MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac2 Structured version   Unicode version

Theorem ablfac2 17650
Description: Choose generators for each cyclic group in ablfac 17649. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
ablfac.b  |-  B  =  ( Base `  G
)
ablfac.c  |-  C  =  { r  e.  (SubGrp `  G )  |  ( Gs  r )  e.  (CycGrp 
i^i  ran pGrp  ) }
ablfac.1  |-  ( ph  ->  G  e.  Abel )
ablfac.2  |-  ( ph  ->  B  e.  Fin )
ablfac2.m  |-  .x.  =  (.g
`  G )
ablfac2.s  |-  S  =  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n  .x.  ( w `  k
) ) ) )
Assertion
Ref Expression
ablfac2  |-  ( ph  ->  E. w  e. Word  B
( S : dom  w
--> C  /\  G dom DProd  S  /\  ( G DProd  S
)  =  B ) )
Distinct variable groups:    S, r    k, n, r, w, B    .x. , k, w    C, k, n, w    ph, k, n, w    k, G, n, r, w
Allowed substitution hints:    ph( r)    C( r)    S( w, k, n)    .x. ( n, r)

Proof of Theorem ablfac2
Dummy variables  s  x  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wrdf 12652 . . . . . . . 8  |-  ( s  e. Word  C  ->  s : ( 0..^ (
# `  s )
) --> C )
21ad2antlr 731 . . . . . . 7  |-  ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  ->  s : ( 0..^ (
# `  s )
) --> C )
3 fdm 5741 . . . . . . 7  |-  ( s : ( 0..^ (
# `  s )
) --> C  ->  dom  s  =  ( 0..^ ( # `  s
) ) )
42, 3syl 17 . . . . . 6  |-  ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  ->  dom  s  =  ( 0..^ ( # `  s
) ) )
5 fzofi 12173 . . . . . 6  |-  ( 0..^ ( # `  s
) )  e.  Fin
64, 5syl6eqel 2516 . . . . 5  |-  ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  ->  dom  s  e.  Fin )
74feq2d 5724 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  ->  (
s : dom  s --> C 
<->  s : ( 0..^ ( # `  s
) ) --> C ) )
82, 7mpbird 235 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  ->  s : dom  s --> C )
98ffvelrnda 6028 . . . . . . . . 9  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  k  e.  dom  s )  ->  ( s `  k )  e.  C
)
10 oveq2 6304 . . . . . . . . . . . 12  |-  ( r  =  ( s `  k )  ->  ( Gs  r )  =  ( Gs  ( s `  k
) ) )
1110eleq1d 2489 . . . . . . . . . . 11  |-  ( r  =  ( s `  k )  ->  (
( Gs  r )  e.  (CycGrp  i^i  ran pGrp  )  <->  ( Gs  (
s `  k )
)  e.  (CycGrp  i^i  ran pGrp  ) ) )
12 ablfac.c . . . . . . . . . . 11  |-  C  =  { r  e.  (SubGrp `  G )  |  ( Gs  r )  e.  (CycGrp 
i^i  ran pGrp  ) }
1311, 12elrab2 3228 . . . . . . . . . 10  |-  ( ( s `  k )  e.  C  <->  ( (
s `  k )  e.  (SubGrp `  G )  /\  ( Gs  ( s `  k ) )  e.  (CycGrp  i^i  ran pGrp  ) ) )
1413simplbi 461 . . . . . . . . 9  |-  ( ( s `  k )  e.  C  ->  (
s `  k )  e.  (SubGrp `  G )
)
159, 14syl 17 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  k  e.  dom  s )  ->  ( s `  k )  e.  (SubGrp `  G ) )
16 ablfac.b . . . . . . . . 9  |-  B  =  ( Base `  G
)
1716subgss 16762 . . . . . . . 8  |-  ( ( s `  k )  e.  (SubGrp `  G
)  ->  ( s `  k )  C_  B
)
1815, 17syl 17 . . . . . . 7  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  k  e.  dom  s )  ->  ( s `  k )  C_  B
)
19 inss1 3679 . . . . . . . . . . 11  |-  (CycGrp  i^i  ran pGrp  )  C_ CycGrp
2013simprbi 465 . . . . . . . . . . . 12  |-  ( ( s `  k )  e.  C  ->  ( Gs  ( s `  k
) )  e.  (CycGrp 
