MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfaclem3 Structured version   Unicode version

Theorem ablfaclem3 17350
Description: Lemma for ablfac 17351. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
ablfac.b  |-  B  =  ( Base `  G
)
ablfac.c  |-  C  =  { r  e.  (SubGrp `  G )  |  ( Gs  r )  e.  (CycGrp 
i^i  ran pGrp  ) }
ablfac.1  |-  ( ph  ->  G  e.  Abel )
ablfac.2  |-  ( ph  ->  B  e.  Fin )
ablfac.o  |-  O  =  ( od `  G
)
ablfac.a  |-  A  =  { w  e.  Prime  |  w  ||  ( # `  B ) }
ablfac.s  |-  S  =  ( p  e.  A  |->  { x  e.  B  |  ( O `  x )  ||  (
p ^ ( p 
pCnt  ( # `  B
) ) ) } )
ablfac.w  |-  W  =  ( g  e.  (SubGrp `  G )  |->  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd  s )  =  g ) } )
Assertion
Ref Expression
ablfaclem3  |-  ( ph  ->  ( W `  B
)  =/=  (/) )
Distinct variable groups:    s, p, x, A    g, r, s, S    g, p, w, x, B, r, s    O, p, x    C, g, p, s, w, x    W, p, w, x    ph, p, s, w, x    g, G, p, r, s, w, x
Allowed substitution hints:    ph( g, r)    A( w, g, r)    C( r)    S( x, w, p)    O( w, g, s, r)    W( g, s, r)

Proof of Theorem ablfaclem3
Dummy variables  a 
b  c  f  h  q  t  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 12037 . . . 4  |-  ( ph  ->  ( 1 ... ( # `
 B ) )  e.  Fin )
2 ablfac.a . . . . 5  |-  A  =  { w  e.  Prime  |  w  ||  ( # `  B ) }
3 prmnn 14321 . . . . . . . 8  |-  ( w  e.  Prime  ->  w  e.  NN )
433ad2ant2 1019 . . . . . . 7  |-  ( (
ph  /\  w  e.  Prime  /\  w  ||  ( # `
 B ) )  ->  w  e.  NN )
5 prmz 14322 . . . . . . . . 9  |-  ( w  e.  Prime  ->  w  e.  ZZ )
6 ablfac.1 . . . . . . . . . . 11  |-  ( ph  ->  G  e.  Abel )
7 ablgrp 17019 . . . . . . . . . . 11  |-  ( G  e.  Abel  ->  G  e. 
Grp )
8 ablfac.b . . . . . . . . . . . 12  |-  B  =  ( Base `  G
)
98grpbn0 16295 . . . . . . . . . . 11  |-  ( G  e.  Grp  ->  B  =/=  (/) )
106, 7, 93syl 20 . . . . . . . . . 10  |-  ( ph  ->  B  =/=  (/) )
11 ablfac.2 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  Fin )
12 hashnncl 12391 . . . . . . . . . . 11  |-  ( B  e.  Fin  ->  (
( # `  B )  e.  NN  <->  B  =/=  (/) ) )
1311, 12syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( ( # `  B
)  e.  NN  <->  B  =/=  (/) ) )
1410, 13mpbird 232 . . . . . . . . 9  |-  ( ph  ->  ( # `  B
)  e.  NN )
15 dvdsle 14132 . . . . . . . . 9  |-  ( ( w  e.  ZZ  /\  ( # `  B )  e.  NN )  -> 
( w  ||  ( # `
 B )  ->  w  <_  ( # `  B
) ) )
165, 14, 15syl2anr 476 . . . . . . . 8  |-  ( (
ph  /\  w  e.  Prime )  ->  ( w  ||  ( # `  B
)  ->  w  <_  (
# `  B )
) )
17163impia 1194 . . . . . . 7  |-  ( (
ph  /\  w  e.  Prime  /\  w  ||  ( # `
 B ) )  ->  w  <_  ( # `
 B ) )
1814nnzd 10927 . . . . . . . . 9  |-  ( ph  ->  ( # `  B
)  e.  ZZ )
19183ad2ant1 1018 . . . . . . . 8  |-  ( (
ph  /\  w  e.  Prime  /\  w  ||  ( # `
 B ) )  ->  ( # `  B
)  e.  ZZ )
20 fznn 11719 . . . . . . . 8  |-  ( (
# `  B )  e.  ZZ  ->  ( w  e.  ( 1 ... ( # `
 B ) )  <-> 
( w  e.  NN  /\  w  <_  ( # `  B
) ) ) )
2119, 20syl 17 . . . . . . 7  |-  ( (
ph  /\  w  e.  Prime  /\  w  ||  ( # `
 B ) )  ->  ( w  e.  ( 1 ... ( # `
 B ) )  <-> 
( w  e.  NN  /\  w  <_  ( # `  B
) ) ) )
224, 17, 21mpbir2and 923 . . . . . 6  |-  ( (
ph  /\  w  e.  Prime  /\  w  ||  ( # `
 B ) )  ->  w  e.  ( 1 ... ( # `  B ) ) )
2322rabssdv 3518 . . . . 5  |-  ( ph  ->  { w  e.  Prime  |  w  ||  ( # `  B ) }  C_  ( 1 ... ( # `
 B ) ) )
242, 23syl5eqss 3485 . . . 4  |-  ( ph  ->  A  C_  ( 1 ... ( # `  B
) ) )
25 ssfi 7695 . . . 4  |-  ( ( ( 1 ... ( # `
 B ) )  e.  Fin  /\  A  C_  ( 1 ... ( # `
 B ) ) )  ->  A  e.  Fin )
261, 24, 25syl2anc 659 . . 3  |-  ( ph  ->  A  e.  Fin )
27 dfin5 3421 . . . . . . . 8  |-  (Word  C  i^i  ( W `  ( S `  q )
) )  =  {
y  e. Word  C  | 
y  e.  ( W `
 ( S `  q ) ) }
28 ablfac.o . . . . . . . . . . . . . 14  |-  O  =  ( od `  G
)
29 ablfac.s . . . . . . . . . . . . . 14  |-  S  =  ( p  e.  A  |->  { x  e.  B  |  ( O `  x )  ||  (
p ^ ( p 
pCnt  ( # `  B
) ) ) } )
30 ssrab2 3523 . . . . . . . . . . . . . . . 16  |-  { w  e.  Prime  |  w  ||  ( # `  B ) }  C_  Prime
312, 30eqsstri 3471 . . . . . . . . . . . . . . 15  |-  A  C_  Prime
3231a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  A  C_  Prime )
338, 28, 29, 6, 11, 32ablfac1b 17333 . . . . . . . . . . . . 13  |-  ( ph  ->  G dom DProd  S )
34 fvex 5815 . . . . . . . . . . . . . . . . 17  |-  ( Base `  G )  e.  _V
358, 34eqeltri 2486 . . . . . . . . . . . . . . . 16  |-  B  e. 
