8351, 52, 56, 82, 79pgpfac 15597 . . . . . . . 8  |-  ( (
ph  /\  q  e.  A )  ->  E. s  e. Word  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp 
i^i  ran pGrp  ) }  (
( Gs  ( S `  q ) ) dom DProd  s  /\  ( ( Gs  ( S `  q ) ) DProd  s )  =  ( Base `  ( Gs  ( S `  q ) ) ) ) )
84 ssrab2 3388 . . . . . . . . . . . . . 14  |-  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp  i^i  ran pGrp  ) }  C_  (SubGrp `  ( Gs  ( S `  q ) ) )
85 sswrd 11692 . . . . . . . . . . . . . 14  |-  ( { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp 
i^i  ran pGrp  ) }  C_  (SubGrp `  ( Gs  ( S `
 q ) ) )  -> Word  { r  e.  (SubGrp `  ( Gs  ( S `  q )
) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp  i^i  ran pGrp  ) }  C_ Word  (SubGrp `  ( Gs  ( S `  q ) ) ) )
8684, 85ax-mp 8 . . . . . . . . . . . . 13  |- Word  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp  i^i  ran pGrp  ) }  C_ Word  (SubGrp `  ( Gs  ( S `  q ) ) )
8786sseli 3304 . . . . . . . . . . . 12  |-  ( s  e. Word  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp 
i^i  ran pGrp  ) }  ->  s  e. Word  (SubGrp `  ( Gs  ( S `  q )
) ) )
8840adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  (SubGrp `  ( Gs  ( S `  q )
) ) )  -> 
( S `  q
)  e.  (SubGrp `  G ) )
8988adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  (SubGrp `  ( Gs  ( S `  q ) ) ) )  /\  ( Gs  ( S `  q ) ) dom DProd  s )  ->  ( S `  q
)  e.  (SubGrp `  G ) )
9054subgdmdprd 15547 . . . . . . . . . . . . . . . . . . 19  |-  ( ( S `  q )  e.  (SubGrp `  G
)  ->  ( ( Gs  ( S `  q ) ) dom DProd  s  <->  ( G dom DProd  s  /\  ran  s  C_ 
~P ( S `  q ) ) ) )
9188, 90syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  (SubGrp `  ( Gs  ( S `  q )
) ) )  -> 
( ( Gs  ( S `
 q ) ) dom DProd  s  <->  ( G dom DProd  s  /\  ran  s  C_ 
~P ( S `  q ) ) ) )
9291simprbda 607 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  (SubGrp `  ( Gs  ( S `  q ) ) ) )  /\  ( Gs  ( S `  q ) ) dom DProd  s )  ->  G dom DProd  s )
9391simplbda 608 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  (SubGrp `  ( Gs  ( S `  q ) ) ) )  /\  ( Gs  ( S `  q ) ) dom DProd  s )  ->  ran  s  C_  ~P ( S `  q ) )
9454, 89, 92, 93subgdprd 15548 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  (SubGrp `  ( Gs  ( S `  q ) ) ) )  /\  ( Gs  ( S `  q ) ) dom DProd  s )  ->  ( ( Gs  ( S `
 q ) ) DProd 
s )  =  ( G DProd  s ) )
9559ad2antrr 707 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  (SubGrp `  ( Gs  ( S `  q ) ) ) )  /\  ( Gs  ( S `  q ) ) dom DProd  s )  ->  ( S `  q
)  =  ( Base `  ( Gs  ( S `  q ) ) ) )
9695eqcomd 2409 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  (SubGrp `  ( Gs  ( S `  q ) ) ) )  /\  ( Gs  ( S `  q ) ) dom DProd  s )  ->  ( Base `  ( Gs  ( S `  q ) ) )  =  ( S `  q ) )
9794, 96eqeq12d 2418 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  (SubGrp `  ( Gs  ( S `  q ) ) ) )  /\  ( Gs  ( S `  q ) ) dom DProd  s )  ->  ( ( ( Gs  ( S `  q ) ) DProd  s )  =  ( Base `  ( Gs  ( S `  q ) ) )  <->  ( G DProd  s )  =  ( S `
 q ) ) )
