MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac1lem Structured version   Visualization version   Unicode version

Theorem ablfac1lem 17779
Description: Lemma for ablfac1b 17781. Satisfy the assumptions of ablfacrp. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
ablfac1.b  |-  B  =  ( Base `  G
)
ablfac1.o  |-  O  =  ( od `  G
)
ablfac1.s  |-  S  =  ( p  e.  A  |->  { x  e.  B  |  ( O `  x )  ||  (
p ^ ( p 
pCnt  ( # `  B
) ) ) } )
ablfac1.g  |-  ( ph  ->  G  e.  Abel )
ablfac1.f  |-  ( ph  ->  B  e.  Fin )
ablfac1.1  |-  ( ph  ->  A  C_  Prime )
ablfac1.m  |-  M  =  ( P ^ ( P  pCnt  ( # `  B
) ) )
ablfac1.n  |-  N  =  ( ( # `  B
)  /  M )
Assertion
Ref Expression
ablfac1lem  |-  ( (
ph  /\  P  e.  A )  ->  (
( M  e.  NN  /\  N  e.  NN )  /\  ( M  gcd  N )  =  1  /\  ( # `  B
)  =  ( M  x.  N ) ) )
Distinct variable groups:    x, p, B    ph, p, x    A, p, x    O, p, x    P, p, x    G, p, x
Allowed substitution hints:    S( x, p)    M( x, p)    N( x, p)

Proof of Theorem ablfac1lem
StepHypRef Expression
1 ablfac1.m . . . 4  |-  M  =  ( P ^ ( P  pCnt  ( # `  B
) ) )
2 ablfac1.1 . . . . . . 7  |-  ( ph  ->  A  C_  Prime )
32sselda 3418 . . . . . 6  |-  ( (
ph  /\  P  e.  A )  ->  P  e.  Prime )
4 prmnn 14704 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  NN )
53, 4syl 17 . . . . 5  |-  ( (
ph  /\  P  e.  A )  ->  P  e.  NN )
6 ablfac1.g . . . . . . . . 9  |-  ( ph  ->  G  e.  Abel )
7 ablgrp 17513 . . . . . . . . 9  |-  ( G  e.  Abel  ->  G  e. 
Grp )
8 ablfac1.b . . . . . . . . . 10  |-  B  =  ( Base `  G
)
98grpbn0 16773 . . . . . . . . 9  |-  ( G  e.  Grp  ->  B  =/=  (/) )
106, 7, 93syl 18 . . . . . . . 8  |-  ( ph  ->  B  =/=  (/) )
11 ablfac1.f . . . . . . . . 9  |-  ( ph  ->  B  e.  Fin )
12 hashnncl 12585 . . . . . . . . 9  |-  ( B  e.  Fin  ->  (
( # `  B )  e.  NN  <->  B  =/=  (/) ) )
1311, 12syl 17 . . . . . . . 8  |-  ( ph  ->  ( ( # `  B
)  e.  NN  <->  B  =/=  (/) ) )
1410, 13mpbird 240 . . . . . . 7  |-  ( ph  ->  ( # `  B
)  e.  NN )
1514adantr 472 . . . . . 6  |-  ( (
ph  /\  P  e.  A )  ->  ( # `
 B )  e.  NN )
163, 15pccld 14879 . . . . 5  |-  ( (
ph  /\  P  e.  A )  ->  ( P  pCnt  ( # `  B
) )  e.  NN0 )
175, 16nnexpcld 12475 . . . 4  |-  ( (
ph  /\  P  e.  A )  ->  ( P ^ ( P  pCnt  (
# `  B )
) )  e.  NN )
181, 17syl5eqel 2553 . . 3  |-  ( (
ph  /\  P  e.  A )  ->  M  e.  NN )
19 ablfac1.n . . . 4  |-  N  =  ( ( # `  B
)  /  M )
20 pcdvds 14892 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( # `
 B )  e.  NN )  ->  ( P ^ ( P  pCnt  (
# `  B )
) )  ||  ( # `
 B ) )
213, 15, 20syl2anc 673 . . . . . 6  |-  ( (
ph  /\  P  e.  A )  ->  ( P ^ ( P  pCnt  (
# `  B )
) )  ||  ( # `
 B ) )
221, 21syl5eqbr 4429 . . . . 5  |-  ( (
ph  /\  P  e.  A )  ->  M  ||  ( # `  B
) )
23 nndivdvds 14388 . . . . . 6  |-  ( ( ( # `  B
)  e.  NN  /\  M  e.  NN )  ->  ( M  ||  ( # `
 B )  <->  ( ( # `
 B )  /  M )  e.  NN ) )
2415, 18, 23syl2anc 673 . . . . 5  |-  ( (
ph  /\  P  e.  A )  ->  ( M  ||  ( # `  B
)  <->  ( ( # `  B )  /  M
)  e.  NN ) )
2522, 24mpbid 215 . . . 4  |-  ( (
ph  /\  P  e.  A )  ->  (
( # `  B )  /  M )  e.  NN )
2619, 25syl5eqel 2553 . . 3  |-  ( (
ph  /\  P  e.  A )  ->  N  e.  NN )
2718, 26jca 541 . 2  |-  ( (
ph  /\  P  e.  A )  ->  ( M  e.  NN  /\  N  e.  NN ) )
281oveq1i 6318 . . 3  |-  ( M  gcd  N )  =  ( ( P ^
( P  pCnt  ( # `
 B ) ) )  gcd  N )