_V
3635rabex 4544 . . . . . . . . . . . . . . 15  |-  { x  e.  B  |  ( O `  x )  ||  ( p ^ (
p  pCnt  ( # `  B
) ) ) }  e.  _V
3736, 29dmmpti 5649 . . . . . . . . . . . . . 14  |-  dom  S  =  A
3837a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  dom  S  =  A )
3933, 38dprdf2 17252 . . . . . . . . . . . 12  |-  ( ph  ->  S : A --> (SubGrp `  G ) )
4039ffvelrnda 5965 . . . . . . . . . . 11  |-  ( (
ph  /\  q  e.  A )  ->  ( S `  q )  e.  (SubGrp `  G )
)
41 ablfac.c . . . . . . . . . . . 12  |-  C  =  { r  e.  (SubGrp `  G )  |  ( Gs  r )  e.  (CycGrp 
i^i  ran pGrp  ) }
42 ablfac.w . . . . . . . . . . . 12  |-  W  =  ( g  e.  (SubGrp `  G )  |->  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd  s )  =  g ) } )
438, 41, 6, 11, 28, 2, 29, 42ablfaclem1 17348 . . . . . . . . . . 11  |-  ( ( S `  q )  e.  (SubGrp `  G
)  ->  ( W `  ( S `  q
) )  =  {
s  e. Word  C  | 
( G dom DProd  s  /\  ( G DProd  s )  =  ( S `  q ) ) } )
4440, 43syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  A )  ->  ( W `  ( S `  q ) )  =  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd  s
)  =  ( S `
 q ) ) } )
45 ssrab2 3523 . . . . . . . . . 10  |-  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd  s )  =  ( S `  q ) ) } 
C_ Word  C
4644, 45syl6eqss 3491 . . . . . . . . 9  |-  ( (
ph  /\  q  e.  A )  ->  ( W `  ( S `  q ) )  C_ Word  C )
47 dfss1 3643 . . . . . . . . 9  |-  ( ( W `  ( S `
 q ) ) 
C_ Word  C  <->  (Word  C  i^i  ( W `  ( S `
 q ) ) )  =  ( W `
 ( S `  q ) ) )
4846, 47sylib 196 . . . . . . . 8  |-  ( (
ph  /\  q  e.  A )  ->  (Word  C  i^i  ( W `  ( S `  q ) ) )  =  ( W `  ( S `
 q ) ) )
4927, 48syl5eqr 2457 . . . . . . 7  |-  ( (
ph  /\  q  e.  A )  ->  { y  e. Word  C  |  y  e.  ( W `  ( S `  q ) ) }  =  ( W `  ( S `
 q ) ) )
5049, 44eqtrd 2443 . . . . . 6  |-  ( (
ph  /\  q  e.  A )  ->  { y  e. Word  C  |  y  e.  ( W `  ( S `  q ) ) }  =  {
s  e. Word  C  | 
( G dom DProd  s  /\  ( G DProd  s )  =  ( S `  q ) ) } )
51 eqid 2402 . . . . . . . . 9  |-  ( Base `  ( Gs  ( S `  q ) ) )  =  ( Base `  ( Gs  ( S `  q ) ) )
52 eqid 2402 . . . . . . . . 9  |-  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp  i^i  ran pGrp  ) }  =  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp  i^i  ran pGrp  ) }
536adantr 463 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  A )  ->  G  e.  Abel )
54 eqid 2402 . . . . . . . . . . 11  |-  ( Gs  ( S `  q ) )  =  ( Gs  ( S `  q ) )
5554subgabl 17060 . . . . . . . . . 10  |-  ( ( G  e.  Abel  /\  ( S `  q )  e.  (SubGrp `  G )
)  ->  ( Gs  ( S `  q )
)  e.  Abel )
5653, 40, 55syl2anc 659 . . . . . . . . 9  |-  ( (
ph  /\  q  e.  A )  ->  ( Gs  ( S `  q ) )  e.  Abel )
5732sselda 3441 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  A )  ->  q  e.  Prime )
5854subgbas 16421 . . . . . . . . . . . . . 14  |-  ( ( S `  q )  e.  (SubGrp `  G
)  ->  ( S `  q )  =  (
Base `  ( Gs  ( S `  q )
) ) )
5940, 58syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  q  e.  A )  ->  ( S `  q )  =  ( Base `  ( Gs  ( S `  q ) ) ) )
6059fveq2d 5809 . . . . . . . . . . . 12  |-  ( (
ph  /\  q  e.  A )  ->  ( # `
 ( S `  q ) )  =  ( # `  ( Base `  ( Gs  ( S `
 q ) ) ) ) )
618, 28, 29, 6, 11, 32ablfac1a 17332 . . . . . . . . . . . 12  |-  ( (
ph  /\  q  e.  A )  ->  ( # `
 ( S `  q ) )  =  ( q ^ (
q  pCnt  ( # `  B
) ) ) )
6260, 61eqtr3d 2445 . . . . . . . . . . 11  |-  ( (
ph  /\  q  e.  A )  ->  ( # `
 ( Base `  ( Gs  ( S `  q ) ) ) )  =  ( q ^ (
q  pCnt  ( # `  B
) ) ) )
6362oveq2d 6250 . . . . . . . . . . . . 13  |-  ( (
ph  /\  q  e.  A )  ->  (
q  pCnt  ( # `  ( Base `  ( Gs  ( S `
 q ) ) ) ) )  =  ( q  pCnt  (
q ^ ( q 
pCnt  ( # `  B
) ) ) ) )
6414adantr 463 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  q  e.  A )  ->  ( # `
 B )  e.  NN )
6557, 64pccld 14475 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  q  e.  A )  ->  (
q  pCnt  ( # `  B
) )  e.  NN0 )
6665nn0zd 10926 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  q  e.  A )  ->  (
q  pCnt  ( # `  B
) )  e.  ZZ )
67 pcid 14497 . . . . . . . . . . . . . 14  |-  ( ( q  e.  Prime  /\  (
q  pCnt  ( # `  B
) )  e.  ZZ )  ->  ( q  pCnt  ( q ^ ( q 
pCnt  ( # `  B
) ) ) )  =  ( q  pCnt  (
# `  B )
) )
6857, 66, 67syl2anc 659 . . . . . . . . . . . . 13  |-  ( (
ph  /\  q  e.  A )  ->  (
q  pCnt  ( q ^ ( q  pCnt  (
# `  B )
) ) )  =  ( q  pCnt  ( # `
 B ) ) )
6963, 68eqtrd 2443 . . . . . . . . . . . 12  |-  ( (
ph  /\  q  e.  A )  ->  (
q  pCnt  ( # `  ( Base `  ( Gs  ( S `
 q ) ) ) ) )  =  ( q  pCnt  ( # `
 B ) ) )
7069oveq2d 6250 . . . . . . . . . . 11  |-  ( (
ph  /\  q  e.  A )  ->  (
q ^ ( q 
