MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac1c Structured version   Unicode version

Theorem ablfac1c 17639
Description: The factors of ablfac1b 17638 cover the entire group. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
ablfac1.b  |-  B  =  ( Base `  G
)
ablfac1.o  |-  O  =  ( od `  G
)
ablfac1.s  |-  S  =  ( p  e.  A  |->  { x  e.  B  |  ( O `  x )  ||  (
p ^ ( p 
pCnt  ( # `  B
) ) ) } )
ablfac1.g  |-  ( ph  ->  G  e.  Abel )
ablfac1.f  |-  ( ph  ->  B  e.  Fin )
ablfac1.1  |-  ( ph  ->  A  C_  Prime )
ablfac1c.d  |-  D  =  { w  e.  Prime  |  w  ||  ( # `  B ) }
ablfac1.2  |-  ( ph  ->  D  C_  A )
Assertion
Ref Expression
ablfac1c  |-  ( ph  ->  ( G DProd  S )  =  B )
Distinct variable groups:    w, p, x, B    D, p, x    ph, p, w, x    A, p, x    O, p, x    G, p, x
Allowed substitution hints:    A( w)    D( w)    S( x, w, p)    G( w)    O( w)

Proof of Theorem ablfac1c
Dummy variable  q is distinct from all other variables.
StepHypRef Expression
1 ablfac1.f . 2  |-  ( ph  ->  B  e.  Fin )
2 ablfac1.b . . . 4  |-  B  =  ( Base `  G
)
32dprdssv 17584 . . 3  |-  ( G DProd 
S )  C_  B
43a1i 11 . 2  |-  ( ph  ->  ( G DProd  S ) 
C_  B )
5 ssfi 7798 . . . . . 6  |-  ( ( B  e.  Fin  /\  ( G DProd  S )  C_  B )  ->  ( G DProd  S )  e.  Fin )
61, 3, 5sylancl 666 . . . . 5  |-  ( ph  ->  ( G DProd  S )  e.  Fin )
7 hashcl 12535 . . . . 5  |-  ( ( G DProd  S )  e. 
Fin  ->  ( # `  ( G DProd  S ) )  e. 
NN0 )
86, 7syl 17 . . . 4  |-  ( ph  ->  ( # `  ( G DProd  S ) )  e. 
NN0 )
9 hashcl 12535 . . . . 5  |-  ( B  e.  Fin  ->  ( # `
 B )  e. 
NN0 )
101, 9syl 17 . . . 4  |-  ( ph  ->  ( # `  B
)  e.  NN0 )
11 ablfac1.o . . . . . . 7  |-  O  =  ( od `  G
)
12 ablfac1.s . . . . . . 7  |-  S  =  ( p  e.  A  |->  { x  e.  B  |  ( O `  x )  ||  (
p ^ ( p 
pCnt  ( # `  B
) ) ) } )
13 ablfac1.g . . . . . . 7  |-  ( ph  ->  G  e.  Abel )
14 ablfac1.1 . . . . . . 7  |-  ( ph  ->  A  C_  Prime )
152, 11, 12, 13, 1, 14ablfac1b 17638 . . . . . 6  |-  ( ph  ->  G dom DProd  S )
16 dprdsubg 17592 . . . . . 6  |-  ( G dom DProd  S  ->  ( G DProd 
S )  e.  (SubGrp `  G ) )
1715, 16syl 17 . . . . 5  |-  ( ph  ->  ( G DProd  S )  e.  (SubGrp `  G
) )
182lagsubg 16830 . . . . 5  |-  ( ( ( G DProd  S )  e.  (SubGrp `  G
)  /\  B  e.  Fin )  ->  ( # `  ( G DProd  S ) )  ||  ( # `  B ) )
1917, 1, 18syl2anc 665 . . . 4  |-  ( ph  ->  ( # `  ( G DProd  S ) )  ||  ( # `  B ) )
20 breq1 4429 . . . . . . . . . . 11  |-  ( w  =  q  ->  (
w  ||  ( # `  B
)  <->  q  ||  ( # `
 B ) ) )
21 ablfac1c.d . . . . . . . . . . 11  |-  D  =  { w  e.  Prime  |  w  ||  ( # `  B ) }
2220, 21elrab2 3237 . . . . . . . . . 10  |-  ( q  e.  D  <->  ( q  e.  Prime  /\  q  ||  ( # `  B ) ) )
23 ablfac1.2 . . . . . . . . . . 11  |-  ( ph  ->  D  C_  A )
2423sseld 3469 . . . . . . . . . 10  |-  ( ph  ->  ( q  e.  D  ->  q  e.  A ) )
2522, 24syl5bir 221 . . . . . . . . 9  |-  ( ph  ->  ( ( q  e. 
