MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfaclem2 Structured version   Unicode version

Theorem ablfaclem2 17654
Description: Lemma for ablfac 17656. (Contributed by Mario Carneiro, 27-Apr-2016.) (Proof shortened by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
ablfac.b  |-  B  =  ( Base `  G
)
ablfac.c  |-  C  =  { r  e.  (SubGrp `  G )  |  ( Gs  r )  e.  (CycGrp 
i^i  ran pGrp  ) }
ablfac.1  |-  ( ph  ->  G  e.  Abel )
ablfac.2  |-  ( ph  ->  B  e.  Fin )
ablfac.o  |-  O  =  ( od `  G
)
ablfac.a  |-  A  =  { w  e.  Prime  |  w  ||  ( # `  B ) }
ablfac.s  |-  S  =  ( p  e.  A  |->  { x  e.  B  |  ( O `  x )  ||  (
p ^ ( p 
pCnt  ( # `  B
) ) ) } )
ablfac.w  |-  W  =  ( g  e.  (SubGrp `  G )  |->  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd  s )  =  g ) } )
ablfaclem2.f  |-  ( ph  ->  F : A -->Word  C )
ablfaclem2.q  |-  ( ph  ->  A. y  e.  A  ( F `  y )  e.  ( W `  ( S `  y ) ) )
ablfaclem2.l  |-  L  = 
U_ y  e.  A  ( { y }  X.  dom  ( F `  y
) )
ablfaclem2.g  |-  ( ph  ->  H : ( 0..^ ( # `  L
) ) -1-1-onto-> L )
Assertion
Ref Expression
ablfaclem2  |-  ( ph  ->  ( W `  B
)  =/=  (/) )
Distinct variable groups:    s, p, x, y, A    F, s    g, r, s, y, S   
g, p, w, x, B, r, s    O, p, x    C, g, p, s    y, w, C, x    W, p, w, x, y    H, s    ph, p, s, w, x, y    g, G, p, r, s, w, x, y
Allowed substitution hints:    ph( g, r)    A( w, g, r)    B( y)    C( r)    S( x, w, p)    F( x, y, w, g, r, p)    H( x, y, w, g, r, p)    L( x, y, w, g, s, r, p)    O( y, w, g, s, r)    W( g, s, r)

Proof of Theorem ablfaclem2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ablfac.1 . . 3  |-  ( ph  ->  G  e.  Abel )
2 ablgrp 17370 . . 3  |-  ( G  e.  Abel  ->  G  e. 
Grp )
3 ablfac.b . . . 4  |-  B  =  ( Base `  G
)
43subgid 16770 . . 3  |-  ( G  e.  Grp  ->  B  e.  (SubGrp `  G )
)
5 ablfac.c . . . 4  |-  C  =  { r  e.  (SubGrp `  G )  |  ( Gs  r )  e.  (CycGrp 
i^i  ran pGrp  ) }
6 ablfac.2 . . . 4  |-  ( ph  ->  B  e.  Fin )
7 ablfac.o . . . 4  |-  O  =  ( od `  G
)
8 ablfac.a . . . 4  |-  A  =  { w  e.  Prime  |  w  ||  ( # `  B ) }
9 ablfac.s . . . 4  |-  S  =  ( p  e.  A  |->  { x  e.  B  |  ( O `  x )  ||  (
p ^ ( p 
pCnt  ( # `  B
) ) ) } )
10 ablfac.w . . . 4  |-  W  =  ( g  e.  (SubGrp `  G )  |->  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd  s )  =  g ) } )
113, 5, 1, 6, 7, 8, 9, 10ablfaclem1 17653 . . 3  |-  ( B  e.  (SubGrp `  G
)  ->  ( W `  B )  =  {
s  e. Word  C  | 
( G dom DProd  s  /\  ( G DProd  s )  =  B ) } )
121, 2, 4, 114syl 19 . 2  |-  ( ph  ->  ( W `  B
)  =  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) } )
13 ablfaclem2.f . . . . . . . . . . . . . 14  |-  ( ph  ->  F : A -->Word  C )
1413ffvelrnda 6037 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y )  e. Word  C )