pCnt  ( # `  ( Base `  ( Gs  ( S `
 q ) ) ) ) ) )  =  ( q ^
( q  pCnt  ( # `
 B ) ) ) )
7162, 70eqtr4d 2446 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  A )  ->  ( # `
 ( Base `  ( Gs  ( S `  q ) ) ) )  =  ( q ^ (
q  pCnt  ( # `  ( Base `  ( Gs  ( S `
 q ) ) ) ) ) ) )
7254subggrp 16420 . . . . . . . . . . . 12  |-  ( ( S `  q )  e.  (SubGrp `  G
)  ->  ( Gs  ( S `  q )
)  e.  Grp )
7340, 72syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  q  e.  A )  ->  ( Gs  ( S `  q ) )  e.  Grp )
7411adantr 463 . . . . . . . . . . . . 13  |-  ( (
ph  /\  q  e.  A )  ->  B  e.  Fin )
758subgss 16418 . . . . . . . . . . . . . 14  |-  ( ( S `  q )  e.  (SubGrp `  G
)  ->  ( S `  q )  C_  B
)
7640, 75syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  q  e.  A )  ->  ( S `  q )  C_  B )
77 ssfi 7695 . . . . . . . . . . . . 13  |-  ( ( B  e.  Fin  /\  ( S `  q ) 
C_  B )  -> 
( S `  q
)  e.  Fin )
7874, 76, 77syl2anc 659 . . . . . . . . . . . 12  |-  ( (
ph  /\  q  e.  A )  ->  ( S `  q )  e.  Fin )
7959, 78eqeltrrd 2491 . . . . . . . . . . 11  |-  ( (
ph  /\  q  e.  A )  ->  ( Base `  ( Gs  ( S `
 q ) ) )  e.  Fin )
8051pgpfi2 16842 . . . . . . . . . . 11  |-  ( ( ( Gs  ( S `  q ) )  e. 
Grp  /\  ( Base `  ( Gs  ( S `  q ) ) )  e.  Fin )  -> 
( q pGrp  ( Gs  ( S `  q ) )  <->  ( q  e. 
Prime  /\  ( # `  ( Base `  ( Gs  ( S `
 q ) ) ) )  =  ( q ^ ( q 
pCnt  ( # `  ( Base `  ( Gs  ( S `
 q ) ) ) ) ) ) ) ) )
8173, 79, 80syl2anc 659 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  A )  ->  (
q pGrp  ( Gs  ( S `
 q ) )  <-> 
( q  e.  Prime  /\  ( # `  ( Base `  ( Gs  ( S `
 q ) ) ) )  =  ( q ^ ( q 
pCnt  ( # `  ( Base `  ( Gs  ( S `
 q ) ) ) ) ) ) ) ) )
8257, 71, 81mpbir2and 923 . . . . . . . . 9  |-  ( (
ph  /\  q  e.  A )  ->  q pGrp  ( Gs  ( S `  q ) ) )
8351, 52, 56, 82, 79pgpfac 17347 . . . . . . . 8  |-  ( (
ph  /\  q  e.  A )  ->  E. s  e. Word  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp 
i^i  ran pGrp  ) }  (
( Gs  ( S `  q ) ) dom DProd  s  /\  ( ( Gs  ( S `  q ) ) DProd  s )  =  ( Base `  ( Gs  ( S `  q ) ) ) ) )
84 ssrab2 3523 . . . . . . . . . . . . . 14  |-  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp  i^i  ran pGrp  ) }  C_  (SubGrp `  ( Gs  ( S `  q ) ) )
85 sswrd 12513 . . . . . . . . . . . . . 14  |-  ( { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp 
i^i  ran pGrp  ) }  C_  (SubGrp `  ( Gs  ( S `
 q ) ) )  -> Word  { r  e.  (SubGrp `  ( Gs  ( S `  q )
) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp  i^i  ran pGrp  ) }  C_ Word  (SubGrp `  ( Gs  ( S `  q ) ) ) )
8684, 85ax-mp 5 . . . . . . . . . . . . 13  |- Word  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp  i^i  ran pGrp  ) }  C_ Word  (SubGrp `  ( Gs  ( S `  q ) ) )
8786sseli 3437 . . . . . . . . . . . 12  |-  ( s  e. Word  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp 
i^i  ran pGrp  ) }  ->  s  e. Word  (SubGrp `  ( Gs  ( S `  q )
) ) )
8840adantr 463 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  (SubGrp `  ( Gs  ( S `  q )
) ) )  -> 
( S `  q
)  e.  (SubGrp `  G ) )
8988adantr 463 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  (SubGrp `  ( Gs  ( S `  q ) ) ) )  /\  ( Gs  ( S `  q ) ) dom DProd  s )  ->  ( S `  q
)  e.  (SubGrp `  G ) )
9054subgdmdprd 17293 . . . . . . . . . . . . . . . . . . 19  |-  ( ( S `  q )  e.  (SubGrp `  G
)  ->  ( ( Gs  ( S `  q ) ) dom DProd  s  <->  ( G dom DProd  s  /\  ran  s  C_ 
~P ( S `  q ) ) ) )
9188, 90syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  (SubGrp `  ( Gs  ( S `  q )
) ) )  -> 
( ( Gs  ( S `
 q ) ) dom DProd  s  <->  ( G dom DProd  s  /\  ran  s  C_ 
~P ( S `  q ) ) ) )
9291simprbda 621 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  (SubGrp `  ( Gs  ( S `  q ) ) ) )  /\  ( Gs  ( S `  q ) ) dom DProd  s )  ->  G dom DProd  s )
9391simplbda 622 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  (SubGrp `  ( Gs  ( S `  q ) ) ) )  /\  ( Gs  ( S `  q ) ) dom DProd  s )  ->  ran  s  C_  ~P ( S `  q ) )
9454, 89, 92, 93subgdprd 17294 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  (SubGrp `  ( Gs  ( S `  q ) ) ) )  /\  ( Gs  ( S `  q ) ) dom DProd  s )  ->  ( ( Gs  ( S `
 q ) ) DProd 
s )  =  ( G DProd  s ) )
9559ad2antrr 724 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  (SubGrp `  ( Gs  ( S `  q ) ) ) )  /\  ( Gs  ( S `  q ) ) dom DProd  s )  ->  ( S `  q
)  =  ( Base `  ( Gs  ( S `  q ) ) ) )
9695eqcomd 2410 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  (SubGrp `  ( Gs  ( S `  q ) ) ) )  /\  ( Gs  ( S `  q ) ) dom DProd  s )  ->  ( Base `  ( Gs  ( S `  q ) ) )  =  ( S `  q ) )
