MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfaclem3 Structured version   Visualization version   Unicode version

Theorem ablfaclem3 17768
Description: Lemma for ablfac 17769. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
ablfac.b  |-  B  =  ( Base `  G
)
ablfac.c  |-  C  =  { r  e.  (SubGrp `  G )  |  ( Gs  r )  e.  (CycGrp 
i^i  ran pGrp  ) }
ablfac.1  |-  ( ph  ->  G  e.  Abel )
ablfac.2  |-  ( ph  ->  B  e.  Fin )
ablfac.o  |-  O  =  ( od `  G
)
ablfac.a  |-  A  =  { w  e.  Prime  |  w  ||  ( # `  B ) }
ablfac.s  |-  S  =  ( p  e.  A  |->  { x  e.  B  |  ( O `  x )  ||  (
p ^ ( p 
pCnt  ( # `  B
) ) ) } )
ablfac.w  |-  W  =  ( g  e.  (SubGrp `  G )  |->  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd  s )  =  g ) } )
Assertion
Ref Expression
ablfaclem3  |-  ( ph  ->  ( W `  B
)  =/=  (/) )
Distinct variable groups:    s, p, x, A    g, r, s, S    g, p, w, x, B, r, s    O, p, x    C, g, p, s, w, x    W, p, w, x    ph, p, s, w, x    g, G, p, r, s, w, x
Allowed substitution hints:    ph( g, r)    A( w, g, r)    C( r)    S( x, w, p)    O( w, g, s, r)    W( g, s, r)

Proof of Theorem ablfaclem3
Dummy variables  a 
b  c  f  h  q  t  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 12217 . . . 4  |-  ( ph  ->  ( 1 ... ( # `
 B ) )  e.  Fin )
2 ablfac.a . . . . 5  |-  A  =  { w  e.  Prime  |  w  ||  ( # `  B ) }
3 prmnn 14673 . . . . . . . 8  |-  ( w  e.  Prime  ->  w  e.  NN )
433ad2ant2 1036 . . . . . . 7  |-  ( (
ph  /\  w  e.  Prime  /\  w  ||  ( # `
 B ) )  ->  w  e.  NN )
5 prmz 14674 . . . . . . . . 9  |-  ( w  e.  Prime  ->  w  e.  ZZ )
6 ablfac.1 . . . . . . . . . . 11  |-  ( ph  ->  G  e.  Abel )
7 ablgrp 17483 . . . . . . . . . . 11  |-  ( G  e.  Abel  ->  G  e. 
Grp )
8 ablfac.b . . . . . . . . . . . 12  |-  B  =  ( Base `  G
)
98grpbn0 16743 . . . . . . . . . . 11  |-  ( G  e.  Grp  ->  B  =/=  (/) )
106, 7, 93syl 18 . . . . . . . . . 10  |-  ( ph  ->  B  =/=  (/) )
11 ablfac.2 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  Fin )
12 hashnncl 12578 . . . . . . . . . . 11  |-  ( B  e.  Fin  ->  (
( # `  B )  e.  NN  <->  B  =/=  (/) ) )
1311, 12syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( ( # `  B
)  e.  NN  <->  B  =/=  (/) ) )
1410, 13mpbird 240 . . . . . . . . 9  |-  ( ph  ->  ( # `  B
)  e.  NN )
15 dvdsle 14398 . . . . . . . . 9  |-  ( ( w  e.  ZZ  /\  ( # `  B )  e.  NN )  -> 
( w  ||  ( # `
 B )  ->  w  <_  ( # `  B
) ) )
165, 14, 15syl2anr 485 . . . . . . . 8  |-  ( (
ph  /\  w  e.  Prime )  ->  ( w  ||  ( # `  B
)  ->  w  <_  (
# `  B )
) )
17163impia 1212 . . . . . . 7  |-  ( (
ph  /\  w  e.  Prime  /\  w  ||  ( # `
 B ) )  ->  w  <_  ( # `
 B ) )
1814nnzd 11067 . . . . . . . . 9  |-  ( ph  ->  ( # `  B
)  e.  ZZ )
19183ad2ant1 1035 . . . . . . . 8  |-  ( (
ph  /\  w  e.  Prime  /\  w  ||  ( # `
 B ) )  ->  ( # `  B
)  e.  ZZ )
20 fznn 11891 . . . . . . . 8  |-  ( (
# `  B )  e.  ZZ  ->  ( w  e.  ( 1 ... ( # `
 B ) )  <-> 
( w  e.  NN  /\  w  <_  ( # `  B
) ) ) )
2119, 20syl 17 . . . . . . 7  |-  ( (
ph  /\  w  e.  Prime  /\  w  ||  ( # `
 B ) )  ->  ( w  e.  ( 1 ... ( # `
 B ) )  <-> 
( w  e.  NN  /\  w  <_  ( # `  B
) ) ) )
224, 17, 21mpbir2and 938 . . . . . 6  |-  ( (
ph  /\  w  e.  Prime  /\  w  ||  ( # `
 B ) )  ->  w  e.  ( 1 ... ( # `  B ) ) )
2322rabssdv 3520 . . . . 5  |-  ( ph  ->  { w  e.  Prime  |  w  ||  ( # `  B ) }  C_  ( 1 ... ( # `
 B ) ) )
242, 23syl5eqss 3487 . . . 4  |-  ( ph  ->  A  C_  ( 1 ... ( # `  B
) ) )
25 ssfi 7817 . . . 4  |-  ( ( ( 1 ... ( # `
 B ) )  e.  Fin  /\  A  C_  ( 1 ... ( # `
 B ) ) )  ->  A  e.  Fin )
261, 24, 25syl2anc 671 . . 3  |-  ( ph  ->  A  e.  Fin )
27 dfin5 3423 . . . . . . . 8  |-  (Word  C  i^i  ( W `  ( S `  q )
) )  =  {
y  e. Word  C  | 
y  e.  ( W `
 ( S `  q ) ) }
28 ablfac.o . . . . . . . . . . . . . 14  |-  O  =  ( od `  G
)
29 ablfac.s . . . . . . . . . . . . . 14  |-  S  =  ( p  e.  A  |->  { x  e.  B  |  ( O `  x )  ||  (
p ^ ( p 
pCnt  ( # `  B
) ) ) } )
30 ssrab2 3525 . . . . . . . . . . . . . . . 16  |-  { w  e.  Prime  |  w  ||  ( # `  B ) }  C_  Prime
312, 30eqsstri 3473 . . . . . . . . . . . . . . 15  |-  A  C_  Prime
3231a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  A  C_  Prime )
338, 28, 29, 6, 11, 32ablfac1b 17751 . . . . . . . . . . . . 13  |-  ( ph  ->  G dom DProd  S )
34 fvex 5897 . . . . . . . . . . . . . . . . 17  |-  ( Base `  G )  e.  _V
358, 34eqeltri 2535 . . . . . . . . . . . . . . . 16  |-  B  e. 