Prime  /\  q  ||  ( # `
 B ) )  ->  q  e.  A
) )
2625impl 624 . . . . . . . 8  |-  ( ( ( ph  /\  q  e.  Prime )  /\  q  ||  ( # `  B
) )  ->  q  e.  A )
272, 11, 12, 13, 1, 14ablfac1a 17637 . . . . . . . . . . 11  |-  ( (
ph  /\  q  e.  A )  ->  ( # `
 ( S `  q ) )  =  ( q ^ (
q  pCnt  ( # `  B
) ) ) )
28 fvex 5891 . . . . . . . . . . . . . . . . . . . 20  |-  ( Base `  G )  e.  _V
292, 28eqeltri 2513 . . . . . . . . . . . . . . . . . . 19  |-  B  e. 
_V
3029rabex 4576 . . . . . . . . . . . . . . . . . 18  |-  { x  e.  B  |  ( O `  x )  ||  ( p ^ (
p  pCnt  ( # `  B
) ) ) }  e.  _V
3130, 12dmmpti 5725 . . . . . . . . . . . . . . . . 17  |-  dom  S  =  A
3231a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  dom  S  =  A )
3315, 32dprdf2 17574 . . . . . . . . . . . . . . 15  |-  ( ph  ->  S : A --> (SubGrp `  G ) )
3433ffvelrnda 6037 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  q  e.  A )  ->  ( S `  q )  e.  (SubGrp `  G )
)
3515adantr 466 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  q  e.  A )  ->  G dom DProd  S )
3631a1i 11 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  q  e.  A )  ->  dom  S  =  A )
37 simpr 462 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  q  e.  A )  ->  q  e.  A )
3835, 36, 37dprdub 17593 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  q  e.  A )  ->  ( S `  q )  C_  ( G DProd  S ) )
3917adantr 466 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  q  e.  A )  ->  ( G DProd  S )  e.  (SubGrp `  G ) )
40 eqid 2429 . . . . . . . . . . . . . . . 16  |-  ( Gs  ( G DProd  S ) )  =  ( Gs  ( G DProd 
S ) )
4140subsubg 16791 . . . . . . . . . . . . . . 15  |-  ( ( G DProd  S )  e.  (SubGrp `  G )  ->  ( ( S `  q )  e.  (SubGrp `  ( Gs  ( G DProd  S
) ) )  <->  ( ( S `  q )  e.  (SubGrp `  G )  /\  ( S `  q
)  C_  ( G DProd  S ) ) ) )
4239, 41syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  q  e.  A )  ->  (
( S `  q
)  e.  (SubGrp `  ( Gs  ( G DProd  S
) ) )  <->  ( ( S `  q )  e.  (SubGrp `  G )  /\  ( S `  q
)  C_  ( G DProd  S ) ) ) )