9794, 96eqeq12d 2424 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  (SubGrp `  ( Gs  ( S `  q ) ) ) )  /\  ( Gs  ( S `  q ) ) dom DProd  s )  ->  ( ( ( Gs  ( S `  q ) ) DProd  s )  =  ( Base `  ( Gs  ( S `  q ) ) )  <->  ( G DProd  s )  =  ( S `
 q ) ) )
9897biimpd 207 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  (SubGrp `  ( Gs  ( S `  q ) ) ) )  /\  ( Gs  ( S `  q ) ) dom DProd  s )  ->  ( ( ( Gs  ( S `  q ) ) DProd  s )  =  ( Base `  ( Gs  ( S `  q ) ) )  ->  ( G DProd  s )  =  ( S `  q ) ) )
9998, 92jctild 541 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  (SubGrp `  ( Gs  ( S `  q ) ) ) )  /\  ( Gs  ( S `  q ) ) dom DProd  s )  ->  ( ( ( Gs  ( S `  q ) ) DProd  s )  =  ( Base `  ( Gs  ( S `  q ) ) )  ->  ( G dom DProd  s  /\  ( G DProd  s )  =  ( S `  q ) ) ) )
10099expimpd 601 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  (SubGrp `  ( Gs  ( S `  q )
) ) )  -> 
( ( ( Gs  ( S `  q ) ) dom DProd  s  /\  ( ( Gs  ( S `
 q ) ) DProd 
s )  =  (
Base `  ( Gs  ( S `  q )
) ) )  -> 
( G dom DProd  s  /\  ( G DProd  s )  =  ( S `  q ) ) ) )
10187, 100sylan2 472 . . . . . . . . . . 11  |-  ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp 
i^i  ran pGrp  ) } )  ->  ( ( ( Gs  ( S `  q
) ) dom DProd  s  /\  ( ( Gs  ( S `
 q ) ) DProd 
s )  =  (
Base `  ( Gs  ( S `  q )
) ) )  -> 
( G dom DProd  s  /\  ( G DProd  s )  =  ( S `  q ) ) ) )
102 oveq2 6242 . . . . . . . . . . . . . . . 16  |-  ( r  =  y  ->  (
( Gs  ( S `  q ) )s  r )  =  ( ( Gs  ( S `  q ) )s  y ) )
103102eleq1d 2471 . . . . . . . . . . . . . . 15  |-  ( r  =  y  ->  (
( ( Gs  ( S `
 q ) )s  r )  e.  (CycGrp  i^i  ran pGrp  ) 
<->  ( ( Gs  ( S `
 q ) )s  y )  e.  (CycGrp  i^i  ran pGrp  ) ) )
104103cbvrabv 3057 . . . . . . . . . . . . . 14  |-  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp  i^i  ran pGrp  ) }  =  { y  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  y )  e.  (CycGrp  i^i  ran pGrp  ) }
10554subsubg 16440 . . . . . . . . . . . . . . . . . . 19  |-  ( ( S `  q )  e.  (SubGrp `  G
)  ->  ( y  e.  (SubGrp `  ( Gs  ( S `  q )
) )  <->  ( y  e.  (SubGrp `  G )  /\  y  C_  ( S `
 q ) ) ) )
10640, 105syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  q  e.  A )  ->  (
y  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  <-> 
( y  e.  (SubGrp `  G )  /\  y  C_  ( S `  q
) ) ) )
107106simprbda 621 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  q  e.  A )  /\  y  e.  (SubGrp `  ( Gs  ( S `  q )
) ) )  -> 
y  e.  (SubGrp `  G ) )
1081073adant3 1017 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  q  e.  A )  /\  y  e.  (SubGrp `  ( Gs  ( S `  q )
) )  /\  (
( Gs  ( S `  q ) )s  y )  e.  (CycGrp  i^i  ran pGrp  ) )  ->  y  e.  (SubGrp `  G ) )
109403ad2ant1 1018 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  q  e.  A )  /\  y  e.  (SubGrp `  ( Gs  ( S `  q )
) )  /\  (
( Gs  ( S `  q ) )s  y )  e.  (CycGrp  i^i  ran pGrp  ) )  ->  ( S `  q )  e.  (SubGrp `  G ) )
110106simplbda 622 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  q  e.  A )  /\  y  e.  (SubGrp `  ( Gs  ( S `  q )
) ) )  -> 
y  C_  ( S `  q ) )
1111103adant3 1017 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  q  e.  A )  /\  y  e.  (SubGrp `  ( Gs  ( S `  q )
) )  /\  (
( Gs  ( S `  q ) )s  y )  e.  (CycGrp  i^i  ran pGrp  ) )  ->  y  C_  ( S `  q ) )
112 ressabs 14799 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( S `  q
)  e.  (SubGrp `  G )  /\  y  C_  ( S `  q
) )  ->  (
( Gs  ( S `  q ) )s  y )  =  ( Gs  y ) )
113109, 111, 112syl2anc 659 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  q  e.  A )  /\  y  e.  (SubGrp `  ( Gs  ( S `  q )
) )  /\  (
( Gs  ( S `  q ) )s  y )  e.  (CycGrp  i^i  ran pGrp  ) )  ->  ( ( Gs  ( S `  q ) )s  y )  =  ( Gs  y ) )
114 simp3 999 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  q  e.  A )  /\  y  e.  (SubGrp `  ( Gs  ( S `  q )
) )  /\  (
( Gs  ( S `  q ) )s  y )  e.  (CycGrp  i^i  ran pGrp  ) )  ->  ( ( Gs  ( S `  q ) )s  y )  e.  (CycGrp 
i^i  ran pGrp  ) )
115113, 114eqeltrrd 2491 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  q  e.  A )  /\  y  e.  (SubGrp `  ( Gs  ( S `  q )
) )  /\  (
( Gs  ( S `  q ) )s  y )  e.  (CycGrp  i^i  ran pGrp  ) )  ->  ( Gs  y
)  e.  (CycGrp  i^i  ran pGrp  ) )
116 oveq2 6242 . . . . . . . . . . . . . . . . . 18  |-  ( r  =  y  ->  ( Gs  r )  =  ( Gs  y ) )
117116eleq1d 2471 . . . . . . . . . . . . . . . . 17  |-  ( r  =  y  ->  (
( Gs  r )  e.  (CycGrp  i^i  ran pGrp  )  <->  ( Gs  y
)  e.  (CycGrp  i^i  ran pGrp  ) ) )
118117, 41elrab2 3208 . . . . . . . . . . . . . . . 16  |-  ( y  e.  C  <->  ( y  e.  (SubGrp `  G )  /\  ( Gs  y )  e.  (CycGrp  i^i  ran pGrp  ) ) )