i^i  ran pGrp  ) )
219, 20syl 17 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  k  e.  dom  s )  ->  ( Gs  ( s `
 k ) )  e.  (CycGrp  i^i  ran pGrp  ) )
2219, 21sseldi 3459 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  k  e.  dom  s )  ->  ( Gs  ( s `
 k ) )  e. CycGrp )
23 eqid 2420 . . . . . . . . . . . 12  |-  ( Base `  ( Gs  ( s `  k ) ) )  =  ( Base `  ( Gs  ( s `  k
) ) )
24 eqid 2420 . . . . . . . . . . . 12  |-  (.g `  ( Gs  ( s `  k
) ) )  =  (.g `  ( Gs  ( s `
 k ) ) )
2523, 24iscyg 17442 . . . . . . . . . . 11  |-  ( ( Gs  ( s `  k
) )  e. CycGrp  <->  ( ( Gs  ( s `  k
) )  e.  Grp  /\ 
E. x  e.  (
Base `  ( Gs  (
s `  k )
) ) ran  (
n  e.  ZZ  |->  ( n (.g `  ( Gs  ( s `
 k ) ) ) x ) )  =  ( Base `  ( Gs  ( s `  k
) ) ) ) )
2625simprbi 465 . . . . . . . . . 10  |-  ( ( Gs  ( s `  k
) )  e. CycGrp  ->  E. x  e.  ( Base `  ( Gs  ( s `  k ) ) ) ran  ( n  e.  ZZ  |->  ( n (.g `  ( Gs  ( s `  k ) ) ) x ) )  =  ( Base `  ( Gs  ( s `  k
) ) ) )
2722, 26syl 17 . . . . . . . . 9  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  k  e.  dom  s )  ->  E. x  e.  (
Base `  ( Gs  (
s `  k )
) ) ran  (
n  e.  ZZ  |->  ( n (.g `  ( Gs  ( s `
 k ) ) ) x ) )  =  ( Base `  ( Gs  ( s `  k
) ) ) )
28 eqid 2420 . . . . . . . . . . . 12  |-  ( Gs  ( s `  k ) )  =  ( Gs  ( s `  k ) )
2928subgbas 16765 . . . . . . . . . . 11  |-  ( ( s `  k )  e.  (SubGrp `  G
)  ->  ( s `  k )  =  (
Base `  ( Gs  (
s `  k )
) ) )
3015, 29syl 17 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  k  e.  dom  s )  ->  ( s `  k )  =  (
Base `  ( Gs  (
s `  k )
) ) )
3130rexeqdv 3030 . . . . . . . . 9  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  k  e.  dom  s )  ->  ( E. x  e.  ( s `  k
) ran  ( n  e.  ZZ  |->  ( n (.g `  ( Gs  ( s `  k ) ) ) x ) )  =  ( Base `  ( Gs  ( s `  k
) ) )  <->  E. x  e.  ( Base `  ( Gs  ( s `  k
) ) ) ran  ( n  e.  ZZ  |->  ( n (.g `  ( Gs  ( s `  k
) ) ) x ) )  =  (
Base `  ( Gs  (
s `  k )
) ) ) )
3227, 31mpbird 235 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  k  e.  dom  s )  ->  E. x  e.  ( s `  k ) ran  ( n  e.  ZZ  |->  ( n (.g `  ( Gs  ( s `  k ) ) ) x ) )  =  ( Base `  ( Gs  ( s `  k
) ) ) )
3315ad2antrr 730 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  k  e.  dom  s )  /\  x  e.  ( s `  k ) )  /\  n  e.  ZZ )  ->  ( s `  k
)  e.  (SubGrp `  G ) )
34 simpr 462 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  k  e.  dom  s )  /\  x  e.  ( s `  k ) )  /\  n  e.  ZZ )  ->  n  e.  ZZ )
35 simplr 760 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  k  e.  dom  s )  /\  x  e.  ( s `  k ) )  /\  n  e.  ZZ )  ->  x  e.  ( s `
 k ) )
36 ablfac2.m . . . . . . . . . . . . . 14  |-  .x.  =  (.g
`  G )
3736, 28, 24subgmulg 16775 . . . . . . . . . . . . 13  |-  ( ( ( s `  k
)  e.  (SubGrp `  G )  /\  n  e.  ZZ  /\  x  e.  ( s `  k
) )  ->  (
n  .x.  x )  =  ( n (.g `  ( Gs  ( s `  k ) ) ) x ) )
3833, 34, 35, 37syl3anc 1264 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  k  e.  dom  s )  /\  x  e.  ( s `  k ) )  /\  n  e.  ZZ )  ->  ( n  .x.  x
)  =  ( n (.g `  ( Gs  ( s `
 k ) ) ) x ) )
3938mpteq2dva 4503 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s
)  =  B ) )  /\  k  e. 