15 wrdf 12663 . . . . . . . . . . . . 13  |-  ( ( F `  y )  e. Word  C  ->  ( F `  y ) : ( 0..^ (
# `  ( F `  y ) ) ) --> C )
1614, 15syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y ) : ( 0..^ (
# `  ( F `  y ) ) ) --> C )
17 fdm 5750 . . . . . . . . . . . . . 14  |-  ( ( F `  y ) : ( 0..^ (
# `  ( F `  y ) ) ) --> C  ->  dom  ( F `
 y )  =  ( 0..^ ( # `  ( F `  y
) ) ) )
1816, 17syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  A )  ->  dom  ( F `  y )  =  ( 0..^ (
# `  ( F `  y ) ) ) )
1918feq2d 5733 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  A )  ->  (
( F `  y
) : dom  ( F `  y ) --> C 
<->  ( F `  y
) : ( 0..^ ( # `  ( F `  y )
) ) --> C ) )
2016, 19mpbird 235 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y ) : dom  ( F `  y ) --> C )
2120ffvelrnda 6037 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  A )  /\  z  e.  dom  ( F `  y ) )  -> 
( ( F `  y ) `  z
)  e.  C )
2221anasss 651 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  A  /\  z  e.  dom  ( F `  y ) ) )  ->  ( ( F `
 y ) `  z )  e.  C
)
2322ralrimivva 2853 . . . . . . . 8  |-  ( ph  ->  A. y  e.  A  A. z  e.  dom  ( F `  y ) ( ( F `  y ) `  z
)  e.  C )
24 eqid 2429 . . . . . . . . 9  |-  ( y  e.  A ,  z  e.  dom  ( F `
 y )  |->  ( ( F `  y
) `  z )
)  =  ( y  e.  A ,  z  e.  dom  ( F `
 y )  |->  ( ( F `  y
) `  z )
)
2524fmpt2x 6873 . . . . . . . 8  |-  ( A. y  e.  A  A. z  e.  dom  ( F `
 y ) ( ( F `  y
) `  z )  e.  C  <->  ( y  e.  A ,  z  e. 
dom  ( F `  y )  |->  ( ( F `  y ) `
 z ) ) : U_ y  e.  A  ( { y }  X.  dom  ( F `  y )
) --> C )
2623, 25sylib 199 . . . . . . 7  |-  ( ph  ->  ( y  e.  A ,  z  e.  dom  ( F `  y ) 
|->  ( ( F `  y ) `  z
) ) : U_ y  e.  A  ( { y }  X.  dom  ( F `  y
) ) --> C )
27 ablfaclem2.l . . . . . . . 8  |-  L  = 
U_ y  e.  A  ( { y }  X.  dom  ( F `  y
) )
2827feq2i 5739 . . . . . . 7  |-  ( ( y  e.  A , 
z  e.  dom  ( F `  y )  |->  ( ( F `  y ) `  z
) ) : L --> C 
<->  ( y  e.  A ,  z  e.  dom  ( F `  y ) 
|->  ( ( F `  y ) `  z
) ) : U_ y  e.  A  ( { y }  X.  dom  ( F `  y
) ) --> C )
2926, 28sylibr 215 . . . . . 6  |-  ( ph  ->  ( y  e.  A ,  z  e.  dom  ( F `  y ) 
|->  ( ( F `  y ) `  z
) ) : L --> C )
30 ablfaclem2.g . . . . . . 7  |-  ( ph  ->  H : ( 0..^ ( # `  L
) ) -1-1-onto-> L )
31 f1of 5831 . . . . . . 7  |-  ( H : ( 0..^ (
# `  L )
)
-1-1-onto-> L  ->  H : ( 0..^ ( # `  L
) ) --> L )
3230, 31syl 17 . . . . . 6  |-  ( ph  ->  H : ( 0..^ ( # `  L
) ) --> L )
33 fco 5756 . . . . . 6  |-  ( ( ( y  e.  A ,  z  e.  dom  ( F `  y ) 
|->  ( ( F `  y ) `  z
) ) : L --> C  /\  H : ( 0..^ ( # `  L
) ) --> L )  ->  ( ( y  e.  A ,  z  e.  dom  ( F `
 y )  |->  ( ( F `  y
) `  z )
)  o.  H ) : ( 0..^ (
# `  L )
) --> C )
3429, 32, 33syl2anc 665 . . . . 5  |-  ( ph  ->  ( ( y  e.  A ,  z  e. 