119108, 115, 118sylanbrc 662 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  q  e.  A )  /\  y  e.  (SubGrp `  ( Gs  ( S `  q )
) )  /\  (
( Gs  ( S `  q ) )s  y )  e.  (CycGrp  i^i  ran pGrp  ) )  ->  y  e.  C )
120119rabssdv 3518 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  q  e.  A )  ->  { y  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  y )  e.  (CycGrp  i^i  ran pGrp  ) }  C_  C )
121104, 120syl5eqss 3485 . . . . . . . . . . . . 13  |-  ( (
ph  /\  q  e.  A )  ->  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp  i^i  ran pGrp  ) }  C_  C )
122 sswrd 12513 . . . . . . . . . . . . 13  |-  ( { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp 
i^i  ran pGrp  ) }  C_  C  -> Word  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp 
i^i  ran pGrp  ) }  C_ Word  C )
123121, 122syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  q  e.  A )  -> Word  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp  i^i  ran pGrp  ) }  C_ Word  C )
124123sselda 3441 . . . . . . . . . . 11  |-  ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp 
i^i  ran pGrp  ) } )  ->  s  e. Word  C
)
125101, 124jctild 541 . . . . . . . . . 10  |-  ( ( ( ph  /\  q  e.  A )  /\  s  e. Word  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp 
i^i  ran pGrp  ) } )  ->  ( ( ( Gs  ( S `  q
) ) dom DProd  s  /\  ( ( Gs  ( S `
 q ) ) DProd 
s )  =  (
Base `  ( Gs  ( S `  q )
) ) )  -> 
( s  e. Word  C  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  ( S `  q ) ) ) ) )
126125expimpd 601 . . . . . . . . 9  |-  ( (
ph  /\  q  e.  A )  ->  (
( s  e. Word  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp  i^i  ran pGrp  ) }  /\  ( ( Gs  ( S `  q
) ) dom DProd  s  /\  ( ( Gs  ( S `
 q ) ) DProd 
s )  =  (
Base `  ( Gs  ( S `  q )
) ) ) )  ->  ( s  e. Word  C  /\  ( G dom DProd  s  /\  ( G DProd  s
)  =  ( S `
 q ) ) ) ) )
127126reximdv2 2874 . . . . . . . 8  |-  ( (
ph  /\  q  e.  A )  ->  ( E. s  e. Word  { r  e.  (SubGrp `  ( Gs  ( S `  q ) ) )  |  ( ( Gs  ( S `  q ) )s  r )  e.  (CycGrp  i^i  ran pGrp  ) }  ( ( Gs  ( S `  q ) ) dom DProd  s  /\  ( ( Gs  ( S `
 q ) ) DProd 
s )  =  (
Base `  ( Gs  ( S `  q )
) ) )  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s )  =  ( S `  q ) ) ) )
12883, 127mpd 15 . . . . . . 7  |-  ( (
ph  /\  q  e.  A )  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  ( S `
 q ) ) )
129 rabn0 3758 . . . . . . 7  |-  ( { s  e. Word  C  | 
( G dom DProd  s  /\  ( G DProd  s )  =  ( S `  q ) ) }  =/=  (/)  <->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  ( S `  q ) ) )
130128, 129sylibr 212 . . . . . 6  |-  ( (
ph  /\  q  e.  A )  ->  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd  s )  =  ( S `  q ) ) }  =/=  (/) )
13150, 130eqnetrd 2696 . . . . 5  |-  ( (
ph  /\  q  e.  A )  ->  { y  e. Word  C  |  y  e.  ( W `  ( S `  q ) ) }  =/=  (/) )
132 rabn0 3758 . . . . 5  |-  ( { y  e. Word  C  | 
y  e.  ( W `
 ( S `  q ) ) }  =/=  (/)  <->  E. y  e. Word  C
y  e.  ( W `
 ( S `  q ) ) )
133131, 132sylib 196 . . . 4  |-  ( (
ph  /\  q  e.  A )  ->  E. y  e. Word  C y  e.  ( W `  ( S `
 q ) ) )
134133ralrimiva 2817 . . 3  |-  ( ph  ->  A. q  e.  A  E. y  e. Word  C y  e.  ( W `  ( S `  q ) ) )
135 eleq1 2474 . . . 4  |-  ( y  =  ( f `  q )  ->  (
y  e.  ( W `
 ( S `  q ) )  <->  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )
136135ac6sfi 7718 . . 3  |-  ( ( A  e.  Fin  /\  A. q  e.  A  E. y  e. Word  C y  e.  ( W `  ( S `  q )
) )  ->  E. f
( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )
13726, 134, 136syl2anc 659 . 2  |-  ( ph  ->  E. f ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `  q ) ) ) )
138 sneq 3981 . . . . . . . . 9  |-  ( q  =  y  ->  { q }  =  { y } )
139 fveq2 5805 . . . . . . . . . 10  |-  ( q  =  y  ->  (
f `  q )  =  ( f `  y ) )
140139dmeqd 5147 . . . . . . . . 9  |-  ( q  =  y  ->  dom  ( f `  q
)  =  dom  (
f `  y )
)
141138, 140xpeq12d 4967 . . . . . . . 8  |-  ( q  =  y  ->  ( { q }  X.  dom  ( f `  q
) )  =  ( { y }  X.  dom  ( f `  y
) ) )
142141cbviunv 4309 . . . . . . 7  |-  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) )  =  U_ y  e.  A  ( { y }  X.  dom  ( f `  y
) )
14326adantr 463 . . . . . . . 8  |-  ( (
ph  /\  ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )  ->  A  e.  Fin )
144 snfi 7554 . . . . . . . . . 10  |-  { y }  e.  Fin
145 simprl 756 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )  ->  f : A -->Word  C )
146145ffvelrnda 5965 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `  q ) ) ) )  /\  y  e.  A )  ->  ( f `  y