_V
3635rabex 4567 . . . . . . . . . . . . . . 15  |-  { x  e.  B  |  ( O `  x )  ||  ( p ^ (
p  pCnt  ( # `  B
) ) ) }  e.  _V
3736, 29dmmpti 5728 . . . . . . . . . . . . . 14  |-  dom  S  =  A
3837a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  dom  S  =  A )
3933, 38dprdf2 17687 . . . . . . . . . . . 12  |-  ( ph  ->  S : A --> (SubGrp `  G ) )
4039ffvelrnda 6044 . . . . . . . . . . 11  |-  ( (
ph  /\  q  e.  A )  ->  ( S `  q )  e.  (SubGrp `  G )
)
41 ablfac.c . . . . . . . . . . . 12  |-  C  =  { r  e.  (SubGrp `  G )  |  ( Gs  r )  e.  (CycGrp 
i^i  ran pGrp  ) }
42 ablfac.w . . . . . . . . . . . 12  |-  W  =  ( g  e.  (SubGrp `  G )  |->  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd  s )  =  g ) } )
438, 41, 6, 11, 28, 2, 29, 42ablfaclem1 17766 . . . . . . . . . . 11  |-  ( ( S `  q )  e.  (SubGrp `  G
)  ->  ( W `  ( S `  q
) )  =  {
s  e. Word  C  | 
( G dom DProd  s  /\  ( G DProd  s )  =  ( S `  q ) ) } )
4440, 43syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  A )  ->  ( W `  ( S `  q ) )  =  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd  s
)  =  ( S `
 q ) ) } )
45 ssrab2 3525 . . . . . . . . . 10  |-  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd  s )  =  ( S `  q ) ) } 
C_ Word  C
4644, 45syl6eqss 3493 . . . . . . . . 9  |-  ( (
ph  /\  q  e.  A )  ->  ( W `  ( S `  q ) )  C_ Word  C )
47 dfss1 3648 . . . . . . . . 9  |-  ( ( W `  ( S `
 q ) ) 
C_ Word  C  <->  (Word  C  i^i  ( W `  ( S `
 q ) ) )  =  ( W `
 ( S `  q ) ) )
4846, 47sylib 201 . . . . . . . 8  |-  ( (
ph  /\  q  e.  A )  ->  (Word  C  i^i  ( W `  ( S `  q ) ) )  =  ( W `  ( S `
 q ) ) )
4927, 48syl5eqr 2509 . . . . . . 7  |-  ( (
ph  /\  q  e.  A )  ->  { y  e. Word  C  |  y  e.  ( W `  ( S `  q ) ) }  =  ( W `  ( S `
 q ) ) )
5049, 44eqtrd 2495 . . . . . 6  |-  ( (
ph  /\  q  e.  A )  ->  { y  e. Word  C  |  y  e.  ( W `  ( S `  q ) ) }  =  {
s  e. Word  C  | 
( G dom DProd  s  /\  ( G DProd  s )  =  ( S `  q ) ) } )
51 eqid 2461 . . . . . . . . 9  |-  ( Base `  ( Gs  ( S `  q ) ) )  =  ( Base `  ( Gs  ( S `  q ) ) )
52 eqid 2461 . . . . . . . . 9  |-  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp  i^i  ran pGrp  ) }  =  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp  i^i  ran pGrp  ) }
536adantr 471 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  A )  ->  G  e.  Abel )
54 eqid 2461 . . . . . . . . . . 11  |-  ( Gs  ( S `  q ) )  =  ( Gs  ( S `  q ) )
5554subgabl 17524 . . . . . . . . . 10  |-  ( ( G  e.  Abel  /\  ( S `  q )  e.  (SubGrp `  G )
)  ->  ( Gs  ( S `  q )
)  e.  Abel )
5653, 40, 55syl2anc 671 . . . . . . . . 9  |-  ( (
ph  /\  q  e.  A )  ->  ( Gs  ( S `  q ) )  e.  Abel )
5732sselda 3443 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  A )  ->  q  e.  Prime )
5854subgbas 16869 . . . . . . . . . . . . . 14  |-  ( ( S `  q )  e.  (SubGrp `  G
)  ->  ( S `  q )  =  (
Base `  ( Gs  ( S `  q )
) ) )
5940, 58syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  q  e.  A )  ->  ( S `  q )  =  ( Base `  ( Gs  ( S `  q ) ) ) )
6059fveq2d 5891 . . . . . . . . . . . 12  |-  ( (
ph  /\  q  e.  A )  ->  ( # `
 ( S `  q ) )  =  ( # `  ( Base `  ( Gs  ( S `
 q ) ) ) ) )
618, 28, 29, 6, 11, 32ablfac1a 17750 . . . . . . . . . . . 12  |-  ( (
ph  /\  q  e.  A )  ->  ( # `
 ( S `  q ) )  =  ( q ^ (
q  pCnt  ( # `  B
) ) ) )
6260, 61eqtr3d 2497 . . . . . . . . . . 11  |-  ( (
ph  /\  q  e.  A )  ->  ( # `
 ( Base `  ( Gs  ( S `  q ) ) ) )  =  ( q ^ (
q  pCnt  ( # `  B
) ) ) )
6362oveq2d 6330 . . . . . . . . . . . . 13  |-  ( (
ph  /\  q  e.  A )  ->  (
q  pCnt  ( # `  ( Base `  ( Gs  ( S `
 q ) ) ) ) )  =  ( q  pCnt  (
q ^ ( q 
pCnt  ( # `  B
) ) ) ) )
6414adantr 471 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  q  e.  A )  ->  ( # `
 B )  e.  NN )
6557, 64pccld 14848 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  q  e.  A )  ->  (
q  pCnt  ( # `  B
) )  e.  NN0 )
6665nn0zd 11066 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  q  e.  A )  ->  (
q  pCnt  ( # `  B
) )  e.  ZZ )
67 pcid 14870 . . . . . . . . . . . . . 14  |-  ( ( q  e.  Prime  /\  (
q  pCnt  ( # `  B
) )  e.  ZZ )  ->  ( q  pCnt  ( q ^ ( q 
pCnt  ( # `  B
) ) ) )  =  ( q  pCnt  (
# `  B )
) )
6857, 66, 67syl2anc 671 . . . . . . . . . . . . 13  |-  ( (
ph  /\  q  e.  A )  ->  (
q  pCnt  ( q ^ ( q  pCnt  (
# `  B )
) ) )  =  ( q  pCnt  ( # `
 B ) ) )
6963, 68eqtrd 2495 . . . . . . . . . . . 12  |-  ( (
ph  /\  q  e.  A )  ->  (
q  pCnt  ( # `  ( Base `  ( Gs  ( S `
 q ) ) ) ) )  =  ( q  pCnt  ( # `
 B ) ) )
7069oveq2d 6330 . . . . . . . . . . 11  |-  ( (
ph  /\  q  e.  A )  ->  (
q ^ ( q 
pCnt  ( # `  ( Base `  ( Gs  ( S `
 q ) ) ) ) ) )  =  ( q ^
( q  pCnt  ( # `
 B ) ) ) )
7162, 70eqtr4d 2498 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  A )  ->  ( # `