9897biimpd 199 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  (SubGrp `  ( Gs  ( S `  q ) ) ) )  /\  ( Gs  ( S `  q ) ) dom DProd  s )  ->  ( ( ( Gs  ( S `  q ) ) DProd  s )  =  ( Base `  ( Gs  ( S `  q ) ) )  ->  ( G DProd  s )  =  ( S `  q ) ) )
9998, 92jctild 528 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  (SubGrp `  ( Gs  ( S `  q ) ) ) )  /\  ( Gs  ( S `  q ) ) dom DProd  s )  ->  ( ( ( Gs  ( S `  q ) ) DProd  s )  =  ( Base `  ( Gs  ( S `  q ) ) )  ->  ( G dom DProd  s  /\  ( G DProd  s )  =  ( S `  q ) ) ) )
10099expimpd 587 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  (SubGrp `  ( Gs  ( S `  q )
) ) )  -> 
( ( ( Gs  ( S `  q ) ) dom DProd  s  /\  ( ( Gs  ( S `
 q ) ) DProd 
s )  =  (
Base `  ( Gs  ( S `  q )
) ) )  -> 
( G dom DProd  s  /\  ( G DProd  s )  =  ( S `  q ) ) ) )
10187, 100sylan2 461 . . . . . . . . . . 11  |-  ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp 
i^i  ran pGrp  ) } )  ->  ( ( ( Gs  ( S `  q
) ) dom DProd  s  /\  ( ( Gs  ( S `
 q ) ) DProd 
s )  =  (
Base `  ( Gs  ( S `  q )
) ) )  -> 
( G dom DProd  s  /\  ( G DProd  s )  =  ( S `  q ) ) ) )
102 oveq2 6048 . . . . . . . . . . . . . . . 16  |-  ( r  =  y  ->  (
( Gs  ( S `  q ) )s  r )  =  ( ( Gs  ( S `  q ) )s  y ) )
103102eleq1d 2470 . . . . . . . . . . . . . . 15  |-  ( r  =  y  ->  (
( ( Gs  ( S `
 q ) )s  r )  e.  (CycGrp  i^i  ran pGrp  ) 
<->  ( ( Gs  ( S `
 q ) )s  y )  e.  (CycGrp  i^i  ran pGrp  ) ) )
104103cbvrabv 2915 . . . . . . . . . . . . . 14  |-  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp  i^i  ran pGrp  ) }  =  { y  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  y )  e.  (CycGrp  i^i  ran pGrp  ) }
10554subsubg 14918 . . . . . . . . . . . . . . . . . . 19  |-  ( ( S `  q )  e.  (SubGrp `  G
)  ->  ( y  e.  (SubGrp `  ( Gs  ( S `  q )
) )  <->  ( y  e.  (SubGrp `  G )  /\  y  C_  ( S `
 q ) ) ) )
10640, 105syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  q  e.  A )  ->  (
y  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  <-> 
( y  e.  (SubGrp `  G )  /\  y  C_  ( S `  q
) ) ) )
107106simprbda 607 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  q  e.  A )  /\  y  e.  (SubGrp `  ( Gs  ( S `  q )
) ) )  -> 
y  e.  (SubGrp `  G ) )
1081073adant3 977 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  q  e.  A )  /\  y  e.  (SubGrp `  ( Gs  ( S `  q )
) )  /\  (
( Gs  ( S `  q ) )s  y )  e.  (CycGrp  i^i  ran pGrp  ) )  ->  y  e.  (SubGrp `  G ) )
109403ad2ant1 978 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  q  e.  A )  /\  y  e.  (SubGrp `  ( Gs  ( S `  q )
) )  /\  (
( Gs  ( S `  q ) )s  y )  e.  (CycGrp  i^i  ran pGrp  ) )  ->  ( S `  q )  e.  (SubGrp `  G ) )
110106simplbda 608 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  q  e.  A )  /\  y  e.  (SubGrp `  ( Gs  ( S `  q )
) ) )  -> 
y  C_  ( S `  q ) )
1111103adant3 977 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  q  e.  A )  /\  y  e.  (SubGrp `  ( Gs  ( S `  q )
) )  /\  (
( Gs  ( S `  q ) )s  y )  e.  (CycGrp  i^i  ran pGrp  ) )  ->  y  C_  ( S `  q ) )