dom  ( F `  y )  |->  ( ( F `  y ) `
 z ) )  o.  H ) : ( 0..^ ( # `  L ) ) --> C )
35 iswrdi 12662 . . . . 5  |-  ( ( ( y  e.  A ,  z  e.  dom  ( F `  y ) 
|->  ( ( F `  y ) `  z
) )  o.  H
) : ( 0..^ ( # `  L
) ) --> C  -> 
( ( y  e.  A ,  z  e. 
dom  ( F `  y )  |->  ( ( F `  y ) `
 z ) )  o.  H )  e. Word  C )
3634, 35syl 17 . . . 4  |-  ( ph  ->  ( ( y  e.  A ,  z  e. 
dom  ( F `  y )  |->  ( ( F `  y ) `
 z ) )  o.  H )  e. Word  C )
37 ablfaclem2.q . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. y  e.  A  ( F `  y )  e.  ( W `  ( S `  y ) ) )
3837r19.21bi 2801 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y )  e.  ( W `  ( S `  y )
) )
39 ssrab2 3552 . . . . . . . . . . . . . . . . . . . 20  |-  { w  e.  Prime  |  w  ||  ( # `  B ) }  C_  Prime
408, 39eqsstri 3500 . . . . . . . . . . . . . . . . . . 19  |-  A  C_  Prime
4140a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  A  C_  Prime )
423, 7, 9, 1, 6, 41ablfac1b 17638 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  G dom DProd  S )
43 fvex 5891 . . . . . . . . . . . . . . . . . . . . 21  |-  ( Base `  G )  e.  _V
443, 43eqeltri 2513 . . . . . . . . . . . . . . . . . . . 20  |-  B  e. 
_V
4544rabex 4576 . . . . . . . . . . . . . . . . . . 19  |-  { x  e.  B  |  ( O `  x )  ||  ( p ^ (
p  pCnt  ( # `  B
) ) ) }  e.  _V
4645, 9dmmpti 5725 . . . . . . . . . . . . . . . . . 18  |-  dom  S  =  A
4746a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  dom  S  =  A )
4842, 47dprdf2 17574 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  S : A --> (SubGrp `  G ) )
4948ffvelrnda 6037 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  A )  ->  ( S `  y )  e.  (SubGrp `  G )
)
503, 5, 1, 6, 7, 8, 9, 10ablfaclem1 17653 . . . . . . . . . . . . . . 15  |-  ( ( S `  y )  e.  (SubGrp `  G
)  ->  ( W `  ( S `  y
) )  =  {
s  e. Word  C  | 
( G dom DProd  s  /\  ( G DProd  s )  =  ( S `  y ) ) } )
5149, 50syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  y  e.  A )  ->  ( W `  ( S `  y ) )  =  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd  s
)  =  ( S `
 y ) ) } )
5238, 51eleqtrd 2519 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y )  e.  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd  s
)  =  ( S `
 y ) ) } )
53 breq2 4430 . . . . . . . . . . . . . . . 16  |-  ( s  =  ( F `  y )  ->  ( G dom DProd  s  <->  G dom DProd  ( F `  y ) ) )
54 oveq2 6313 . . . . . . . . . . . . . . . . 17  |-  ( s  =  ( F `  y )  ->  ( G DProd  s )  =  ( G DProd  ( F `  y ) ) )
5554eqeq1d 2431 . . . . . . . . . . . . . . . 16  |-  ( s  =  ( F `  y )  ->  (
( G DProd  s )  =  ( S `  y )  <->  ( G DProd  ( F `  y ) )  =  ( S `
 y ) ) )
5653, 55anbi12d 715 . . . . . . . . . . . . . . 15  |-  ( s  =  ( F `  y )  ->  (
( G dom DProd  s  /\  ( G DProd  s )  =  ( S `  y ) )  <->  ( G dom DProd  ( F `  y
)  /\  ( G DProd  ( F `  y ) )  =  ( S `
 y ) ) ) )
5756elrab 3235 . . . . . . . . . . . . . 14  |-  ( ( F `  y )  e.  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd 
s )  =  ( S `  y ) ) }  <->  ( ( F `  y )  e. Word  C  /\  ( G dom DProd  ( F `  y )  /\  ( G DProd  ( F `  y
) )  =  ( S `  y ) ) ) )
5857simprbi 465 . . . . . . . . . . . . 13  |-  ( ( F `  y )  e.  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd 
s )  =  ( S `  y ) ) }  ->  ( G dom DProd  ( F `  y )  /\  ( G DProd  ( F `  y
) )  =  ( S `  y ) ) )
5952, 58syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  A )  ->  ( G dom DProd  ( F `  y )  /\  ( G DProd  ( F `  y
) )  =  ( S `  y ) ) )
6059simpld 460 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  A )  ->  G dom DProd  ( F `  y
) )
61 dprdf 17573 . . . . . . . . . . 11  |-  ( G dom DProd  ( F `  y )  ->  ( F `  y ) : dom  ( F `  y ) --> (SubGrp `  G ) )
6260, 61syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y ) : dom  ( F `  y ) --> (SubGrp `  G ) )
6362ffvelrnda 6037 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  A )  /\  z  e.  dom  ( F `  y ) )  -> 
( ( F `  y ) `  z
)  e.  (SubGrp `  G ) )
6463anasss 651 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  A  /\  z  e.  dom  ( F `  y ) ) )  ->  ( ( F `
 y ) `  z )  e.  (SubGrp `  G ) )
6562feqmptd 5934 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y )  =  ( z  e. 
