MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac1lem Structured version   Unicode version

Theorem ablfac1lem 17246
Description: Lemma for ablfac1b 17248. Satisfy the assumptions of ablfacrp. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
ablfac1.b  |-  B  =  ( Base `  G
)
ablfac1.o  |-  O  =  ( od `  G
)
ablfac1.s  |-  S  =  ( p  e.  A  |->  { x  e.  B  |  ( O `  x )  ||  (
p ^ ( p 
pCnt  ( # `  B
) ) ) } )
ablfac1.g  |-  ( ph  ->  G  e.  Abel )
ablfac1.f  |-  ( ph  ->  B  e.  Fin )
ablfac1.1  |-  ( ph  ->  A  C_  Prime )
ablfac1.m  |-  M  =  ( P ^ ( P  pCnt  ( # `  B
) ) )
ablfac1.n  |-  N  =  ( ( # `  B
)  /  M )
Assertion
Ref Expression
ablfac1lem  |-  ( (
ph  /\  P  e.  A )  ->  (
( M  e.  NN  /\  N  e.  NN )  /\  ( M  gcd  N )  =  1  /\  ( # `  B
)  =  ( M  x.  N ) ) )
Distinct variable groups:    x, p, B    ph, p, x    A, p, x    O, p, x    P, p, x    G, p, x
Allowed substitution hints:    S( x, p)    M( x, p)    N( x, p)

Proof of Theorem ablfac1lem
StepHypRef Expression
1 ablfac1.m . . . 4  |-  M  =  ( P ^ ( P  pCnt  ( # `  B
) ) )
2 ablfac1.1 . . . . . . 7  |-  ( ph  ->  A  C_  Prime )
32sselda 3499 . . . . . 6  |-  ( (
ph  /\  P  e.  A )  ->  P  e.  Prime )
4 prmnn 14232 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  NN )
53, 4syl 16 . . . . 5  |-  ( (
ph  /\  P  e.  A )  ->  P  e.  NN )
6 ablfac1.g . . . . . . . . 9  |-  ( ph  ->  G  e.  Abel )
7 ablgrp 16930 . . . . . . . . 9  |-  ( G  e.  Abel  ->  G  e. 
Grp )
8 ablfac1.b . . . . . . . . . 10  |-  B  =  ( Base `  G
)
98grpbn0 16206 . . . . . . . . 9  |-  ( G  e.  Grp  ->  B  =/=  (/) )
106, 7, 93syl 20 . . . . . . . 8  |-  ( ph  ->  B  =/=  (/) )
11 ablfac1.f . . . . . . . . 9  |-  ( ph  ->  B  e.  Fin )
12 hashnncl 12439 . . . . . . . . 9  |-  ( B  e.  Fin  ->  (
( # `  B )  e.  NN  <->  B  =/=  (/) ) )
1311, 12syl 16 . . . . . . . 8  |-  ( ph  ->  ( ( # `  B
)  e.  NN  <->  B  =/=  (/) ) )
1410, 13mpbird 232 . . . . . . 7  |-  ( ph  ->  ( # `  B
)  e.  NN )
1514adantr 465 . . . . . 6  |-  ( (
ph  /\  P  e.  A )  ->  ( # `
 B )  e.  NN )
163, 15pccld 14386 . . . . 5  |-  ( (
ph  /\  P  e.  A )  ->  ( P  pCnt  ( # `  B
) )  e.  NN0 )
175, 16nnexpcld 12334 . . . 4  |-  ( (
ph  /\  P  e.  A )  ->  ( P ^ ( P  pCnt  (
# `  B )
) )  e.  NN )
181, 17syl5eqel 2549 . . 3  |-  ( (
ph  /\  P  e.  A )  ->  M  e.  NN )
19 ablfac1.n . . . 4  |-  N  =  ( ( # `  B
)  /  M )
20 pcdvds 14399 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( # `
 B )  e.  NN )  ->  ( P ^ ( P  pCnt  (
# `  B )
) )  ||  ( # `
 B ) )
213, 15, 20syl2anc 661 . . . . . 6  |-  ( (
ph  /\  P  e.  A )  ->  ( P ^ ( P  pCnt  (
# `  B )
) )  ||  ( # `
 B ) )
221, 21syl5eqbr 4489 . . . . 5  |-  ( (
ph  /\  P  e.  A )  ->  M  ||  ( # `  B
) )
23 nndivdvds 14004 . . . . . 6  |-  ( ( ( # `  B
)  e.  NN  /\  M  e.  NN )  ->  ( M  ||  ( # `
 B )  <->  ( ( # `
 B )  /  M )  e.  NN ) )
2415, 18, 23syl2anc 661 . . . . 5  |-  ( (
ph  /\  P  e.  A )  ->  ( M  ||  ( # `  B
)  <->  ( ( # `  B )  /  M
)  e.  NN ) )
2522, 24mpbid 210 . . . 4  |-  ( (
ph  /\  P  e.  A )  ->  (
( # `  B )  /  M )  e.  NN )
2619, 25syl5eqel 2549 . . 3  |-  ( (
ph  /\  P  e.  A )  ->  N  e.  NN )
2718, 26jca 532 . 2  |-  ( (
ph  /\  P  e.  A )  ->  ( M  e.  NN  /\  N  e.  NN ) )
281oveq1i 6306 . . 3  |-  ( M  gcd  N )  =  ( ( P ^
( P  pCnt  ( # `
 B ) ) )  gcd  N )