112 ressabs 13482 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( S `  q
)  e.  (SubGrp `  G )  /\  y  C_  ( S `  q
) )  ->  (
( Gs  ( S `  q ) )s  y )  =  ( Gs  y ) )
113109, 111, 112syl2anc 643 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  q  e.  A )  /\  y  e.  (SubGrp `  ( Gs  ( S `  q )
) )  /\  (
( Gs  ( S `  q ) )s  y )  e.  (CycGrp  i^i  ran pGrp  ) )  ->  ( ( Gs  ( S `  q ) )s  y )  =  ( Gs  y ) )
114 simp3 959 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  q  e.  A )  /\  y  e.  (SubGrp `  ( Gs  ( S `  q )
) )  /\  (
( Gs  ( S `  q ) )s  y )  e.  (CycGrp  i^i  ran pGrp  ) )  ->  ( ( Gs  ( S `  q ) )s  y )  e.  (CycGrp 
i^i  ran pGrp  ) )
115113, 114eqeltrrd 2479 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  q  e.  A )  /\  y  e.  (SubGrp `  ( Gs  ( S `  q )
) )  /\  (
( Gs  ( S `  q ) )s  y )  e.  (CycGrp  i^i  ran pGrp  ) )  ->  ( Gs  y
)  e.  (CycGrp  i^i  ran pGrp  ) )
116 oveq2 6048 . . . . . . . . . . . . . . . . . 18  |-  ( r  =  y  ->  ( Gs  r )  =  ( Gs  y ) )
117116eleq1d 2470 . . . . . . . . . . . . . . . . 17  |-  ( r  =  y  ->  (
( Gs  r )  e.  (CycGrp  i^i  ran pGrp  )  <->  ( Gs  y
)  e.  (CycGrp  i^i  ran pGrp  ) ) )
118117, 41elrab2 3054 . . . . . . . . . . . . . . . 16  |-  ( y  e.  C  <->  ( y  e.  (SubGrp `  G )  /\  ( Gs  y )  e.  (CycGrp  i^i  ran pGrp  ) ) )
119108, 115, 118sylanbrc 646 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  q  e.  A )  /\  y  e.  (SubGrp `  ( Gs  ( S `  q )
) )  /\  (
( Gs  ( S `  q ) )s  y )  e.  (CycGrp  i^i  ran pGrp  ) )  ->  y  e.  C )
120119rabssdv 3383 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  q  e.  A )  ->  { y  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  y )  e.  (CycGrp  i^i  ran pGrp  ) }  C_  C )
121104, 120syl5eqss 3352 . . . . . . . . . . . . 13  |-  ( (
ph  /\  q  e.  A )  ->  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp  i^i  ran pGrp  ) }  C_  C )
122 sswrd 11692 . . . . . . . . . . . . 13  |-  ( { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp 
i^i  ran pGrp  ) }  C_  C  -> Word  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp 
i^i  ran pGrp  ) }  C_ Word  C )
123121, 122syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  q  e.  A )  -> Word  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp  i^i  ran pGrp  ) }  C_ Word  C )
124123sselda 3308 . . . . . . . . . . 11  |-  ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp 
i^i  ran pGrp  ) } )  ->  s  e. Word  C
)
125101, 124jctild 528 . . . . . . . . . 10  |-  ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp 
i^i  ran pGrp  ) } )  ->  ( ( ( Gs  ( S `  q
) ) dom DProd  s  /\  ( ( Gs  ( S `
 q ) ) DProd 
s )  =  (
Base `  ( Gs  ( S `  q )
) ) )  -> 
( s  e. Word  C  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  ( S `  q ) ) ) ) )
126125expimpd 587 . . . . . . . . 9  |-  ( (
ph  /\  q  e.  A )  ->  (
( s  e. Word  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp  i^i  ran pGrp  ) }  /\  ( ( Gs  ( S `  q
) ) dom DProd  s  /\  ( ( Gs  ( S `
 q ) ) DProd 
s )  =  (