 ( Base `  ( Gs  ( S `  q ) ) ) )  =  ( q ^ (
q  pCnt  ( # `  ( Base `  ( Gs  ( S `
 q ) ) ) ) ) ) )
7254subggrp 16868 . . . . . . . . . . . 12  |-  ( ( S `  q )  e.  (SubGrp `  G
)  ->  ( Gs  ( S `  q )
)  e.  Grp )
7340, 72syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  q  e.  A )  ->  ( Gs  ( S `  q ) )  e.  Grp )
7411adantr 471 . . . . . . . . . . . . 13  |-  ( (
ph  /\  q  e.  A )  ->  B  e.  Fin )
758subgss 16866 . . . . . . . . . . . . . 14  |-  ( ( S `  q )  e.  (SubGrp `  G
)  ->  ( S `  q )  C_  B
)
7640, 75syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  q  e.  A )  ->  ( S `  q )  C_  B )
77 ssfi 7817 . . . . . . . . . . . . 13  |-  ( ( B  e.  Fin  /\  ( S `  q ) 
C_  B )  -> 
( S `  q
)  e.  Fin )
7874, 76, 77syl2anc 671 . . . . . . . . . . . 12  |-  ( (
ph  /\  q  e.  A )  ->  ( S `  q )  e.  Fin )
7959, 78eqeltrrd 2540 . . . . . . . . . . 11  |-  ( (
ph  /\  q  e.  A )  ->  ( Base `  ( Gs  ( S `
 q ) ) )  e.  Fin )
8051pgpfi2 17306 . . . . . . . . . . 11  |-  ( ( ( Gs  ( S `  q ) )  e. 
Grp  /\  ( Base `  ( Gs  ( S `  q ) ) )  e.  Fin )  -> 
( q pGrp  ( Gs  ( S `  q ) )  <->  ( q  e. 
Prime  /\  ( # `  ( Base `  ( Gs  ( S `
 q ) ) ) )  =  ( q ^ ( q 
pCnt  ( # `  ( Base `  ( Gs  ( S `
 q ) ) ) ) ) ) ) ) )
8173, 79, 80syl2anc 671 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  A )  ->  (
q pGrp  ( Gs  ( S `
 q ) )  <-> 
( q  e.  Prime  /\  ( # `  ( Base `  ( Gs  ( S `
 q ) ) ) )  =  ( q ^ ( q 
pCnt  ( # `  ( Base `  ( Gs  ( S `
 q ) ) ) ) ) ) ) ) )
8257, 71, 81mpbir2and 938 . . . . . . . . 9  |-  ( (
ph  /\  q  e.  A )  ->  q pGrp  ( Gs  ( S `  q ) ) )
8351, 52, 56, 82, 79pgpfac 17765 . . . . . . . 8  |-  ( (
ph  /\  q  e.  A )  ->  E. s  e. Word  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp 
i^i  ran pGrp  ) }  (
( Gs  ( S `  q ) ) dom DProd  s  /\  ( ( Gs  ( S `  q ) ) DProd  s )  =  ( Base `  ( Gs  ( S `  q ) ) ) ) )
84 ssrab2 3525 . . . . . . . . . . . . . 14  |-  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp  i^i  ran pGrp  ) }  C_  (SubGrp `  ( Gs  ( S `  q ) ) )
85 sswrd 12711 . . . . . . . . . . . . . 14  |-  ( { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp 
i^i  ran pGrp  ) }  C_  (SubGrp `  ( Gs  ( S `
 q ) ) )  -> Word  { r  e.  (SubGrp `  ( Gs  ( S `  q )
) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp  i^i  ran pGrp  ) }  C_ Word  (SubGrp `  ( Gs  ( S `  q ) ) ) )
8684, 85ax-mp 5 . . . . . . . . . . . . 13  |- Word  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp  i^i  ran pGrp  ) }  C_ Word  (SubGrp `  ( Gs  ( S `  q ) ) )
8786sseli 3439 . . . . . . . . . . . 12  |-  ( s  e. Word  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp 
i^i  ran pGrp  ) }  ->  s  e. Word  (SubGrp `  ( Gs  ( S `  q )
) ) )
8840adantr 471 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  (SubGrp `  ( Gs  ( S `  q )
) ) )  -> 
( S `  q
)  e.  (SubGrp `  G ) )
8988adantr 471 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  (SubGrp `  ( Gs  ( S `  q ) ) ) )  /\  ( Gs  ( S `  q ) ) dom DProd  s )  ->  ( S `  q
)  e.  (SubGrp `  G ) )
9054subgdmdprd 17715 . . . . . . . . . . . . . . . . . . 19  |-  ( ( S `  q )  e.  (SubGrp `  G
)  ->  ( ( Gs  ( S `  q ) ) dom DProd  s  <->  ( G dom DProd  s  /\  ran  s  C_ 
~P ( S `  q ) ) ) )
9188, 90syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  (SubGrp `  ( Gs  ( S `  q )
) ) )  -> 
( ( Gs  ( S `
 q ) ) dom DProd  s  <->  ( G dom DProd  s  /\  ran  s  C_ 
~P ( S `  q ) ) ) )
9291simprbda 633 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  (SubGrp `  ( Gs  ( S `  q ) ) ) )  /\  ( Gs  ( S `  q ) ) dom DProd  s )  ->  G dom DProd  s )
9391simplbda 634 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  (SubGrp `  ( Gs  ( S `  q ) ) ) )  /\  ( Gs  ( S `  q ) ) dom DProd  s )  ->  ran  s  C_  ~P ( S `  q ) )
9454, 89, 92, 93subgdprd 17716 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  (SubGrp `  ( Gs  ( S `  q ) ) ) )  /\  ( Gs  ( S `  q ) ) dom DProd  s )  ->  ( ( Gs  ( S `
 q ) ) DProd 
s )  =  ( G DProd  s ) )
9559ad2antrr 737 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  (SubGrp `  ( Gs  ( S `  q ) ) ) )  /\  ( Gs  ( S `  q ) ) dom DProd  s )  ->  ( S `  q
)  =  ( Base `  ( Gs  ( S `  q ) ) ) )
9695eqcomd 2467 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  (SubGrp `  ( Gs  ( S `  q ) ) ) )  /\  ( Gs  ( S `  q ) ) dom DProd  s )  ->  ( Base `  ( Gs  ( S `  q ) ) )  =  ( S `  q ) )
9794, 96eqeq12d 2476 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  (SubGrp `  ( Gs  ( S `  q ) ) ) )  /\  ( Gs  ( S `  q ) ) dom DProd  s )  ->  ( ( ( Gs  ( S `  q ) ) DProd  s )  =  ( Base `  ( Gs  ( S `  q ) ) )  <->  ( G DProd  s )  =  ( S `
 q ) ) )