4334, 38, 42mpbir2and 930 . . . . . . . . . . . . 13  |-  ( (
ph  /\  q  e.  A )  ->  ( S `  q )  e.  (SubGrp `  ( Gs  ( G DProd  S ) ) ) )
4440subgbas 16772 . . . . . . . . . . . . . . 15  |-  ( ( G DProd  S )  e.  (SubGrp `  G )  ->  ( G DProd  S )  =  ( Base `  ( Gs  ( G DProd  S ) ) ) )
4539, 44syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  q  e.  A )  ->  ( G DProd  S )  =  (
Base `  ( Gs  ( G DProd  S ) ) ) )
466adantr 466 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  q  e.  A )  ->  ( G DProd  S )  e.  Fin )
4745, 46eqeltrrd 2518 . . . . . . . . . . . . 13  |-  ( (
ph  /\  q  e.  A )  ->  ( Base `  ( Gs  ( G DProd 
S ) ) )  e.  Fin )
48 eqid 2429 . . . . . . . . . . . . . 14  |-  ( Base `  ( Gs  ( G DProd  S
) ) )  =  ( Base `  ( Gs  ( G DProd  S ) ) )
4948lagsubg 16830 . . . . . . . . . . . . 13  |-  ( ( ( S `  q
)  e.  (SubGrp `  ( Gs  ( G DProd  S
) ) )  /\  ( Base `  ( Gs  ( G DProd  S ) ) )  e.  Fin )  -> 
( # `  ( S `
 q ) ) 
||  ( # `  ( Base `  ( Gs  ( G DProd 
S ) ) ) ) )
5043, 47, 49syl2anc 665 . . . . . . . . . . . 12  |-  ( (
ph  /\  q  e.  A )  ->  ( # `
 ( S `  q ) )  ||  ( # `  ( Base `  ( Gs  ( G DProd  S
) ) ) ) )
5145fveq2d 5885 . . . . . . . . . . . 12  |-  ( (
ph  /\  q  e.  A )  ->  ( # `
 ( G DProd  S
) )  =  (
# `  ( Base `  ( Gs  ( G DProd  S
) ) ) ) )
5250, 51breqtrrd 4452 . . . . . . . . . . 11  |-  ( (
ph  /\  q  e.  A )  ->  ( # `
 ( S `  q ) )  ||  ( # `  ( G DProd 
S ) ) )
5327, 52eqbrtrrd 4448 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  A )  ->  (
q ^ ( q 
pCnt  ( # `  B
) ) )  ||  ( # `  ( G DProd 
S ) ) )
5414sselda 3470 . . . . . . . . . . 11  |-  ( (
ph  /\  q  e.  A )  ->  q  e.  Prime )
558nn0zd 11038 . . . . . . . . . . . 12  |-  ( ph  ->  ( # `  ( G DProd  S ) )  e.  ZZ )
5655adantr 466 . . . . . . . . . . 11  |-  ( (
ph  /\  q  e.  A )  ->  ( # `
 ( G DProd  S
) )  e.  ZZ )
57 simpr 462 . . . . . . . . . . . . 13  |-  ( (
ph  /\  q  e.  Prime )  ->  q  e.  Prime )
58 ablgrp 17370 . . . . . . . . . . . . . . . 16  |-  ( G  e.  Abel  ->  G  e. 