Base `  ( Gs  ( S `  q )
) ) ) )  ->  ( s  e. Word  C  /\  ( G dom DProd  s  /\  ( G DProd  s
)  =  ( S `
 q ) ) ) ) )
127126reximdv2 2775 . . . . . . . 8  |-  ( (
ph  /\  q  e.  A )  ->  ( E. s  e. Word  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp  i^i  ran pGrp  ) }  ( ( Gs  ( S `  q ) ) dom DProd  s  /\  ( ( Gs  ( S `
 q ) ) DProd 
s )  =  (
Base `  ( Gs  ( S `  q )
) ) )  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s )  =  ( S `  q ) ) ) )
12883, 127mpd 15 . . . . . . 7  |-  ( (
ph  /\  q  e.  A )  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  ( S `
 q ) ) )
129 rabn0 3607 . . . . . . 7  |-  ( { s  e. Word  C  | 
( G dom DProd  s  /\  ( G DProd  s )  =  ( S `  q ) ) }  =/=  (/)  <->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  ( S `  q ) ) )
130128, 129sylibr 204 . . . . . 6  |-  ( (
ph  /\  q  e.  A )  ->  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd  s )  =  ( S `  q ) ) }  =/=  (/) )
13150, 130eqnetrd 2585 . . . . 5  |-  ( (
ph  /\  q  e.  A )  ->  { y  e. Word  C  |  y  e.  ( W `  ( S `  q ) ) }  =/=  (/) )
132 rabn0 3607 . . . . 5  |-  ( { y  e. Word  C  | 
y  e.  ( W `
 ( S `  q ) ) }  =/=  (/)  <->  E. y  e. Word  C
y  e.  ( W `
 ( S `  q ) ) )
133131, 132sylib 189 . . . 4  |-  ( (
ph  /\  q  e.  A )  ->  E. y  e. Word  C y  e.  ( W `  ( S `
 q ) ) )
134133ralrimiva 2749 . . 3  |-  ( ph  ->  A. q  e.  A  E. y  e. Word  C y  e.  ( W `  ( S `  q ) ) )
135 eleq1 2464 . . . 4  |-  ( y  =  ( f `  q )  ->  (
y  e.  ( W `
 ( S `  q ) )  <->  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )
136135ac6sfi 7310 . . 3  |-  ( ( A  e.  Fin  /\  A. q  e.  A  E. y  e. Word  C y  e.  ( W `  ( S `  q )
) )  ->  E. f
( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )
13726, 134, 136syl2anc 643 . 2  |-  ( ph  ->  E. f ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `  q ) ) ) )
138 sneq 3785 . . . . . . . . 9  |-  ( q  =  y  ->  { q }  =  { y } )
139 fveq2 5687 . . . . . . . . . 10  |-  ( q  =  y  ->  (
f `  q )  =  ( f `  y ) )
140139dmeqd 5031 . . . . . . . . 9  |-  ( q  =  y  ->  dom  ( f `  q
)  =  dom  (
f `  y )
)
141138, 140xpeq12d 4862 . . . . . . . 8  |-  ( q  =  y  ->  ( { q }  X.  dom  ( f `  q
) )  =  ( { y }  X.  dom  ( f `  y
) ) )
142141cbviunv 4090 . . . . . . 7  |-  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) )  =  U_ y  e.  A  ( { y }  X.  dom  ( f `  y
) )
14326adantr 452 . . . . . . . 8  |-  ( (
ph  /\  ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )  ->  A  e.  Fin )
144 snfi 7146 . . . . . . . . . 10  |-  { y }  e.  Fin
145 simprl 733 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )  ->  f : A -->Word  C )
146145ffvelrnda 5829 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `  q ) ) ) )  /\  y  e.  A )  ->  ( f `  y
)  e. Word  C )
147 wrdf 11688 . . . . . . . . . . . 12  |-  ( ( f `  y )  e. Word  C  ->  (
f `  y ) : ( 0..^ (
# `  ( f `  y ) ) ) --> C )
148 fdm 5554 . . . . . . . . . . . 12  |-  ( ( f `  y ) : ( 0..^ (
# `  ( f `  y ) ) ) --> C  ->  dom  ( f `
 y )  =  ( 0..^ ( # `  ( f `  y
) ) ) )