9897biimpd 212 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  (SubGrp `  ( Gs  ( S `  q ) ) ) )  /\  ( Gs  ( S `  q ) ) dom DProd  s )  ->  ( ( ( Gs  ( S `  q ) ) DProd  s )  =  ( Base `  ( Gs  ( S `  q ) ) )  ->  ( G DProd  s )  =  ( S `  q ) ) )
9998, 92jctild 550 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  (SubGrp `  ( Gs  ( S `  q ) ) ) )  /\  ( Gs  ( S `  q ) ) dom DProd  s )  ->  ( ( ( Gs  ( S `  q ) ) DProd  s )  =  ( Base `  ( Gs  ( S `  q ) ) )  ->  ( G dom DProd  s  /\  ( G DProd  s )  =  ( S `  q ) ) ) )
10099expimpd 612 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  (SubGrp `  ( Gs  ( S `  q )
) ) )  -> 
( ( ( Gs  ( S `  q ) ) dom DProd  s  /\  ( ( Gs  ( S `
 q ) ) DProd 
s )  =  (
Base `  ( Gs  ( S `  q )
) ) )  -> 
( G dom DProd  s  /\  ( G DProd  s )  =  ( S `  q ) ) ) )
10187, 100sylan2 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp 
i^i  ran pGrp  ) } )  ->  ( ( ( Gs  ( S `  q
) ) dom DProd  s  /\  ( ( Gs  ( S `
 q ) ) DProd 
s )  =  (
Base `  ( Gs  ( S `  q )
) ) )  -> 
( G dom DProd  s  /\  ( G DProd  s )  =  ( S `  q ) ) ) )
102 oveq2 6322 . . . . . . . . . . . . . . . 16  |-  ( r  =  y  ->  (
( Gs  ( S `  q ) )s  r )  =  ( ( Gs  ( S `  q ) )s  y ) )
103102eleq1d 2523 . . . . . . . . . . . . . . 15  |-  ( r  =  y  ->  (
( ( Gs  ( S `
 q ) )s  r )  e.  (CycGrp  i^i  ran pGrp  ) 
<->  ( ( Gs  ( S `
 q ) )s  y )  e.  (CycGrp  i^i  ran pGrp  ) ) )
104103cbvrabv 3055 . . . . . . . . . . . . . 14  |-  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp  i^i  ran pGrp  ) }  =  { y  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  y )  e.  (CycGrp  i^i  ran pGrp  ) }
10554subsubg 16888 . . . . . . . . . . . . . . . . . . 19  |-  ( ( S `  q )  e.  (SubGrp `  G
)  ->  ( y  e.  (SubGrp `  ( Gs  ( S `  q )
) )  <->  ( y  e.  (SubGrp `  G )  /\  y  C_  ( S `
 q ) ) ) )
10640, 105syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  q  e.  A )  ->  (
y  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  <-> 
( y  e.  (SubGrp `  G )  /\  y  C_  ( S `  q
) ) ) )
107106simprbda 633 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  q  e.  A )  /\  y  e.  (SubGrp `  ( Gs  ( S `  q )
) ) )  -> 
y  e.  (SubGrp `  G ) )
1081073adant3 1034 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  q  e.  A )  /\  y  e.  (SubGrp `  ( Gs  ( S `  q )
) )  /\  (
( Gs  ( S `  q ) )s  y )  e.  (CycGrp  i^i  ran pGrp  ) )  ->  y  e.  (SubGrp `  G ) )
109403ad2ant1 1035 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  q  e.  A )  /\  y  e.  (SubGrp `  ( Gs  ( S `  q )
) )  /\  (
( Gs  ( S `  q ) )s  y )  e.  (CycGrp  i^i  ran pGrp  ) )  ->  ( S `  q )  e.  (SubGrp `  G ) )
110106simplbda 634 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  q  e.  A )  /\  y  e.  (SubGrp `  ( Gs  ( S `  q )
) ) )  -> 
y  C_  ( S `  q ) )
1111103adant3 1034 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  q  e.  A )  /\  y  e.  (SubGrp `  ( Gs  ( S `  q )
) )  /\  (
( Gs  ( S `  q ) )s  y )  e.  (CycGrp  i^i  ran pGrp  ) )  ->  y  C_  ( S `  q ) )
112 ressabs 15236 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( S `  q
)  e.  (SubGrp `  G )  /\  y  C_  ( S `  q
) )  ->  (
( Gs  ( S `  q ) )s  y )  =  ( Gs  y ) )
113109, 111, 112syl2anc 671 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  q  e.  A )  /\  y  e.  (SubGrp `  ( Gs  ( S `  q )
) )  /\  (
( Gs  ( S `  q ) )s  y )  e.  (CycGrp  i^i  ran pGrp  ) )  ->  ( ( Gs  ( S `  q ) )s  y )  =  ( Gs  y ) )
114 simp3 1016 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  q  e.  A )  /\  y  e.  (SubGrp `  ( Gs  ( S `  q )
) )  /\  (
( Gs  ( S `  q ) )s  y )  e.  (CycGrp  i^i  ran pGrp  ) )  ->  ( ( Gs  ( S `  q ) )s  y )  e.  (CycGrp 
i^i  ran pGrp  ) )
115113, 114eqeltrrd 2540 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  q  e.  A )  /\  y  e.  (SubGrp `  ( Gs  ( S `  q )
) )  /\  (
( Gs  ( S `  q ) )s  y )  e.  (CycGrp  i^i  ran pGrp  ) )  ->  ( Gs  y
)  e.  (CycGrp  i^i  ran pGrp  ) )
116 oveq2 6322 . . . . . . . . . . . . . . . . . 18  |-  ( r  =  y  ->  ( Gs  r )  =  ( Gs  y ) )
117116eleq1d 2523 . . . . . . . . . . . . . . . . 17  |-  ( r  =  y  ->  (
( Gs  r )  e.  (CycGrp  i^i  ran pGrp  )  <->  ( Gs  y
)  e.  (CycGrp  i^i  ran pGrp  ) ) )
118117, 41elrab2 3209 . . . . . . . . . . . . . . . 16  |-  ( y  e.  C  <->  ( y  e.  (SubGrp `  G )  /\  ( Gs  y )  e.  (CycGrp  i^i  ran pGrp  ) ) )
119108, 115, 118sylanbrc 675 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  q  e.  A )  /\  y  e.  (SubGrp `  ( Gs  ( S `  q )
) )  /\  (
( Gs  ( S `  q ) )s  y )  e.  (CycGrp  i^i  ran pGrp  ) )  ->  y  e.  C )
120119rabssdv 3520 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  q  e.  A )  ->  { y  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  y )  e.  (CycGrp  i^i  ran pGrp  ) }  C_  C )
121104, 120syl5eqss 3487 . . . . . . . . . . . . 13  |-  ( (