)  e. Word  C )
147 wrdf 12510 . . . . . . . . . . . 12  |-  ( ( f `  y )  e. Word  C  ->  (
f `  y ) : ( 0..^ (
# `  ( f `  y ) ) ) --> C )
148 fdm 5674 . . . . . . . . . . . 12  |-  ( ( f `  y ) : ( 0..^ (
# `  ( f `  y ) ) ) --> C  ->  dom  ( f `
 y )  =  ( 0..^ ( # `  ( f `  y
) ) ) )
149146, 147, 1483syl 20 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `  q ) ) ) )  /\  y  e.  A )  ->  dom  ( f `  y )  =  ( 0..^ ( # `  (
f `  y )
) ) )
150 fzofi 12038 . . . . . . . . . . 11  |-  ( 0..^ ( # `  (
f `  y )
) )  e.  Fin
151149, 150syl6eqel 2498 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `  q ) ) ) )  /\  y  e.  A )  ->  dom  ( f `  y )  e.  Fin )
152 xpfi 7745 . . . . . . . . . 10  |-  ( ( { y }  e.  Fin  /\  dom  ( f `
 y )  e. 
Fin )  ->  ( { y }  X.  dom  ( f `  y
) )  e.  Fin )
153144, 151, 152sylancr 661 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `  q ) ) ) )  /\  y  e.  A )  ->  ( { y }  X.  dom  ( f `
 y ) )  e.  Fin )
154153ralrimiva 2817 . . . . . . . 8  |-  ( (
ph  /\  ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )  ->  A. y  e.  A  ( {
y }  X.  dom  ( f `  y
) )  e.  Fin )
155 iunfi 7762 . . . . . . . 8  |-  ( ( A  e.  Fin  /\  A. y  e.  A  ( { y }  X.  dom  ( f `  y
) )  e.  Fin )  ->  U_ y  e.  A  ( { y }  X.  dom  ( f `  y
) )  e.  Fin )
156143, 154, 155syl2anc 659 . . . . . . 7  |-  ( (
ph  /\  ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )  ->  U_ y  e.  A  ( {
y }  X.  dom  ( f `  y
) )  e.  Fin )
157142, 156syl5eqel 2494 . . . . . 6  |-  ( (
ph  /\  ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )  ->  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) )  e.  Fin )
158 hashcl 12382 . . . . . 6  |-  ( U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) )  e.  Fin  ->  ( # `  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) )  e. 
NN0 )
159 hashfzo0 12444 . . . . . 6  |-  ( (
# `  U_ q  e.  A  ( { q }  X.  dom  (
f `  q )
) )  e.  NN0  ->  ( # `  (
0..^ ( # `  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) ) )  =  ( # `  U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) ) ) )
160157, 158, 1593syl 20 . . . . 5  |-  ( (
ph  /\  ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )  ->  ( # `
 ( 0..^ (
# `  U_ q  e.  A  ( { q }  X.  dom  (
f `  q )
) ) ) )  =  ( # `  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) )
161 fzofi 12038 . . . . . 6  |-  ( 0..^ ( # `  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) )  e.  Fin
162 hashen 12374 . . . . . 6  |-  ( ( ( 0..^ ( # `  U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) ) ) )  e.  Fin  /\  U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) )  e.  Fin )  ->  ( ( # `  ( 0..^ ( # `  U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) ) ) ) )  =  ( # `  U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) ) )  <->  ( 0..^ ( # `  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) ) 
~~  U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) ) ) )
163161, 157, 162sylancr 661 . . . . 5  |-  ( (
ph  /\  ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )  ->  (
( # `  ( 0..^ ( # `  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) ) )  =  ( # `  U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) ) )  <->  ( 0..^ ( # `  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) ) 
~~  U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) ) ) )
164160, 163mpbid 210 . . . 4  |-  ( (
ph  /\  ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )  ->  (
0..^ ( # `  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) ) 
~~  U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) ) )
165 bren 7483 . . . 4  |-  ( ( 0..^ ( # `  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) ) 
~~  U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) )  <->  E. h  h : ( 0..^ (
# `  U_ q  e.  A  ( { q }  X.  dom  (
f `  q )
) ) ) -1-1-onto-> U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) )
166164, 165sylib 196 . . 3  |-  ( (
ph  /\  ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )  ->  E. h  h : ( 0..^ (
# `  U_ q  e.  A  ( { q }  X.  dom  (
f `  q )
) ) ) -1-1-onto-> U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) )
1676adantr 463 . . . . . 6  |-  ( (
ph  /\  ( (
f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `  q ) ) )  /\  h : ( 0..^ (
# `  U_ q  e.  A  ( { q }  X.  dom  (
f `  q )
) ) ) -1-1-onto-> U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) )  ->  G  e.  Abel )
16811adantr 463 . . . . . 6  |-  ( (
ph  /\  ( (
f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `  q ) ) )  /\  h : ( 0..^ (
# `  U_ q  e.  A  ( { q }  X.  dom  (
f `  q )