149146, 147, 1483syl 19 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `  q ) ) ) )  /\  y  e.  A )  ->  dom  ( f `  y )  =  ( 0..^ ( # `  (
f `  y )
) ) )
150 fzofi 11268 . . . . . . . . . . 11  |-  ( 0..^ ( # `  (
f `  y )
) )  e.  Fin
151149, 150syl6eqel 2492 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `  q ) ) ) )  /\  y  e.  A )  ->  dom  ( f `  y )  e.  Fin )
152 xpfi 7337 . . . . . . . . . 10  |-  ( ( { y }  e.  Fin  /\  dom  ( f `
 y )  e. 
Fin )  ->  ( { y }  X.  dom  ( f `  y
) )  e.  Fin )
153144, 151, 152sylancr 645 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `  q ) ) ) )  /\  y  e.  A )  ->  ( { y }  X.  dom  ( f `
 y ) )  e.  Fin )
154153ralrimiva 2749 . . . . . . . 8  |-  ( (
ph  /\  ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )  ->  A. y  e.  A  ( {
y }  X.  dom  ( f `  y
) )  e.  Fin )
155 iunfi 7353 . . . . . . . 8  |-  ( ( A  e.  Fin  /\  A. y  e.  A  ( { y }  X.  dom  ( f `  y
) )  e.  Fin )  ->  U_ y  e.  A  ( { y }  X.  dom  ( f `  y
) )  e.  Fin )
156143, 154, 155syl2anc 643 . . . . . . 7  |-  ( (
ph  /\  ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )  ->  U_ y  e.  A  ( {
y }  X.  dom  ( f `  y
) )  e.  Fin )
157142, 156syl5eqel 2488 . . . . . 6  |-  ( (
ph  /\  ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )  ->  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) )  e.  Fin )
158 hashcl 11594 . . . . . 6  |-  ( U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) )  e.  Fin  ->  ( # `  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) )  e. 
NN0 )
159 hashfzo0 11650 . . . . . 6  |-  ( (
# `  U_ q  e.  A  ( { q }  X.  dom  (
f `  q )
) )  e.  NN0  ->  ( # `  (
0..^ ( # `  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) ) )  =  ( # `  U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) ) ) )
160157, 158, 1593syl 19 . . . . 5  |-  ( (
ph  /\  ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )  ->  ( # `
 ( 0..^ (
# `  U_ q  e.  A  ( { q }  X.  dom  (
f `  q )
) ) ) )  =  ( # `  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) )
161 fzofi 11268 . . . . . 6  |-  ( 0..^ ( # `  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) )  e.  Fin
162 hashen 11586 . . . . . 6  |-  ( ( ( 0..^ ( # `  U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) ) ) )  e.  Fin  /\  U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) )  e.  Fin )  ->  ( ( # `  ( 0..^ ( # `  U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) ) ) ) )  =  ( # `  U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) ) )  <->  ( 0..^ ( # `  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) ) 
~~  U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) ) ) )
163161, 157, 162sylancr 645 . . . . 5  |-  ( (
ph  /\  ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )  ->  (
( # `  ( 0..^ ( # `  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) ) )  =  ( # `  U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) ) )  <->  ( 0..^ ( # `  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) ) 
~~  U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) ) ) )