dom  ( F `  y )  |->  ( ( F `  y ) `
 z ) ) )
6660, 65breqtrd 4450 . . . . . . . 8  |-  ( (
ph  /\  y  e.  A )  ->  G dom DProd  ( z  e.  dom  ( F `  y ) 
|->  ( ( F `  y ) `  z
) ) )
6748feqmptd 5934 . . . . . . . . . 10  |-  ( ph  ->  S  =  ( y  e.  A  |->  ( S `
 y ) ) )
6865oveq2d 6321 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  A )  ->  ( G DProd  ( F `  y
) )  =  ( G DProd  ( z  e. 
dom  ( F `  y )  |->  ( ( F `  y ) `
 z ) ) ) )
6959simprd 464 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  A )  ->  ( G DProd  ( F `  y
) )  =  ( S `  y ) )
7068, 69eqtr3d 2472 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  A )  ->  ( G DProd  ( z  e.  dom  ( F `  y ) 
|->  ( ( F `  y ) `  z
) ) )  =  ( S `  y
) )
7170mpteq2dva 4512 . . . . . . . . . 10  |-  ( ph  ->  ( y  e.  A  |->  ( G DProd  ( z  e.  dom  ( F `
 y )  |->  ( ( F `  y
) `  z )
) ) )  =  ( y  e.  A  |->  ( S `  y
) ) )
7267, 71eqtr4d 2473 . . . . . . . . 9  |-  ( ph  ->  S  =  ( y  e.  A  |->  ( G DProd 
( z  e.  dom  ( F `  y ) 
|->  ( ( F `  y ) `  z
) ) ) ) )
7342, 72breqtrd 4450 . . . . . . . 8  |-  ( ph  ->  G dom DProd  ( y  e.  A  |->  ( G DProd 
( z  e.  dom  ( F `  y ) 
|->  ( ( F `  y ) `  z
) ) ) ) )
7464, 66, 73dprd2d2 17612 . . . . . . 7  |-  ( ph  ->  ( G dom DProd  ( y  e.  A ,  z  e.  dom  ( F `
 y )  |->  ( ( F `  y
) `  z )
)  /\  ( G DProd  ( y  e.  A , 
z  e.  dom  ( F `  y )  |->  ( ( F `  y ) `  z
) ) )  =  ( G DProd  ( y  e.  A  |->  ( G DProd 
( z  e.  dom  ( F `  y ) 
|->  ( ( F `  y ) `  z
) ) ) ) ) ) )
7574simpld 460 . . . . . 6  |-  ( ph  ->  G dom DProd  ( y  e.  A ,  z  e. 
dom  ( F `  y )  |->  ( ( F `  y ) `
 z ) ) )
76 fdm 5750 . . . . . . 7  |-  ( ( y  e.  A , 
z  e.  dom  ( F `  y )  |->  ( ( F `  y ) `  z
) ) : L --> C  ->  dom  ( y  e.  A ,  z  e. 
dom  ( F `  y )  |->  ( ( F `  y ) `
 z ) )  =  L )
7729, 76syl 17 . . . . . 6  |-  ( ph  ->  dom  ( y  e.  A ,  z  e. 