) ) ) -1-1-onto-> U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) )  ->  B  e.  Fin )
169 breq1 4397 . . . . . . . 8  |-  ( w  =  a  ->  (
w  ||  ( # `  B
)  <->  a  ||  ( # `
 B ) ) )
170169cbvrabv 3057 . . . . . . 7  |-  { w  e.  Prime  |  w  ||  ( # `  B ) }  =  { a  e.  Prime  |  a  ||  ( # `  B
) }
1712, 170eqtri 2431 . . . . . 6  |-  A  =  { a  e.  Prime  |  a  ||  ( # `  B ) }
172 fveq2 5805 . . . . . . . . . . 11  |-  ( x  =  c  ->  ( O `  x )  =  ( O `  c ) )
173172breq1d 4404 . . . . . . . . . 10  |-  ( x  =  c  ->  (
( O `  x
)  ||  ( p ^ ( p  pCnt  (
# `  B )
) )  <->  ( O `  c )  ||  (
p ^ ( p 
pCnt  ( # `  B
) ) ) ) )
174173cbvrabv 3057 . . . . . . . . 9  |-  { x  e.  B  |  ( O `  x )  ||  ( p ^ (
p  pCnt  ( # `  B
) ) ) }  =  { c  e.  B  |  ( O `
 c )  ||  ( p ^ (
p  pCnt  ( # `  B
) ) ) }
175 id 22 . . . . . . . . . . . 12  |-  ( p  =  b  ->  p  =  b )
176 oveq1 6241 . . . . . . . . . . . 12  |-  ( p  =  b  ->  (
p  pCnt  ( # `  B
) )  =  ( b  pCnt  ( # `  B
) ) )
177175, 176oveq12d 6252 . . . . . . . . . . 11  |-  ( p  =  b  ->  (
p ^ ( p 
pCnt  ( # `  B
) ) )  =  ( b ^ (
b  pCnt  ( # `  B
) ) ) )
178177breq2d 4406 . . . . . . . . . 10  |-  ( p  =  b  ->  (
( O `  c
)  ||  ( p ^ ( p  pCnt  (
# `  B )
) )  <->  ( O `  c )  ||  (
b ^ ( b 
pCnt  ( # `  B
) ) ) ) )
179178rabbidv 3050 . . . . . . . . 9  |-  ( p  =  b  ->  { c  e.  B  |  ( O `  c ) 
||  ( p ^
( p  pCnt  ( # `
 B ) ) ) }  =  {
c  e.  B  | 
( O `  c
)  ||  ( b ^ ( b  pCnt  (
# `  B )
) ) } )
180174, 179syl5eq 2455 . . . . . . . 8  |-  ( p  =  b  ->  { x  e.  B  |  ( O `  x )  ||  ( p ^ (
p  pCnt  ( # `  B
) ) ) }  =  { c  e.  B  |  ( O `
 c )  ||  ( b ^ (
b  pCnt  ( # `  B
) ) ) } )
181180cbvmptv 4486 . . . . . . 7  |-  ( p  e.  A  |->  { x  e.  B  |  ( O `  x )  ||  ( p ^ (
p  pCnt  ( # `  B
) ) ) } )  =  ( b  e.  A  |->  { c  e.  B  |  ( O `  c ) 
||  ( b ^
( b  pCnt  ( # `
 B ) ) ) } )
18229, 181eqtri 2431 . . . . . 6  |-  S  =  ( b  e.  A  |->  { c  e.  B  |  ( O `  c )  ||  (
b ^ ( b 
pCnt  ( # `  B
) ) ) } )
183 breq2 4398 . . . . . . . . . 10  |-  ( s  =  t  ->  ( G dom DProd  s  <->  G dom DProd  t ) )
184 oveq2 6242 . . . . . . . . . . 11  |-  ( s  =  t  ->  ( G DProd  s )  =  ( G DProd  t ) )
185184eqeq1d 2404 . . . . . . . . . 10  |-  ( s  =  t  ->  (
( G DProd  s )  =  g  <->  ( G DProd  t
)  =  g ) )
186183, 185anbi12d 709 . . . . . . . . 9  |-  ( s  =  t  ->  (
( G dom DProd  s  /\  ( G DProd  s )  =  g )  <->  ( G dom DProd  t  /\  ( G DProd 
t )  =  g ) ) )
187186cbvrabv 3057 . . . . . . . 8  |-  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd  s )  =  g ) }  =  { t  e. Word  C  |  ( G dom DProd  t  /\  ( G DProd 
t )  =  g ) }
188187mpteq2i 4477 . . . . . . 7  |-  ( g  e.  (SubGrp `  G
)  |->  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd 
s )  =  g ) } )  =  ( g  e.  (SubGrp `  G )  |->  { t  e. Word  C  |  ( G dom DProd  t  /\  ( G DProd  t )  =  g ) } )
18942, 188eqtri 2431 . . . . . 6  |-  W  =  ( g  e.  (SubGrp `  G )  |->  { t  e. Word  C  |  ( G dom DProd  t  /\  ( G DProd  t )  =  g ) } )
190 simprll 764 . . . . . 6  |-  ( (
ph  /\  ( (
f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `  q ) ) )  /\  h : ( 0..^ (
# `  U_ q  e.  A  ( { q }  X.  dom  (
f `  q )
) ) ) -1-1-onto-> U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) )  ->  f : A -->Word  C )
191 simprlr 765 . . . . . . 7  |-  ( (
ph  /\  ( (
f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `  q ) ) )  /\  h : ( 0..^ (
# `  U_ q  e.  A  ( { q }  X.  dom  (
f `  q )
) ) ) -1-1-onto-> U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) )  ->  A. q  e.  A  ( f `  q
)  e.  ( W `
 ( S `  q ) ) )
192 fveq2 5805 . . . . . . . . . 10  |-  ( q  =  y  ->  ( S `  q )  =  ( S `  y ) )
193192fveq2d 5809 . . . . . . . . 9  |-  ( q  =  y  ->  ( W `  ( S `  q ) )  =  ( W `  ( S `  y )
) )
194139, 193eleq12d 2484 . . . . . . . 8  |-  ( q  =  y  ->  (
( f `  q
)  e.  ( W `
 ( S `  q ) )  <->  ( f `  y )  e.  ( W `  ( S `
 y ) ) ) )
195194cbvralv 3033 . . . . . . 7  |-  ( A. q  e.  A  (
f `  q )  e.  ( W `  ( S `  q )
)  <->  A. y  e.  A  ( f `  y
)  e.  ( W `
 ( S `  y ) ) )
196191, 195sylib 196 . . . . . 6  |-  ( (
ph  /\  ( (
f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `  q ) ) )  /\  h : ( 0..^ (
# `  U_ q  e.  A  ( { q }  X.  dom  (
f `  q )
) ) ) -1-1-onto-> U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) )  ->  A. y  e.  A  ( f `  y
)  e.  ( W `
 ( S `  y ) ) )
197 simprr 758 . . . . . 6  |-  ( (
ph  /\  ( (
f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `  q ) ) )  /\  h : ( 0..^ (