164160, 163mpbid 202 . . . 4  |-  ( (
ph  /\  ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )  ->  (
0..^ ( # `  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) ) 
~~  U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) ) )
165 bren 7076 . . . 4  |-  ( ( 0..^ ( # `  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) ) 
~~  U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) )  <->  E. h  h : ( 0..^ (
# `  U_ q  e.  A  ( { q }  X.  dom  (
f `  q )
) ) ) -1-1-onto-> U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) )
166164, 165sylib 189 . . 3  |-  ( (
ph  /\  ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )  ->  E. h  h : ( 0..^ (
# `  U_ q  e.  A  ( { q }  X.  dom  (
f `  q )
) ) ) -1-1-onto-> U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) )
1676adantr 452 . . . . . 6  |-  ( (
ph  /\  ( (
f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `  q ) ) )  /\  h : ( 0..^ (
# `  U_ q  e.  A  ( { q }  X.  dom  (
f `  q )
) ) ) -1-1-onto-> U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) )  ->  G  e.  Abel )
16811adantr 452 . . . . . 6  |-  ( (
ph  /\  ( (
f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `  q ) ) )  /\  h : ( 0..^ (
# `  U_ q  e.  A  ( { q }  X.  dom  (
f `  q )
) ) ) -1-1-onto-> U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) )  ->  B  e.  Fin )
169 breq1 4175 . . . . . . . 8  |-  ( w  =  a  ->  (
w  ||  ( # `  B
)  <->  a  ||  ( # `
 B ) ) )
170169cbvrabv 2915 . . . . . . 7  |-  { w  e.  Prime  |  w  ||  ( # `  B ) }  =  { a  e.  Prime  |  a  ||  ( # `  B
) }
1712, 170eqtri 2424 . . . . . 6  |-  A  =  { a  e.  Prime  |  a  ||  ( # `  B ) }
172 fveq2 5687 . . . . . . . . . . 11  |-  ( x  =  c  ->  ( O `  x )  =  ( O `  c ) )
173172breq1d 4182 . . . . . . . . . 10  |-  ( x  =  c  ->  (
( O `  x
)  ||  ( p ^ ( p  pCnt  (
# `  B )
) )  <->  ( O `  c )  ||  (
p ^ ( p 
pCnt  ( # `  B
) ) ) ) )
174173cbvrabv 2915 . . . . . . . . 9  |-  { x  e.  B  |  ( O `  x )  ||  ( p ^ (
p  pCnt  ( # `  B
) ) ) }  =  { c  e.  B  |  ( O `
 c )  ||  ( p ^ (
p  pCnt  ( # `  B
) ) ) }
175 id 20 . . . . . . . . . . . 12  |-  ( p  =  b  ->  p  =  b )
176 oveq1 6047 . . . . . . . . . . . 12  |-  ( p  =  b  ->  (
p  pCnt  ( # `  B
) )  =  ( b  pCnt  ( # `  B
) ) )
177175, 176oveq12d 6058 . . . . . . . . . . 11  |-  ( p  =  b  ->  (
p ^ ( p 
pCnt  ( # `  B
) ) )  =  ( b ^ (
b  pCnt  ( # `  B
) ) ) )
178177breq2d 4184 . . . . . . . . . 10  |-  ( p  =  b  ->  (
( O `  c
)  ||  ( p ^ ( p  pCnt  (
# `  B )
) )  <->  ( O `  c )  ||  (
b ^ ( b 
pCnt  ( # `  B
) ) ) ) )
179178rabbidv 2908 . . . . . . . . 9  |-  ( p  =  b  ->  { c  e.  B  |  ( O `  c ) 
||  ( p ^
( p  pCnt  ( # `
 B ) ) ) }  =  {
c  e.  B  | 
( O `  c
)  ||  ( b ^ ( b  pCnt  (
# `  B )
) ) } )
180174, 179syl5eq 2448 . . . . . . . 8  |-  ( p  =  b  ->  { x  e.  B  |  ( O `  x )  ||  ( p ^ (
p  pCnt  ( # `  B
) ) ) }  =  { c  e.  B  |  ( O `
 c )  ||  ( b ^ (
b  pCnt  ( # `  B
) ) ) } )
181180cbvmptv 4260 . . . . . . 7  |-  ( p  e.  A  |->  { x  e.  B  |  ( O `  x )  ||  ( p ^ (