dom  s )  /\  x  e.  ( s `  k ) )  -> 
( n  e.  ZZ  |->  ( n  .x.  x ) )  =  ( n  e.  ZZ  |->  ( n (.g `  ( Gs  ( s `
 k ) ) ) x ) ) )
4039rneqd 5073 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s
)  =  B ) )  /\  k  e. 
dom  s )  /\  x  e.  ( s `  k ) )  ->  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  ran  (
n  e.  ZZ  |->  ( n (.g `  ( Gs  ( s `
 k ) ) ) x ) ) )
4130adantr 466 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s
)  =  B ) )  /\  k  e. 
dom  s )  /\  x  e.  ( s `  k ) )  -> 
( s `  k
)  =  ( Base `  ( Gs  ( s `  k ) ) ) )
4240, 41eqeq12d 2442 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s
)  =  B ) )  /\  k  e. 
dom  s )  /\  x  e.  ( s `  k ) )  -> 
( ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  ( s `  k
)  <->  ran  ( n  e.  ZZ  |->  ( n (.g `  ( Gs  ( s `  k ) ) ) x ) )  =  ( Base `  ( Gs  ( s `  k
) ) ) ) )
4342rexbidva 2934 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  k  e.  dom  s )  ->  ( E. x  e.  ( s `  k
) ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  ( s `  k
)  <->  E. x  e.  ( s `  k ) ran  ( n  e.  ZZ  |->  ( n (.g `  ( Gs  ( s `  k ) ) ) x ) )  =  ( Base `  ( Gs  ( s `  k
) ) ) ) )
4432, 43mpbird 235 . . . . . . 7  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  k  e.  dom  s )  ->  E. x  e.  ( s `  k ) ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  ( s `  k
) )
45 ssrexv 3523 . . . . . . 7  |-  ( ( s `  k ) 
C_  B  ->  ( E. x  e.  (
s `  k ) ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  ( s `
 k )  ->  E. x  e.  B  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  ( s `
 k ) ) )
4618, 44, 45sylc 62 . . . . . 6  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  k  e.  dom  s )  ->  E. x  e.  B  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  ( s `
 k ) )
4746ralrimiva 2837 . . . . 5  |-  ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  ->  A. k  e.  dom  s E. x  e.  B  ran  ( n  e.  ZZ  |->  ( n 
.x.  x ) )  =  ( s `  k ) )
48 oveq2 6304 . . . . . . . . 9  |-  ( x  =  ( w `  k )  ->  (
n  .x.  x )  =  ( n  .x.  ( w `  k
) ) )
4948mpteq2dv 4504 . . . . . . . 8  |-  ( x  =  ( w `  k )  ->  (
n  e.  ZZ  |->  ( n  .x.  x ) )  =  ( n  e.  ZZ  |->  ( n 
.x.  ( w `  k ) ) ) )
5049rneqd 5073 . . . . . . 7  |-  ( x  =  ( w `  k )  ->  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) ) )
5150eqeq1d 2422 . . . . . 6  |-  ( x  =  ( w `  k )  ->  ( ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  ( s `
 k )  <->  ran  ( n  e.  ZZ  |->  ( n 
.x.  ( w `  k ) ) )  =  ( s `  k ) ) )
5251ac6sfi 7812 . . . . 5  |-  ( ( dom  s  e.  Fin  /\ 
A. k  e.  dom  s E. x  e.  B  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  ( s `
 k ) )  ->  E. w ( w : dom  s --> B  /\  A. k  e. 
dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )
536, 47, 52syl2anc 665 . . . 4  |-  ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  ->  E. w
( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )
54 simprl 762 . . . . . . . . 9  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  w : dom  s --> B )
554adantr 466 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  dom  s  =  ( 0..^ ( # `  s ) ) )
5655feq2d 5724 . . . . . . . . 9  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  ( w : dom  s --> B  <->  w :
( 0..^ ( # `  s ) ) --> B ) )
5754, 56mpbid 213 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  w :
( 0..^ ( # `  s ) ) --> B )
58 iswrdi 12651 . . . . . . . 8  |-  ( w : ( 0..^ (
# `  s )
) --> B  ->  w  e. Word  B )
5957, 58syl 17 . . . . . . 7  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  w  e. Word  B )
60 fdm 5741 . . . . . . . . . . . . . 14  |-  ( w : ( 0..^ (
# `  s )
) --> B  ->  dom  w  =  ( 0..^ ( # `  s
) ) )
6157, 60syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  dom  w  =  ( 0..^ ( # `  s ) ) )
6261, 55eqtr4d 2464 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  dom  w  =  dom  s )
6362eleq2d 2490 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  ( j  e.  dom  w  <->  j  e.  dom  s ) )
6463biimpa 486 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s
)  =  B ) )  /\  ( w : dom  s --> B  /\  A. k  e. 
dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  /\  j  e. 
dom  w )  -> 
j  e.  dom  s
)
65 simprr 764 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) )
66 simpl 458 . . . . . . . . . . . . . . . . . 18  |-  ( ( k  =  j  /\  n  e.  ZZ )  ->  k  =  j )
6766fveq2d 5876 . . . . . . . . . . . . . . . . 17  |-  ( ( k  =  j  /\  n  e.  ZZ )  ->  ( w `  k
)  =  ( w `
 j ) )
6867oveq2d 6312 . . . . . . . . . . . . . . . 16  |-  ( ( k  =  j  /\  n  e.  ZZ )  ->  ( n  .x.  (
w `  k )
)  =  ( n 
.x.  ( w `  j ) ) )
6968mpteq2dva 4503 . . . . . . . . . . . . . . 15  |-  ( k  =  j  ->  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( n  e.  ZZ  |->  ( n 
.x.  ( w `  j ) ) ) )
7069rneqd 5073 . . . . . . . . . . . . . 14  |-  ( k  =  j  ->  ran  ( n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 j ) ) ) )
71 fveq2 5872 . . . . . . . . . . . . . 14  |-  ( k  =  j  ->  (
s `  k )  =  ( s `  j ) )
7270, 71eqeq12d 2442 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  ( ran  ( n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k )  <->  ran  ( n  e.  ZZ  |->  ( n 
.x.  ( w `  j ) ) )  =  ( s `  j ) ) )
7372rspccva 3178 . . . . . . . . . . . 12  |-  ( ( A. k  e.  dom  s ran  ( n  e.  ZZ  |->  ( n  .x.  ( w `  k
) ) )  =  ( s `  k
)  /\  j  e.  dom  s )  ->  ran  ( n  e.  ZZ  |->  ( n  .x.  ( w `
 j ) ) )  =  ( s `
 j ) )
7465, 73sylan 473 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s
)  =  B ) )  /\  ( w : dom  s --> B  /\  A. k  e. 
dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  /\  j  e. 
dom  s )  ->  ran  ( n  e.  ZZ  |->  ( n  .x.  ( w `
 j ) ) )  =  ( s `
 j ) )
758adantr 466 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  s : dom  s --> C )
7675ffvelrnda 6028 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s
)  =  B ) )  /\  ( w : dom  s --> B  /\  A. k  e. 
dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  /\  j  e. 
dom  s )  -> 
( s `  j
)  e.  C )
7774, 76eqeltrd 2508 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s
)  =  B ) )  /\  ( w : dom  s --> B  /\  A. k  e. 
dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  /\  j  e. 
dom  s )  ->  ran  ( n  e.  ZZ  |->  ( n  .x.  ( w `
 j ) ) )  e.  C )
7864, 77syldan 472 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s
)  =  B ) )  /\  ( w : dom  s --> B  /\  A. k  e. 
dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  /\  j  e. 