# `  U_ q  e.  A  ( { q }  X.  dom  (
f `  q )
) ) ) -1-1-onto-> U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) )  ->  h : ( 0..^ ( # `  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) ) -1-1-onto-> U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) ) )
1988, 41, 167, 168, 28, 171, 182, 189, 190, 196, 142, 197ablfaclem2 17349 . . . . 5  |-  ( (
ph  /\  ( (
f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `  q ) ) )  /\  h : ( 0..^ (
# `  U_ q  e.  A  ( { q }  X.  dom  (
f `  q )
) ) ) -1-1-onto-> U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) )  ->  ( W `  B )  =/=  (/) )
199198expr 613 . . . 4  |-  ( (
ph  /\  ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )  ->  (
h : ( 0..^ ( # `  U_ q  e.  A  ( {
q }  X.  dom  ( f `  q
) ) ) ) -1-1-onto-> U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) )  ->  ( W `  B )  =/=  (/) ) )
200199exlimdv 1745 . . 3  |-  ( (
ph  /\  ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )  ->  ( E. h  h :
( 0..^ ( # `  U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) ) ) ) -1-1-onto-> U_ q  e.  A  ( { q }  X.  dom  ( f `  q
) )  ->  ( W `  B )  =/=  (/) ) )
201166, 200mpd 15 . 2  |-  ( (
ph  /\  ( f : A -->Word  C  /\  A. q  e.  A  ( f `  q )  e.  ( W `  ( S `
 q ) ) ) )  ->  ( W `  B )  =/=  (/) )
202137, 201exlimddv 1747 1  |-  ( ph  ->  ( W `  B
)  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 974    = wceq 1405   E.wex 1633    e. wcel 1842    =/= wne 2598   A.wral 2753   E.wrex 2754   {crab 2757   _Vcvv 3058    i^i cin 3412    C_ wss 3413   (/)c0 3737   ~Pcpw 3954   {csn 3971   U_ciun 4270   class class class wbr 4394    |-> cmpt 4452    X. cxp 4940   dom cdm 4942   ran crn 4943   -->wf 5521   -1-1-onto->wf1o 5524   ` cfv 5525  (class class class)co 6234    ~~ cen 7471   Fincfn 7474   0cc0 9442   1c1 9443    <_ cle 9579   NNcn 10496   NN0cn0 10756   ZZcz 10825   ...cfz 11643  ..^cfzo 11767   ^cexp 12120   #chash 12359  Word cword 12490    || cdvds 14087   Primecprime 14318    pCnt cpc 14461   Basecbs 14733   ↾s cress 14734   Grpcgrp 16269  SubGrpcsubg 16411   odcod 16765   pGrp cpgp 16767   Abelcabl 17015  CycGrpccyg 17096   DProd cdprd 17236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6530  ax-inf2 8011  ax-cnex 9498  ax-resscn 9499  ax-1cn 9500  ax-icn 9501  ax-addcl 9502  ax-addrcl 9503  ax-mulcl 9504  ax-mulrcl 9505  ax-mulcom 9506  ax-addass 9507  ax-mulass 9508  ax-distr 9509  ax-i2m1 9510  ax-1ne0 9511  ax-1rid 9512  ax-rnegex 9513  ax-rrecex 9514  ax-cnre 9515  ax-pre-lttri 9516  ax-pre-lttrn 9517  ax-pre-ltadd 9518  ax-pre-mulgt0 9519  ax-pre-sup 9520
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-fal 1411  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-iin 4273  df-disj 4366  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-se 4782  df-we 4783  df-ord 4824  df-on 4825  df-lim 4826  df-suc 4827  df-xp 4948  df-rel 4949  df-cnv 4950  df-co 4951  df-dm 4952  df-rn 4953  df-res 4954  df-ima 4955  df-iota 5489  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-isom 5534  df-riota 6196  df-ov 6237  df-oprab 6238  df-mpt2 6239  df-of 6477  df-rpss 6518  df-om 6639  df-1st 6738  df-2nd 6739  df-supp 6857  df-tpos 6912  df-recs 6999  df-rdg 7033  df-1o 7087  df-2o 7088  df-oadd 7091  df-omul 7092  df-er 7268  df-ec 7270  df-qs 7274  df-map 7379  df-pm 7380  df-ixp 7428  df-en 7475  df-dom 7476  df-sdom 7477  df-fin 7478  df-fsupp 7784  df-sup 7855  df-oi 7889  df-card 8272  df-acn 8275  df-cda 8500  df-pnf 9580  df-mnf 9581  df-xr 9582  df-ltxr 9583  df-le 9584  df-sub 9763  df-neg 9764  df-div 10168  df-nn 10497  df-2 10555  df-3 10556  df-n0 10757  df-z 10826  df-uz 11046  df-q 11146  df-rp 11184  df-fz 11644  df-fzo 11768  df-fl 11879  df-mod 11948  df-seq 12062  df-exp 12121  df-fac 12308  df-bc 12335  df-hash 12360  df-word 12498  df-concat 12500  df-s1 12501  df-cj 12988  df-re 12989  df-im 12990  df-sqrt 13124  df-abs 13125  df-clim 13367  df-sum 13565  df-dvds 14088  df-gcd 14246  df-prm 14319  df-pc 14462  df-ndx 14736  df-slot 14737  df-base 14738  df-sets 14739  df-ress 14740  df-plusg 14814  df-0g 14948  df-gsum 14949  df-mre 15092  df-mrc 15093  df-acs 15095  df-mgm 16088  df-sgrp 16127  df-mnd 16137  df-mhm 16182  df-submnd 16183  df-grp 16273  df-minusg 16274  df-sbg 16275  df-mulg 16276  df-subg 16414  df-eqg 16416  df-ghm 16481  df-gim 16523  df-ga 16544  df-cntz 16571  df-oppg 16597  df-od 16769  df-gex 16770  df-pgp 16771  df-lsm 16872  df-pj1 16873  df-cmn 17016  df-abl 17017  df-cyg 17097  df-dprd 17238
This theorem is referenced by:  ablfac  17351
  Copyright terms: Public domain W3C validator