p  pCnt  ( # `  B
) ) ) } )  =  ( b  e.  A  |->  { c  e.  B  |  ( O `  c ) 
||  ( b ^
( b  pCnt  ( # `
 B ) ) ) } )
18229, 181eqtri 2424 . . . . . 6  |-  S  =  ( b  e.  A  |->  { c  e.  B  |  ( O `  c )  ||  (
b ^ ( b 
pCnt  ( # `  B
) ) ) } )
183 breq2 4176 . . . . . . . . . 10  |-  ( s  =  t  ->  ( G dom DProd  s  <->  G dom DProd  t ) )
184 oveq2 6048 . . . . . . . . . . 11  |-  ( s  =  t  ->  ( G DProd  s )  =  ( G DProd  t ) )
185184eqeq1d 2412 . . . . . . . . . 10  |-  ( s  =  t  ->  (
( G DProd  s )  =  g  <->  ( G DProd  t
)  =  g ) )
186183, 185anbi12d 692 . . . . . . . . 9  |-  ( s  =  t  ->  (
( G dom DProd  s  /\  ( G DProd  s )  =  g )  <->  ( G dom DProd  t  /\  ( G DProd 
t )  =  g ) ) )
187186cbvrabv 2915 . . . . . . . 8  |-  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd  s )  =  g ) }  =  { t  e. Word  C  |  ( G dom DProd  t  /\  ( G DProd 
t )  =  g ) }
188187mpteq2i 4252 . . . . . . 7  |-  ( g  e.  (SubGrp `  G
)  |->  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd 
s )  =  g ) } )  =  ( g  e.  (SubGrp `  G )  |->  { t  e. Word  C  |  ( G dom DProd  t  /\  ( G DProd  t )  =  g ) } )
18942, 188eqtri 2424 . . . . . 6  |-  W  =  ( g  e.  (SubGrp `  G )  |->  { t  e. Word  C  |  ( G dom DProd  t  /\  ( G DProd  t )  =  g ) } )
190 simprll 739 . . . . . 6  |-  ( (
ph  /\  ( (
f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `  q ) ) )  /\  h : ( 0..^ (
# `  U_ q  e.  A  ( { q }  X.  dom  (
f `  q )
) ) ) -1-1-onto-> U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) )  ->  f : A -->Word  C )
191 simprlr 740 . . . . . . 7  |-  ( (
ph  /\  ( (
f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `  q ) ) )  /\  h : ( 0..^ (
# `  U_ q  e.  A  ( { q }  X.  dom  (
f `  q )
) ) ) -1-1-onto-> U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) )  ->  A. q  e.  A  ( f `  q
)  e.  ( W `
 ( S `  q ) ) )
192 fveq2 5687 . . . . . . . . . 10  |-  ( q  =  y  ->  ( S `  q )  =  ( S `  y ) )
193192fveq2d 5691 . . . . . . . . 9  |-  ( q  =  y  ->  ( W `  ( S `  q ) )  =  ( W `  ( S `  y )
) )
194139, 193eleq12d 2472 . . . . . . . 8  |-  ( q  =  y  ->  (
( f `  q
)  e.  ( W `
 ( S `  q ) )  <->  ( f `  y )  e.  ( W `  ( S `
 y ) ) ) )
195194cbvralv 2892 . . . . . . 7  |-  ( A. q  e.  A  (
f `  q )  e.  ( W `  ( S `  q )
)  <->  A. y  e.  A  ( f `  y
)  e.  ( W `
 ( S `  y ) ) )
196191, 195sylib 189 . . . . . 6  |-  ( (
ph  /\  ( (
f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `  q ) ) )  /\  h : ( 0..^ (
# `  U_ q  e.  A  ( { q }  X.  dom  (
f `  q )
) ) ) -1-1-onto-> U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) )  ->  A. y  e.  A  ( f `  y
)  e.  ( W `
 ( S `  y ) ) )
197 simprr 734 . . . . . 6  |-  ( (
ph  /\  ( (
f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `  q ) ) )  /\  h : ( 0..^ (
# `  U_ q  e.  A  ( { q }  X.  dom  (
f `  q )
) ) ) -1-1-onto-> U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) )  ->  h : ( 0..^ ( # `  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) ) -1-1-onto-> U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) ) )