dom  w )  ->  ran  ( n  e.  ZZ  |->  ( n  .x.  ( w `
 j ) ) )  e.  C )
79 ablfac2.s . . . . . . . . . 10  |-  S  =  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n  .x.  ( w `  k
) ) ) )
80 fveq2 5872 . . . . . . . . . . . . . 14  |-  ( k  =  j  ->  (
w `  k )  =  ( w `  j ) )
8180oveq2d 6312 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  (
n  .x.  ( w `  k ) )  =  ( n  .x.  (
w `  j )
) )
8281mpteq2dv 4504 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( n  e.  ZZ  |->  ( n 
.x.  ( w `  j ) ) ) )
8382rneqd 5073 . . . . . . . . . . 11  |-  ( k  =  j  ->  ran  ( n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 j ) ) ) )
8483cbvmptv 4509 . . . . . . . . . 10  |-  ( k  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) ) )  =  ( j  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n  .x.  ( w `  j
) ) ) )
8579, 84eqtri 2449 . . . . . . . . 9  |-  S  =  ( j  e.  dom  w  |->  ran  ( n  e.  ZZ  |->  ( n  .x.  ( w `  j
) ) ) )
8678, 85fmptd 6052 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  S : dom  w --> C )
87 simprl 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  ->  G dom DProd  s )
8887adantr 466 . . . . . . . . 9  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  G dom DProd  s )
8962raleqdv 3029 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  ( A. k  e.  dom  w ran  ( n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k )  <->  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )
9065, 89mpbird 235 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  A. k  e.  dom  w ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) )
91 mpteq12 4496 . . . . . . . . . . . 12  |-  ( ( dom  w  =  dom  s  /\  A. k  e. 
dom  w ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) )  ->  ( k  e. 
dom  w  |->  ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) ) )  =  ( k  e.  dom  s  |->  ( s `  k
) ) )
9262, 90, 91syl2anc 665 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  ( k  e.  dom  w  |->  ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) ) )  =  ( k  e.  dom  s  |->  ( s `  k
) ) )
9379, 92syl5eq 2473 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  S  =  ( k  e.  dom  s  |->  ( s `  k ) ) )
94 dprdf 17566 . . . . . . . . . . . 12  |-  ( G dom DProd  s  ->  s : dom  s --> (SubGrp `  G ) )
9588, 94syl 17 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  s : dom  s --> (SubGrp `  G )
)
9695feqmptd 5925 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  s  =  ( k  e.  dom  s  |->  ( s `  k ) ) )
9793, 96eqtr4d 2464 . . . . . . . . 9  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  S  =  s )
9888, 97breqtrrd 4443 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  G dom DProd  S )
9997oveq2d 6312 . . . . . . . . 9  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  ( G DProd  S )  =  ( G DProd 
s ) )
100 simplrr 769 . . . . . . . . 9  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  ( G DProd  s )  =  B )
10199, 100eqtrd 2461 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  ( G DProd  S )  =  B )
10286, 98, 1013jca 1185 . . . . . . 7  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  ( S : dom  w --> C  /\  G dom DProd  S  /\  ( G DProd  S )  =  B ) )
10359, 102jca 534 . . . . . 6  |-  ( ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  /\  ( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) ) )  ->  ( w  e. Word  B  /\  ( S : dom  w --> C  /\  G dom DProd  S  /\  ( G DProd  S )  =  B ) ) )
104103ex 435 . . . . 5  |-  ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  ->  (
( w : dom  s
--> B  /\  A. k  e.  dom  s ran  (
n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) )  ->  ( w  e. Word  B  /\  ( S : dom  w --> C  /\  G dom DProd  S  /\  ( G DProd 
S )  =  B ) ) ) )
105104eximdv 1754 . . . 4  |-  ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  ->  ( E. w ( w : dom  s --> B  /\  A. k  e.  dom  s ran  ( n  e.  ZZ  |->  ( n  .x.  ( w `
 k ) ) )  =  ( s `
 k ) )  ->  E. w ( w  e. Word  B  /\  ( S : dom  w --> C  /\  G dom DProd  S  /\  ( G DProd  S )  =  B ) ) ) )
10653, 105mpd 15 . . 3  |-  ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  ->  E. w