ph  /\  q  e.  A )  ->  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp  i^i  ran pGrp  ) }  C_  C )
122 sswrd 12711 . . . . . . . . . . . . 13  |-  ( { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp 
i^i  ran pGrp  ) }  C_  C  -> Word  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp 
i^i  ran pGrp  ) }  C_ Word  C )
123121, 122syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  q  e.  A )  -> Word  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp  i^i  ran pGrp  ) }  C_ Word  C )
124123sselda 3443 . . . . . . . . . . 11  |-  ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp 
i^i  ran pGrp  ) } )  ->  s  e. Word  C
)
125101, 124jctild 550 . . . . . . . . . 10  |-  ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp 
i^i  ran pGrp  ) } )  ->  ( ( ( Gs  ( S `  q
) ) dom DProd  s  /\  ( ( Gs  ( S `
 q ) ) DProd 
s )  =  (
Base `  ( Gs  ( S `  q )
) ) )  -> 
( s  e. Word  C  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  ( S `  q ) ) ) ) )
126125expimpd 612 . . . . . . . . 9  |-  ( (
ph  /\  q  e.  A )  ->  (
( s  e. Word  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp  i^i  ran pGrp  ) }  /\  ( ( Gs  ( S `  q
) ) dom DProd  s  /\  ( ( Gs  ( S `
 q ) ) DProd 
s )  =  (
Base `  ( Gs  ( S `  q )
) ) ) )  ->  ( s  e. Word  C  /\  ( G dom DProd  s  /\  ( G DProd  s
)  =  ( S `
 q ) ) ) ) )
127126reximdv2 2869 . . . . . . . 8  |-  ( (
ph  /\  q  e.  A )  ->  ( E. s  e. Word  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp  i^i  ran pGrp  ) }  ( ( Gs  ( S `  q ) ) dom DProd  s  /\  ( ( Gs  ( S `
 q ) ) DProd 
s )  =  (
Base `  ( Gs  ( S `  q )
) ) )  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s )  =  ( S `  q ) ) ) )
12883, 127mpd 15 . . . . . . 7  |-  ( (
ph  /\  q  e.  A )  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  ( S `
 q ) ) )
129 rabn0 3763 . . . . . . 7  |-  ( { s  e. Word  C  | 
( G dom DProd  s  /\  ( G DProd  s )  =  ( S `  q ) ) }  =/=  (/)  <->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  ( S `  q ) ) )
130128, 129sylibr 217 . . . . . 6  |-  ( (
ph  /\  q  e.  A )  ->  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd  s )  =  ( S `  q ) ) }  =/=  (/) )
13150, 130eqnetrd 2702 . . . . 5  |-  ( (
ph  /\  q  e.  A )  ->  { y  e. Word  C  |  y  e.  ( W `  ( S `  q ) ) }  =/=  (/) )
132 rabn0 3763 . . . . 5  |-  ( { y  e. Word  C  | 
y  e.  ( W `
 ( S `  q ) ) }  =/=  (/)  <->  E. y  e. Word  C
y  e.  ( W `
 ( S `  q ) ) )
133131, 132sylib 201 . . . 4  |-  ( (
ph  /\  q  e.  A )  ->  E. y  e. Word  C y  e.  ( W `  ( S `
 q ) ) )
134133ralrimiva 2813 . . 3  |-  ( ph  ->  A. q  e.  A  E. y  e. Word  C y  e.  ( W `  ( S `  q ) ) )
135 eleq1 2527 . . . 4  |-  ( y  =  ( f `  q )  ->  (
y  e.  ( W `
 ( S `  q ) )  <->  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )
136135ac6sfi 7840 . . 3  |-  ( ( A  e.  Fin  /\  A. q  e.  A  E. y  e. Word  C y  e.  ( W `  ( S `  q )
) )  ->  E. f
( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )
13726, 134, 136syl2anc 671 . 2  |-  ( ph  ->  E. f ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `  q ) ) ) )
138 sneq 3989 . . . . . . . . 9  |-  ( q  =  y  ->  { q }  =  { y } )
139 fveq2 5887 . . . . . . . . . 10  |-  ( q  =  y  ->  (
f `  q )  =  ( f `  y ) )
140139dmeqd 5055 . . . . . . . . 9  |-  ( q  =  y  ->  dom  ( f `  q
)  =  dom  (
f `  y )
)
141138, 140xpeq12d 4877 . . . . . . . 8  |-  ( q  =  y  ->  ( { q }  X.  dom  ( f `  q
) )  =  ( { y }  X.  dom  ( f `  y
) ) )
142141cbviunv 4330 . . . . . . 7  |-  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) )  =  U_ y  e.  A  ( { y }  X.  dom  ( f `  y
) )
14326adantr 471 . . . . . . . 8  |-  ( (
ph  /\  ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )  ->  A  e.  Fin )
144 snfi 7675 . . . . . . . . . 10  |-  { y }  e.  Fin
145 simprl 769 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )  ->  f : A -->Word  C )
146145ffvelrnda 6044 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `  q ) ) ) )  /\  y  e.  A )  ->  ( f `  y
)  e. Word  C )
147 wrdf 12708 . . . . . . . . . . . 12  |-  ( ( f `  y )  e. Word  C  ->  (
f `  y ) : ( 0..^ (
# `  ( f `  y ) ) ) --> C )
148 fdm 5755 . . . . . . . . . . . 12  |-  ( ( f `  y ) : ( 0..^ (
# `  ( f `  y ) ) ) --> C  ->  dom  ( f `
 y )  =  ( 0..^ ( # `  ( f `  y
) ) ) )
149146, 147, 1483syl 18 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `  q ) ) ) )  /\  y  e.  A )  ->  dom  ( f `  y )  =  ( 0..^ ( # `  (
f `  y )
) ) )
150 fzofi 12218 . . . . . . . . . . 11  |-  ( 0..^ ( # `  (
f `  y )
) )  e.  Fin
151149, 150syl6eqel 2547 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `  q ) ) ) )  /\  y  e.  A )  ->  dom  ( f `  y )  e.  Fin )
152 xpfi 7867 . . . . . . . . . 10  |-  ( ( { y }  e.  Fin  /\  dom  ( f `
 y )  e. 