dom  ( F `  y )  |->  ( ( F `  y ) `
 z ) )  =  L )
7875, 77, 30dprdf1o 17600 . . . . 5  |-  ( ph  ->  ( G dom DProd  ( ( y  e.  A , 
z  e.  dom  ( F `  y )  |->  ( ( F `  y ) `  z
) )  o.  H
)  /\  ( G DProd  ( ( y  e.  A ,  z  e.  dom  ( F `  y ) 
|->  ( ( F `  y ) `  z
) )  o.  H
) )  =  ( G DProd  ( y  e.  A ,  z  e. 
dom  ( F `  y )  |->  ( ( F `  y ) `
 z ) ) ) ) )
7978simpld 460 . . . 4  |-  ( ph  ->  G dom DProd  ( (
y  e.  A , 
z  e.  dom  ( F `  y )  |->  ( ( F `  y ) `  z
) )  o.  H
) )
8078simprd 464 . . . . 5  |-  ( ph  ->  ( G DProd  ( ( y  e.  A , 
z  e.  dom  ( F `  y )  |->  ( ( F `  y ) `  z
) )  o.  H
) )  =  ( G DProd  ( y  e.  A ,  z  e. 
dom  ( F `  y )  |->  ( ( F `  y ) `
 z ) ) ) )
8174simprd 464 . . . . 5  |-  ( ph  ->  ( G DProd  ( y  e.  A ,  z  e.  dom  ( F `
 y )  |->  ( ( F `  y
) `  z )
) )  =  ( G DProd  ( y  e.  A  |->  ( G DProd  (
z  e.  dom  ( F `  y )  |->  ( ( F `  y ) `  z
) ) ) ) ) )
8272oveq2d 6321 . . . . . 6  |-  ( ph  ->  ( G DProd  S )  =  ( G DProd  (
y  e.  A  |->  ( G DProd  ( z  e. 
dom  ( F `  y )  |->  ( ( F `  y ) `
 z ) ) ) ) ) )
83 ssid 3489 . . . . . . . 8  |-  A  C_  A
8483a1i 11 . . . . . . 7  |-  ( ph  ->  A  C_  A )
853, 7, 9, 1, 6, 41, 8, 84ablfac1c 17639 . . . . . 6  |-  ( ph  ->  ( G DProd  S )  =  B )
8682, 85eqtr3d 2472 . . . . 5  |-  ( ph  ->  ( G DProd  ( y  e.  A  |->  ( G DProd 
( z  e.  dom  ( F `  y ) 
|->  ( ( F `  y ) `  z
) ) ) ) )  =  B )
8780, 81, 863eqtrd 2474 . . . 4  |-  ( ph  ->  ( G DProd  ( ( y  e.  A , 
z  e.  dom  ( F `  y )  |->  ( ( F `  y ) `  z
) )  o.  H
) )  =  B )
88 breq2 4430 . . . . . 6  |-  ( s  =  ( ( y  e.  A ,  z  e.  dom  ( F `
 y )  |->  ( ( F `  y
) `  z )
)  o.  H )  ->  ( G dom DProd  s  <-> 
G dom DProd  ( (
y  e.  A , 
z  e.  dom  ( F `  y )  |->  ( ( F `  y ) `  z
) )  o.  H
) ) )
89 oveq2 6313 . . . . . . 7  |-  ( s  =  ( ( y  e.  A ,  z  e.  dom  ( F `
 y )  |->  ( ( F `  y
) `  z )
)  o.  H )  ->  ( G DProd  s
)  =  ( G DProd 
( ( y  e.  A ,  z  e. 
dom  ( F `  y )  |->  ( ( F `  y ) `
 z ) )  o.  H ) ) )
9089eqeq1d 2431 . . . . . 6  |-  ( s  =  ( ( y  e.  A ,  z  e.  dom  ( F `
 y )  |->  ( ( F `  y
) `  z )
)  o.  H )  ->  ( ( G DProd 
s )  =  B  <-> 
( G DProd  ( (
y  e.  A , 
z  e.  dom  ( F `  y )  |->  ( ( F `  y ) `  z
) )  o.  H
) )  =  B ) )
9188, 90anbi12d 715 . . . . 5  |-  ( s  =  ( ( y  e.  A ,  z  e.  dom  ( F `
 y )  |->  ( ( F `  y
) `  z )
)  o.  H )  ->  ( ( G dom DProd  s  /\  ( G DProd  s )  =  B )  <->  ( G dom DProd  ( ( y  e.  A ,  z  e.  dom  ( F `  y ) 
|->  ( ( F `  y ) `  z
) )  o.  H
)  /\  ( G DProd  ( ( y  e.  A ,  z  e.  dom  ( F `  y ) 
|->  ( ( F `  y ) `  z
) )  o.  H
) )  =  B ) ) )
9291rspcev 3188 . . . 4  |-  ( ( ( ( y  e.  A ,  z  e. 