29 pcndvds2 14896 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( # `
 B )  e.  NN )  ->  -.  P  ||  ( ( # `  B )  /  ( P ^ ( P  pCnt  (
# `  B )
) ) ) )
303, 15, 29syl2anc 673 . . . . . 6  |-  ( (
ph  /\  P  e.  A )  ->  -.  P  ||  ( ( # `  B )  /  ( P ^ ( P  pCnt  (
# `  B )
) ) ) )
311oveq2i 6319 . . . . . . . 8  |-  ( (
# `  B )  /  M )  =  ( ( # `  B
)  /  ( P ^ ( P  pCnt  (
# `  B )
) ) )
3219, 31eqtri 2493 . . . . . . 7  |-  N  =  ( ( # `  B
)  /  ( P ^ ( P  pCnt  (
# `  B )
) ) )
3332breq2i 4403 . . . . . 6  |-  ( P 
||  N  <->  P  ||  (
( # `  B )  /  ( P ^
( P  pCnt  ( # `
 B ) ) ) ) )
3430, 33sylnibr 312 . . . . 5  |-  ( (
ph  /\  P  e.  A )  ->  -.  P  ||  N )
3526nnzd 11062 . . . . . 6  |-  ( (
ph  /\  P  e.  A )  ->  N  e.  ZZ )
36 coprm 14736 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  P  ||  N  <->  ( P  gcd  N )  =  1 ) )
373, 35, 36syl2anc 673 . . . . 5  |-  ( (
ph  /\  P  e.  A )  ->  ( -.  P  ||  N  <->  ( P  gcd  N )  =  1 ) )
3834, 37mpbid 215 . . . 4  |-  ( (
ph  /\  P  e.  A )  ->  ( P  gcd  N )  =  1 )
39 prmz 14705 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  ZZ )
403, 39syl 17 . . . . 5  |-  ( (
ph  /\  P  e.  A )  ->  P  e.  ZZ )
41 rpexp1i 14752 . . . . 5  |-  ( ( P  e.  ZZ  /\  N  e.  ZZ  /\  ( P  pCnt  ( # `  B
) )  e.  NN0 )  ->  ( ( P  gcd  N )  =  1  ->  ( ( P ^ ( P  pCnt  (
# `  B )
) )  gcd  N
)  =  1 ) )
4240, 35, 16, 41syl3anc 1292 . . . 4  |-  ( (
ph  /\  P  e.  A )  ->  (
( P  gcd  N
)  =  1  -> 
( ( P ^
( P  pCnt  ( # `
 B ) ) )  gcd  N )  =  1 ) )
4338, 42mpd 15 . . 3  |-  ( (
ph  /\  P  e.  A )  ->  (
( P ^ ( P  pCnt  ( # `  B
) ) )  gcd 
N )  =  1 )
4428, 43syl5eq 2517 . 2  |-  ( (
ph  /\  P  e.  A )  ->  ( M  gcd  N )  =  1 )
4519oveq2i 6319 . . 3  |-  ( M  x.  N )  =  ( M  x.  (
( # `  B )  /  M ) )
4615nncnd 10647 . . . 4  |-  ( (
ph  /\  P  e.  A )  ->  ( # `
 B )  e.  CC )
4718nncnd 10647 . . . 4  |-  ( (
ph  /\  P  e.  A )  ->  M  e.  CC )
4818nnne0d 10676 . . . 4  |-  ( (
ph  /\  P  e.  A )  ->  M  =/=  0 )
4946, 47, 48divcan2d 10407 . . 3  |-  ( (
ph  /\  P  e.  A )  ->  ( M  x.  ( ( # `
 B )  /  M ) )  =  ( # `  B
) )
5045, 49syl5req 2518 . 2  |-  ( (
ph  /\  P  e.  A )  ->  ( # `
 B )  =  ( M  x.  N
) )
5127, 44, 503jca 1210 1  |-  ( (
ph  /\  P  e.  A )  ->  (
( M  e.  NN  /\  N  e.  NN )  /\  ( M  gcd  N )  =  1  /\  ( # `  B
)  =  ( M  x.  N ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904    =/= wne 2641   {crab 2760    C_ wss 3390   (/)c0 3722   class class class wbr 4395    |-> cmpt 4454   ` cfv 5589  (class class class)co 6308   Fincfn 7587   1c1 9558    x. cmul 9562    / cdiv 10291   NNcn 10631   NN0cn0 10893   ZZcz 10961   ^cexp 12310   #chash 12553    || cdvds 14382    gcd cgcd 14547   Primecprime 14701    pCnt cpc 14865   Basecbs 15199   Grpcgrp 16747   odcod 17243   Abelcabl 17509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-sup 7974  df-inf 7975  df-card 8391  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-n0 10894  df-z 10962  df-uz 11183  df-q 11288  df-rp 11326  df-fz 11811  df-fl 12061  df-mod 12130  df-seq 12252  df-exp 12311  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-dvds 14383  df-gcd 14548  df-prm 14702  df-pc 14866  df-0g 15418  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-grp 16751  df-abl 17511
This theorem is referenced by:  ablfac1a  17780  ablfac1b  17781
  Copyright terms: Public domain W3C validator