Fin )  ->  ( { y }  X.  dom  ( f `  y
) )  e.  Fin )
153144, 151, 152sylancr 674 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `  q ) ) ) )  /\  y  e.  A )  ->  ( { y }  X.  dom  ( f `
 y ) )  e.  Fin )
154153ralrimiva 2813 . . . . . . . 8  |-  ( (
ph  /\  ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )  ->  A. y  e.  A  ( {
y }  X.  dom  ( f `  y
) )  e.  Fin )
155 iunfi 7887 . . . . . . . 8  |-  ( ( A  e.  Fin  /\  A. y  e.  A  ( { y }  X.  dom  ( f `  y
) )  e.  Fin )  ->  U_ y  e.  A  ( { y }  X.  dom  ( f `  y
) )  e.  Fin )
156143, 154, 155syl2anc 671 . . . . . . 7  |-  ( (
ph  /\  ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )  ->  U_ y  e.  A  ( {
y }  X.  dom  ( f `  y
) )  e.  Fin )
157142, 156syl5eqel 2543 . . . . . 6  |-  ( (
ph  /\  ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )  ->  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) )  e.  Fin )
158 hashcl 12569 . . . . . 6  |-  ( U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) )  e.  Fin  ->  ( # `  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) )  e. 
NN0 )
159 hashfzo0 12634 . . . . . 6  |-  ( (
# `  U_ q  e.  A  ( { q }  X.  dom  (
f `  q )
) )  e.  NN0  ->  ( # `  (
0..^ ( # `  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) ) )  =  ( # `  U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) ) ) )
160157, 158, 1593syl 18 . . . . 5  |-  ( (
ph  /\  ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )  ->  ( # `
 ( 0..^ (
# `  U_ q  e.  A  ( { q }  X.  dom  (
f `  q )
) ) ) )  =  ( # `  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) )
161 fzofi 12218 . . . . . 6  |-  ( 0..^ ( # `  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) )  e.  Fin
162 hashen 12561 . . . . . 6  |-  ( ( ( 0..^ ( # `  U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) ) ) )  e.  Fin  /\  U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) )  e.  Fin )  ->  ( ( # `  ( 0..^ ( # `  U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) ) ) ) )  =  ( # `  U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) ) )  <->  ( 0..^ ( # `  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) ) 
~~  U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) ) ) )
163161, 157, 162sylancr 674 . . . . 5  |-  ( (
ph  /\  ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )  ->  (
( # `  ( 0..^ ( # `  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) ) )  =  ( # `  U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) ) )  <->  ( 0..^ ( # `  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) ) 
~~  U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) ) ) )
164160, 163mpbid 215 . . . 4  |-  ( (
ph  /\  ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )  ->  (
0..^ ( # `  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) ) 
~~  U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) ) )
165 bren 7603 . . . 4  |-  ( ( 0..^ ( # `  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) ) 
~~  U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) )  <->  E. h  h : ( 0..^ (
# `  U_ q  e.  A  ( { q }  X.  dom  (
f `  q )
) ) ) -1-1-onto-> U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) )
166164, 165sylib 201 . . 3  |-  ( (
ph  /\  ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )  ->  E. h  h : ( 0..^ (
# `  U_ q  e.  A  ( { q }  X.  dom  (
f `  q )
) ) ) -1-1-onto-> U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) )
1676adantr 471 . . . . . 6  |-  ( (
ph  /\  ( (
f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `  q ) ) )  /\  h : ( 0..^ (
# `  U_ q  e.  A  ( { q }  X.  dom  (
f `  q )
) ) ) -1-1-onto-> U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) )  ->  G  e.  Abel )
16811adantr 471 . . . . . 6  |-  ( (
ph  /\  ( (
f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `  q ) ) )  /\  h : ( 0..^ (
# `  U_ q  e.  A  ( { q }  X.  dom  (
f `  q )
) ) ) -1-1-onto-> U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) )  ->  B  e.  Fin )
169 breq1 4418 . . . . . . . 8  |-  ( w  =  a  ->  (
w  ||  ( # `  B
)  <->  a  ||  ( # `
 B ) ) )
170169cbvrabv 3055 . . . . . . 7  |-  { w  e.  Prime  |  w  ||  ( # `  B ) }  =  { a  e.  Prime  |  a  ||  ( # `  B
) }
1712, 170eqtri 2483 . . . . . 6  |-  A  =  { a  e.  Prime  |  a  ||  ( # `  B ) }
172 fveq2 5887 . . . . . . . . . . 11  |-  ( x  =  c  ->  ( O `  x )  =  ( O `  c ) )
173172breq1d 4425 . . . . . . . . . 10  |-  ( x  =  c  ->  (
( O `  x
)  ||  ( p ^ ( p  pCnt  (
# `  B )
) )  <->  ( O `  c )  ||  (
p ^ ( p 
pCnt  ( # `  B
) ) ) ) )
174173cbvrabv 3055 . . . . . . . . 9  |-  { x  e.  B  |  ( O `  x )  ||  ( p ^ (