29 pcndvds2 14403 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( # `
 B )  e.  NN )  ->  -.  P  ||  ( ( # `  B )  /  ( P ^ ( P  pCnt  (
# `  B )
) ) ) )
303, 15, 29syl2anc 661 . . . . . 6  |-  ( (
ph  /\  P  e.  A )  ->  -.  P  ||  ( ( # `  B )  /  ( P ^ ( P  pCnt  (
# `  B )
) ) ) )
311oveq2i 6307 . . . . . . . 8  |-  ( (
# `  B )  /  M )  =  ( ( # `  B
)  /  ( P ^ ( P  pCnt  (
# `  B )
) ) )
3219, 31eqtri 2486 . . . . . . 7  |-  N  =  ( ( # `  B
)  /  ( P ^ ( P  pCnt  (
# `  B )
) ) )
3332breq2i 4464 . . . . . 6  |-  ( P 
||  N  <->  P  ||  (
( # `  B )  /  ( P ^
( P  pCnt  ( # `
 B ) ) ) ) )
3430, 33sylnibr 305 . . . . 5  |-  ( (
ph  /\  P  e.  A )  ->  -.  P  ||  N )
3526nnzd 10989 . . . . . 6  |-  ( (
ph  /\  P  e.  A )  ->  N  e.  ZZ )
36 coprm 14253 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( -.  P  ||  N  <->  ( P  gcd  N )  =  1 ) )
373, 35, 36syl2anc 661 . . . . 5  |-  ( (
ph  /\  P  e.  A )  ->  ( -.  P  ||  N  <->  ( P  gcd  N )  =  1 ) )
3834, 37mpbid 210 . . . 4  |-  ( (
ph  /\  P  e.  A )  ->  ( P  gcd  N )  =  1 )
39 prmz 14233 . . . . . 6  |-  ( P  e.  Prime  ->  P  e.  ZZ )
403, 39syl 16 . . . . 5  |-  ( (
ph  /\  P  e.  A )  ->  P  e.  ZZ )
41 rpexp1i 14274 . . . . 5  |-  ( ( P  e.  ZZ  /\  N  e.  ZZ  /\  ( P  pCnt  ( # `  B
) )  e.  NN0 )  ->  ( ( P  gcd  N )  =  1  ->  ( ( P ^ ( P  pCnt  (
# `  B )
) )  gcd  N
)  =  1 ) )
4240, 35, 16, 41syl3anc 1228 . . . 4  |-  ( (
ph  /\  P  e.  A )  ->  (
( P  gcd  N
)  =  1  -> 
( ( P ^
( P  pCnt  ( # `
 B ) ) )  gcd  N )  =  1 ) )
4338, 42mpd 15 . . 3  |-  ( (
ph  /\  P  e.  A )  ->  (
( P ^ ( P  pCnt  ( # `  B
) ) )  gcd 
N )  =  1 )
4428, 43syl5eq 2510 . 2  |-  ( (
ph  /\  P  e.  A )  ->  ( M  gcd  N )  =  1 )
4519oveq2i 6307 . . 3  |-  ( M  x.  N )  =  ( M  x.  (
( # `  B )  /  M ) )
4615nncnd 10572 . . . 4  |-  ( (
ph  /\  P  e.  A )  ->  ( # `
 B )  e.  CC )
4718nncnd 10572 . . . 4  |-  ( (
ph  /\  P  e.  A )  ->  M  e.  CC )
4818nnne0d 10601 . . . 4  |-  ( (
ph  /\  P  e.  A )  ->  M  =/=  0 )
4946, 47, 48divcan2d 10343 . . 3  |-  ( (
ph  /\  P  e.  A )  ->  ( M  x.  ( ( # `
 B )  /  M ) )  =  ( # `  B
) )
5045, 49syl5req 2511 . 2  |-  ( (
ph  /\  P  e.  A )  ->  ( # `
 B )  =  ( M  x.  N
) )
5127, 44, 503jca 1176 1  |-  ( (
ph  /\  P  e.  A )  ->  (
( M  e.  NN  /\  N  e.  NN )  /\  ( M  gcd  N )  =  1  /\  ( # `  B
)  =  ( M  x.  N ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819    =/= wne 2652   {crab 2811    C_ wss 3471   (/)c0 3793   class class class wbr 4456    |-> cmpt 4515   ` cfv 5594  (class class class)co 6296   Fincfn 7535   1c1 9510    x. cmul 9514    / cdiv 10227   NNcn 10556   NN0cn0 10816   ZZcz 10885   ^cexp 12169   #chash 12408    || cdvds 13998    gcd cgcd 14156   Primecprime 14229    pCnt cpc 14372   Basecbs 14644   Grpcgrp 16180   odcod 16676   Abelcabl 16926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-sup 7919  df-card 8337  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-q 11208  df-rp 11246  df-fz 11698  df-fl 11932  df-mod 12000  df-seq 12111  df-exp 12170  df-hash 12409  df-cj 12944  df-re 12945  df-im 12946  df-sqrt 13080  df-abs 13081  df-dvds 13999  df-gcd 14157  df-prm 14230  df-pc 14373  df-0g 14859  df-mgm 15999  df-sgrp 16038  df-mnd 16048  df-grp 16184  df-abl 16928
This theorem is referenced by:  ablfac1a  17247  ablfac1b  17248
  Copyright terms: Public domain W3C validator