dom  ( F `  y )  |->  ( ( F `  y ) `
 z ) )  o.  H )  e. Word  C  /\  ( G dom DProd  ( ( y  e.  A ,  z  e.  dom  ( F `  y ) 
|->  ( ( F `  y ) `  z
) )  o.  H
)  /\  ( G DProd  ( ( y  e.  A ,  z  e.  dom  ( F `  y ) 
|->  ( ( F `  y ) `  z
) )  o.  H
) )  =  B ) )  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  B ) )
9336, 79, 87, 92syl12anc 1262 . . 3  |-  ( ph  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  B ) )
94 rabn0 3788 . . 3  |-  ( { s  e. Word  C  | 
( G dom DProd  s  /\  ( G DProd  s )  =  B ) }  =/=  (/)  <->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )
9593, 94sylibr 215 . 2  |-  ( ph  ->  { s  e. Word  C  |  ( G dom DProd  s  /\  ( G DProd  s
)  =  B ) }  =/=  (/) )
9612, 95eqnetrd 2724 1  |-  ( ph  ->  ( W `  B
)  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1870    =/= wne 2625   A.wral 2782   E.wrex 2783   {crab 2786   _Vcvv 3087    i^i cin 3441    C_ wss 3442   (/)c0 3767   {csn 4002   U_ciun 4302   class class class wbr 4426    |-> cmpt 4484    X. cxp 4852   dom cdm 4854   ran crn 4855    o. ccom 4858   -->wf 5597   -1-1-onto->wf1o 5600   ` cfv 5601  (class class class)co 6305    |-> cmpt2 6307   Fincfn 7577   0cc0 9538  ..^cfzo 11913   ^cexp 12269   #chash 12512  Word cword 12643    || cdvds 14283   Primecprime 14593    pCnt cpc 14749   Basecbs 15084   ↾s cress 15085   Grpcgrp 16620  SubGrpcsubg 16762   odcod 17116   pGrp cpgp 17118   Abelcabl 17366  CycGrpccyg 17447   DProd cdprd 17560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-inf2 8146  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-iin 4305  df-disj 4398  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-se 4814  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-om 6707  df-1st 6807  df-2nd 6808  df-supp 6926  df-tpos 6981  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-2o 7191  df-oadd 7194  df-omul 7195  df-er 7371  df-ec 7373  df-qs 7377  df-map 7482  df-pm 7483  df-ixp 7531  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-fsupp 7890  df-sup 7962  df-inf 7963  df-oi 8025  df-card 8372  df-acn 8375  df-cda 8596  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-q 11265  df-rp 11303  df-fz 11783  df-fzo 11914  df-fl 12025  df-mod 12094  df-seq 12211  df-exp 12270  df-fac 12457  df-bc 12485  df-hash 12513  df-word 12651  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278  df-clim 13530  df-sum 13731  df-dvds 14284  df-gcd 14443  df-prm 14594  df-pc 14750  df-ndx 15087  df-slot 15088  df-base 15089  df-sets 15090  df-ress 15091  df-plusg 15165  df-0g 15299  df-gsum 15300  df-mre 15443  df-mrc 15444  df-acs 15446  df-mgm 16439  df-sgrp 16478  df-mnd 16488  df-mhm 16533  df-submnd 16534  df-grp 16624  df-minusg 16625  df-sbg 16626  df-mulg 16627  df-subg 16765  df-eqg 16767  df-ghm 16832  df-gim 16874  df-ga 16895  df-cntz 16922  df-oppg 16948  df-od 17120  df-lsm 17223  df-pj1 17224  df-cmn 17367  df-abl 17368  df-dprd 17562
This theorem is referenced by:  ablfaclem3  17655
  Copyright terms: Public domain W3C validator