p  pCnt  ( # `  B
) ) ) }  =  { c  e.  B  |  ( O `
 c )  ||  ( p ^ (
p  pCnt  ( # `  B
) ) ) }
175 id 22 . . . . . . . . . . . 12  |-  ( p  =  b  ->  p  =  b )
176 oveq1 6321 . . . . . . . . . . . 12  |-  ( p  =  b  ->  (
p  pCnt  ( # `  B
) )  =  ( b  pCnt  ( # `  B
) ) )
177175, 176oveq12d 6332 . . . . . . . . . . 11  |-  ( p  =  b  ->  (
p ^ ( p 
pCnt  ( # `  B
) ) )  =  ( b ^ (
b  pCnt  ( # `  B
) ) ) )
178177breq2d 4427 . . . . . . . . . 10  |-  ( p  =  b  ->  (
( O `  c
)  ||  ( p ^ ( p  pCnt  (
# `  B )
) )  <->  ( O `  c )  ||  (
b ^ ( b 
pCnt  ( # `  B
) ) ) ) )
179178rabbidv 3047 . . . . . . . . 9  |-  ( p  =  b  ->  { c  e.  B  |  ( O `  c ) 
||  ( p ^
( p  pCnt  ( # `
 B ) ) ) }  =  {
c  e.  B  | 
( O `  c
)  ||  ( b ^ ( b  pCnt  (
# `  B )
) ) } )
180174, 179syl5eq 2507 . . . . . . . 8  |-  ( p  =  b  ->  { x  e.  B  |  ( O `  x )  ||  ( p ^ (
p  pCnt  ( # `  B
) ) ) }  =  { c  e.  B  |  ( O `
 c )  ||  ( b ^ (
b  pCnt  ( # `  B
) ) ) } )
181180cbvmptv 4508 . . . . . . 7  |-  ( p  e.  A  |->  { x  e.  B  |  ( O `  x )  ||  ( p ^ (
p  pCnt  ( # `  B
) ) ) } )  =  ( b  e.  A  |->  { c  e.  B  |  ( O `  c ) 
||  ( b ^
( b  pCnt  ( # `
 B ) ) ) } )
18229, 181eqtri 2483 . . . . . 6  |-  S  =  ( b  e.  A  |->  { c  e.  B  |  ( O `  c )  ||  (
b ^ ( b 
pCnt  ( # `  B
) ) ) } )
183 breq2 4419 . . . . . . . . . 10  |-  ( s  =  t  ->  ( G dom DProd  s  <->  G dom DProd  t ) )
184 oveq2 6322 . . . . . . . . . . 11  |-  ( s  =  t  ->  ( G DProd  s )  =  ( G DProd  t ) )
185184eqeq1d 2463 . . . . . . . . . 10  |-  ( s  =  t  ->  (
( G DProd  s )  =  g  <->  ( G DProd  t
)  =  g ) )
186183, 185anbi12d 722 . . . . . . . . 9  |-  ( s  =  t  ->  (
( G dom DProd  s  /\  ( G DProd  s )  =  g )  <->  ( G dom DProd  t  /\  ( G DProd 
t )  =  g ) ) )
187186cbvrabv 3055 . . . . . . . 8  |-  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd  s )  =  g ) }  =  { t  e. Word  C  |  ( G dom DProd  t  /\  ( G DProd 
t )  =  g ) }
188187mpteq2i 4499 . . . . . . 7  |-  ( g  e.  (SubGrp `  G
)  |->  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd 
s )  =  g ) } )  =  ( g  e.  (SubGrp `  G )  |->  { t  e. Word  C  |  ( G dom DProd  t  /\  ( G DProd  t )  =  g ) } )
18942, 188eqtri 2483 . . . . . 6  |-  W  =  ( g  e.  (SubGrp `  G )  |->  { t  e. Word  C  |  ( G dom DProd  t  /\  ( G DProd  t )  =  g ) } )
190 simprll 777 . . . . . 6  |-  ( (
ph  /\  ( (
f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `  q ) ) )  /\  h : ( 0..^ (
# `  U_ q  e.  A  ( { q }  X.  dom  (
f `  q )
) ) ) -1-1-onto-> U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) )  ->  f : A -->Word  C )
191 simprlr 778 . . . . . . 7  |-  ( (
ph  /\  ( (
f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `  q ) ) )  /\  h : ( 0..^ (
# `  U_ q  e.  A  ( { q }  X.  dom  (
f `  q )
) ) ) -1-1-onto-> U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) )  ->  A. q  e.  A  ( f `  q
)  e.  ( W `
 ( S `  q ) ) )
192 fveq2 5887 . . . . . . . . . 10  |-  ( q  =  y  ->  ( S `  q )  =  ( S `  y ) )
193192fveq2d 5891 . . . . . . . . 9  |-  ( q  =  y  ->  ( W `  ( S `  q ) )  =  ( W `  ( S `  y )
) )
194139, 193eleq12d 2533 . . . . . . . 8  |-  ( q  =  y  ->  (
( f `  q
)  e.  ( W `
 ( S `  q ) )  <->  ( f `  y )  e.  ( W `  ( S `
 y ) ) ) )
195194cbvralv 3030 . . . . . . 7  |-  ( A. q  e.  A  (
f `  q )  e.  ( W `  ( S `  q )
)  <->  A. y  e.  A  ( f `  y
)  e.  ( W `
 ( S `  y ) ) )
196191, 195sylib 201 . . . . . 6  |-  ( (
ph  /\  ( (
f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `  q ) ) )  /\  h : ( 0..^ (
# `  U_ q  e.  A  ( { q }  X.  dom  (
f `  q )
) ) ) -1-1-onto-> U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) )  ->  A. y  e.  A  ( f `  y
)  e.  ( W `
 ( S `  y ) ) )
197 simprr 771 . . . . . 6  |-  ( (
ph  /\  ( (
f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `  q ) ) )  /\  h : ( 0..^ (
# `  U_ q  e.  A  ( { q }  X.  dom  (
f `  q )
) ) ) -1-1-onto-> U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) )  ->  h : ( 0..^ ( # `  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) ) -1-1-onto-> U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) ) )
1988, 41, 167, 168, 28, 171, 182, 189, 190, 196, 142, 197ablfaclem2 17767 . . . . 5  |-  ( (
ph  /\  ( (
f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `  q ) ) )  /\  h : ( 0..^ (
# `  U_ q  e.  A  ( { q }  X.  dom  (
f `  q )
) ) ) -1-1-onto-> U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) )  ->  ( W `  B )  =/=  (/) )
199198expr 624 . . . 4  |-  ( (
ph  /\  ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )  ->  (