( w  e. Word  B  /\  ( S : dom  w
--> C  /\  G dom DProd  S  /\  ( G DProd  S
)  =  B ) ) )
107 df-rex 2779 . . 3  |-  ( E. w  e. Word  B ( S : dom  w --> C  /\  G dom DProd  S  /\  ( G DProd  S )  =  B )  <->  E. w
( w  e. Word  B  /\  ( S : dom  w
--> C  /\  G dom DProd  S  /\  ( G DProd  S
)  =  B ) ) )
108106, 107sylibr 215 . 2  |-  ( ( ( ph  /\  s  e. Word  C )  /\  ( G dom DProd  s  /\  ( G DProd  s )  =  B ) )  ->  E. w  e. Word  B ( S : dom  w --> C  /\  G dom DProd  S  /\  ( G DProd 
S )  =  B ) )
109 ablfac.1 . . 3  |-  ( ph  ->  G  e.  Abel )
110 ablfac.2 . . 3  |-  ( ph  ->  B  e.  Fin )
11116, 12, 109, 110ablfac 17649 . 2  |-  ( ph  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  B ) )
112108, 111r19.29a 2968 1  |-  ( ph  ->  E. w  e. Word  B
( S : dom  w
--> C  /\  G dom DProd  S  /\  ( G DProd  S
)  =  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437   E.wex 1659    e. wcel 1867   A.wral 2773   E.wrex 2774   {crab 2777    i^i cin 3432    C_ wss 3433   class class class wbr 4417    |-> cmpt 4475   dom cdm 4845   ran crn 4846   -->wf 5588   ` cfv 5592  (class class class)co 6296   Fincfn 7568   0cc0 9528   ZZcz 10926  ..^cfzo 11902   #chash 12501  Word cword 12632   Basecbs 15073   ↾s cress 15074   Grpcgrp 16613  .gcmg 16616  SubGrpcsubg 16755   pGrp cpgp 17111   Abelcabl 17359  CycGrpccyg 17440   DProd cdprd 17553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-rep 4529  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588  ax-inf2 8137  ax-cnex 9584  ax-resscn 9585  ax-1cn 9586  ax-icn 9587  ax-addcl 9588  ax-addrcl 9589  ax-mulcl 9590  ax-mulrcl 9591  ax-mulcom 9592  ax-addass 9593  ax-mulass 9594  ax-distr 9595  ax-i2m1 9596  ax-1ne0 9597  ax-1rid 9598  ax-rnegex 9599  ax-rrecex 9600  ax-cnre 9601  ax-pre-lttri 9602  ax-pre-lttrn 9603  ax-pre-ltadd 9604  ax-pre-mulgt0 9605  ax-pre-sup 9606
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-nel 2619  df-ral 2778  df-rex 2779  df-reu 2780  df-rmo 2781  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-pss 3449  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-tp 3998  df-op 4000  df-uni 4214  df-int 4250  df-iun 4295  df-iin 4296  df-disj 4389  df-br 4418  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4756  df-id 4760  df-po 4766  df-so 4767  df-fr 4804  df-se 4805  df-we 4806  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-pred 5390  df-ord 5436  df-on 5437  df-lim 5438  df-suc 5439  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-isom 5601  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6536  df-rpss 6576  df-om 6698  df-1st 6798  df-2nd 6799  df-supp 6917  df-tpos 6972  df-wrecs 7027  df-recs 7089  df-rdg 7127  df-1o 7181  df-2o 7182  df-oadd 7185  df-omul 7186  df-er 7362  df-ec 7364  df-qs 7368  df-map 7473  df-pm 7474  df-ixp 7522  df-en 7569  df-dom 7570  df-sdom 7571  df-fin 7572  df-fsupp 7881  df-sup 7953  df-inf 7954  df-oi 8016  df-card 8363  df-acn 8366  df-cda 8587  df-pnf 9666  df-mnf 9667  df-xr 9668  df-ltxr 9669  df-le 9670  df-sub 9851  df-neg 9852  df-div 10259  df-nn 10599  df-2 10657  df-3 10658  df-n0 10859  df-z 10927  df-uz 11149  df-q 11254  df-rp 11292  df-fz 11772  df-fzo 11903  df-fl 12014  df-mod 12083  df-seq 12200  df-exp 12259  df-fac 12446  df-bc 12474  df-hash 12502  df-word 12640  df-concat 12642  df-s1 12643  df-cj 13130  df-re 13131  df-im 13132  df-sqrt 13266  df-abs 13267  df-clim 13519  df-sum 13720  df-dvds 14273  df-gcd 14432  df-prm 14583  df-pc 14739  df-ndx 15076  df-slot 15077  df-base 15078  df-sets 15079  df-ress 15080  df-plusg 15155  df-0g 15292  df-gsum 15293  df-mre 15436  df-mrc 15437  df-acs 15439  df-mgm 16432  df-sgrp 16471  df-mnd 16481  df-mhm 16526  df-submnd 16527  df-grp 16617  df-minusg 16618  df-sbg 16619  df-mulg 16620  df-subg 16758  df-eqg 16760  df-ghm 16825  df-gim 16867  df-ga 16888  df-cntz 16915  df-oppg 16941  df-od 17113  df-gex 17114  df-pgp 17115  df-lsm 17216  df-pj1 17217  df-cmn 17360  df-abl 17361  df-cyg 17441  df-dprd 17555
This theorem is referenced by:  dchrpt  24084
  Copyright terms: Public domain W3C validator