1988, 41, 167, 168, 28, 171, 182, 189, 190, 196, 142, 197ablfaclem2 15599 . . . . 5  |-  ( (
ph  /\  ( (
f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `  q ) ) )  /\  h : ( 0..^ (
# `  U_ q  e.  A  ( { q }  X.  dom  (
f `  q )
) ) ) -1-1-onto-> U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) )  ->  ( W `  B )  =/=  (/) )
199198expr 599 . . . 4  |-  ( (
ph  /\  ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )  ->  (
h : ( 0..^ ( # `  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) ) -1-1-onto-> U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) )  ->  ( W `  B )  =/=  (/) ) )
200199exlimdv 1643 . . 3  |-  ( (
ph  /\  ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )  ->  ( E. h  h :
( 0..^ ( # `  U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) ) ) ) -1-1-onto-> U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) )  ->  ( W `  B )  =/=  (/) ) )
201166, 200mpd 15 . 2  |-  ( (
ph  /\  ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )  ->  ( W `  B )  =/=  (/) )
202137, 201exlimddv 1645 1  |-  ( ph  ->  ( W `  B
)  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1547    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667   {crab 2670   _Vcvv 2916    i^i cin 3279    C_ wss 3280   (/)c0 3588   ~Pcpw 3759   {csn 3774   U_ciun 4053   class class class wbr 4172    e. cmpt 4226    X. cxp 4835   dom cdm 4837   ran crn 4838   -->wf 5409   -1-1-onto->wf1o 5412   ` cfv 5413  (class class class)co 6040    ~~ cen 7065   Fincfn 7068   0cc0 8946   1c1 8947    <_ cle 9077   NNcn 9956   NN0cn0 10177   ZZcz 10238   ...cfz 10999  ..^cfzo 11090   ^cexp 11337   #chash 11573  Word cword 11672    || cdivides 12807   Primecprime 13034    pCnt cpc 13165   Basecbs 13424   ↾s cress 13425   Grpcgrp 14640  SubGrpcsubg 14893   odcod 15118   pGrp cpgp 15120   Abelcabel 15368  CycGrpccyg 15442   DProd cdprd 15509
This theorem is referenced by:  ablfac  15601
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-disj 4143  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-tpos 6438  df-rpss 6481  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-omul 6688  df-er 6864  df-ec 6866  df-qs 6870  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-oi 7435  df-card 7782  df-acn 7785  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-q 10531  df-rp 10569  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-word 11678  df-concat 11679  df-s1 11680  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-sum 12435  df-dvds 12808  df-gcd 12962  df-prm 13035  df-pc 13166  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-0g 13682  df-gsum 13683  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-mhm 14693  df-submnd 14694  df-grp 14767  df-minusg 14768  df-sbg 14769  df-mulg 14770  df-subg 14896  df-eqg 14898  df-ghm 14959  df-gim 15001  df-ga 15022  df-cntz 15071  df-oppg 15097  df-od 15122  df-gex 15123  df-pgp 15124  df-lsm 15225  df-pj1 15226  df-cmn 15369  df-abl 15370  df-cyg 15443  df-dprd 15511
  Copyright terms: Public domain W3C validator