h : ( 0..^ ( # `  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) ) -1-1-onto-> U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) )  ->  ( W `  B )  =/=  (/) ) )
200199exlimdv 1789 . . 3  |-  ( (
ph  /\  ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )  ->  ( E. h  h :
( 0..^ ( # `  U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) ) ) ) -1-1-onto-> U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) )  ->  ( W `  B )  =/=  (/) ) )
201166, 200mpd 15 . 2  |-  ( (
ph  /\  ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )  ->  ( W `  B )  =/=  (/) )
202137, 201exlimddv 1791 1  |-  ( ph  ->  ( W `  B
)  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 375    /\ w3a 991    = wceq 1454   E.wex 1673    e. wcel 1897    =/= wne 2632   A.wral 2748   E.wrex 2749   {crab 2752   _Vcvv 3056    i^i cin 3414    C_ wss 3415   (/)c0 3742   ~Pcpw 3962   {csn 3979   U_ciun 4291   class class class wbr 4415    |-> cmpt 4474    X. cxp 4850   dom cdm 4852   ran crn 4853   -->wf 5596   -1-1-onto->wf1o 5599   ` cfv 5600  (class class class)co 6314    ~~ cen 7591   Fincfn 7594   0cc0 9564   1c1 9565    <_ cle 9701   NNcn 10636   NN0cn0 10897   ZZcz 10965   ...cfz 11812  ..^cfzo 11945   ^cexp 12303   #chash 12546  Word cword 12688    || cdvds 14353   Primecprime 14670    pCnt cpc 14834   Basecbs 15169   ↾s cress 15170   Grpcgrp 16717  SubGrpcsubg 16859   odcod 17213   pGrp cpgp 17217   Abelcabl 17479  CycGrpccyg 17560   DProd cdprd 17673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-8 1899  ax-9 1906  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441  ax-rep 4528  ax-sep 4538  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6609  ax-inf2 8171  ax-cnex 9620  ax-resscn 9621  ax-1cn 9622  ax-icn 9623  ax-addcl 9624  ax-addrcl 9625  ax-mulcl 9626  ax-mulrcl 9627  ax-mulcom 9628  ax-addass 9629  ax-mulass 9630  ax-distr 9631  ax-i2m1 9632  ax-1ne0 9633  ax-1rid 9634  ax-rnegex 9635  ax-rrecex 9636  ax-cnre 9637  ax-pre-lttri 9638  ax-pre-lttrn 9639  ax-pre-ltadd 9640  ax-pre-mulgt0 9641  ax-pre-sup 9642
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1457  df-fal 1460  df-ex 1674  df-nf 1678  df-sb 1808  df-eu 2313  df-mo 2314  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2591  df-ne 2634  df-nel 2635  df-ral 2753  df-rex 2754  df-reu 2755  df-rmo 2756  df-rab 2757  df-v 3058  df-sbc 3279  df-csb 3375  df-dif 3418  df-un 3420  df-in 3422  df-ss 3429  df-pss 3431  df-nul 3743  df-if 3893  df-pw 3964  df-sn 3980  df-pr 3982  df-tp 3984  df-op 3986  df-uni 4212  df-int 4248  df-iun 4293  df-iin 4294  df-disj 4387  df-br 4416  df-opab 4475  df-mpt 4476  df-tr 4511  df-eprel 4763  df-id 4767  df-po 4773  df-so 4774  df-fr 4811  df-se 4812  df-we 4813  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-pred 5398  df-ord 5444  df-on 5445  df-lim 5446  df-suc 5447  df-iota 5564  df-fun 5602  df-fn 5603  df-f 5604  df-f1 5605  df-fo 5606  df-f1o 5607  df-fv 5608  df-isom 5609  df-riota 6276  df-ov 6317  df-oprab 6318  df-mpt2 6319  df-of 6557  df-rpss 6597  df-om 6719  df-1st 6819  df-2nd 6820  df-supp 6941  df-tpos 6998  df-wrecs 7053  df-recs 7115  df-rdg 7153  df-1o 7207  df-2o 7208  df-oadd 7211  df-omul 7212  df-er 7388  df-ec 7390  df-qs 7394  df-map 7499  df-pm 7500  df-ixp 7548  df-en 7595  df-dom 7596  df-sdom 7597  df-fin 7598  df-fsupp 7909  df-sup 7981  df-inf 7982  df-oi 8050  df-card 8398  df-acn 8401  df-cda 8623  df-pnf 9702  df-mnf 9703  df-xr 9704  df-ltxr 9705  df-le 9706  df-sub 9887  df-neg 9888  df-div 10297  df-nn 10637  df-2 10695  df-3 10696  df-n0 10898  df-z 10966  df-uz 11188  df-q 11293  df-rp 11331  df-fz 11813  df-fzo 11946  df-fl 12059  df-mod 12128  df-seq 12245  df-exp 12304  df-fac 12491  df-bc 12519  df-hash 12547  df-word 12696  df-concat 12698  df-s1 12699  df-cj 13210  df-re 13211  df-im 13212  df-sqrt 13346  df-abs 13347  df-clim 13600  df-sum 13801  df-dvds 14354  df-gcd 14517  df-prm 14671  df-pc 14835  df-ndx 15172  df-slot 15173  df-base 15174  df-sets 15175  df-ress 15176  df-plusg 15251  df-0g 15388  df-gsum 15389  df-mre 15540  df-mrc 15541  df-acs 15543  df-mgm 16536  df-sgrp 16575  df-mnd 16585  df-mhm 16630  df-submnd 16631  df-grp 16721  df-minusg 16722  df-sbg 16723  df-mulg 16724  df-subg 16862  df-eqg 16864  df-ghm 16929  df-gim 16971  df-ga 16992  df-cntz 17019  df-oppg 17045  df-od 17220  df-gex 17222  df-pgp 17224  df-lsm 17336  df-pj1 17337  df-cmn 17480  df-abl 17481  df-cyg 17561  df-dprd 17675
This theorem is referenced by:  ablfac  17769
  Copyright terms: Public domain W3C validator