Grp )
592grpbn0 16646 . . . . . . . . . . . . . . . 16  |-  ( G  e.  Grp  ->  B  =/=  (/) )
6013, 58, 593syl 18 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  =/=  (/) )
61 hashnncl 12544 . . . . . . . . . . . . . . . 16  |-  ( B  e.  Fin  ->  (
( # `  B )  e.  NN  <->  B  =/=  (/) ) )
621, 61syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( # `  B
)  e.  NN  <->  B  =/=  (/) ) )
6360, 62mpbird 235 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( # `  B
)  e.  NN )
6463adantr 466 . . . . . . . . . . . . 13  |-  ( (
ph  /\  q  e.  Prime )  ->  ( # `  B
)  e.  NN )
6557, 64pccld 14763 . . . . . . . . . . . 12  |-  ( (
ph  /\  q  e.  Prime )  ->  ( q  pCnt  ( # `  B
) )  e.  NN0 )
6654, 65syldan 472 . . . . . . . . . . 11  |-  ( (
ph  /\  q  e.  A )  ->  (
q  pCnt  ( # `  B
) )  e.  NN0 )
67 pcdvdsb 14781 . . . . . . . . . . 11  |-  ( ( q  e.  Prime  /\  ( # `
 ( G DProd  S
) )  e.  ZZ  /\  ( q  pCnt  ( # `
 B ) )  e.  NN0 )  -> 
( ( q  pCnt  (
# `  B )
)  <_  ( q  pCnt  ( # `  ( G DProd  S ) ) )  <-> 
( q ^ (
q  pCnt  ( # `  B
) ) )  ||  ( # `  ( G DProd 
S ) ) ) )
6854, 56, 66, 67syl3anc 1264 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  A )  ->  (
( q  pCnt  ( # `
 B ) )  <_  ( q  pCnt  (
# `  ( G DProd  S ) ) )  <->  ( q ^ ( q  pCnt  (
# `  B )
) )  ||  ( # `
 ( G DProd  S
) ) ) )
6953, 68mpbird 235 . . . . . . . . 9  |-  ( (
ph  /\  q  e.  A )  ->  (
q  pCnt  ( # `  B
) )  <_  (
q  pCnt  ( # `  ( G DProd  S ) ) ) )
7069adantlr 719 . . . . . . . 8  |-  ( ( ( ph  /\  q  e.  Prime )  /\  q  e.  A )  ->  (
q  pCnt  ( # `  B
) )  <_  (
q  pCnt  ( # `  ( G DProd  S ) ) ) )
7126, 70syldan 472 . . . . . . 7  |-  ( ( ( ph  /\  q  e.  Prime )  /\  q  ||  ( # `  B
) )  ->  (
q  pCnt  ( # `  B
) )  <_  (
q  pCnt  ( # `  ( G DProd  S ) ) ) )
72 pceq0 14783 . . . . . . . . . 10  |-  ( ( q  e.  Prime  /\  ( # `
 B )  e.  NN )  ->  (
( q  pCnt  ( # `
 B ) )  =  0  <->  -.  q  ||  ( # `  B
) ) )
7357, 64, 72syl2anc 665 . . . . . . . . 9  |-  ( (
ph  /\  q  e.  Prime )  ->  ( (
q  pCnt  ( # `  B
) )  =  0  <->  -.  q  ||  ( # `  B ) ) )
7473biimpar 487 . . . . . . . 8  |-  ( ( ( ph  /\  q  e.  Prime )  /\  -.  q  ||  ( # `  B
) )  ->  (
q  pCnt  ( # `  B
) )  =  0 )
75 eqid 2429 . . . . . . . . . . . . . . 15  |-  ( 0g
`  G )  =  ( 0g `  G
)
7675subg0cl 16776 . . . . . . . . . . . . . 14  |-  ( ( G DProd  S )  e.  (SubGrp `  G )  ->  ( 0g `  G
)  e.  ( G DProd 
S ) )
77 ne0i 3773 . . . . . . . . . . . . . 14  |-  ( ( 0g `  G )  e.  ( G DProd  S
)  ->  ( G DProd  S )  =/=  (/) )
7817, 76, 773syl 18 . . . . . . . . . . . . 13  |-  ( ph  ->  ( G DProd  S )  =/=  (/) )
79 hashnncl 12544 . . . . . . . . . . . . . 14  |-  ( ( G DProd  S )  e. 
Fin  ->  ( ( # `  ( G DProd  S ) )  e.  NN  <->  ( G DProd  S )  =/=  (/) ) )
806, 79syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( # `  ( G DProd  S ) )  e.  NN  <->  ( G DProd  S
)  =/=  (/) ) )
8178, 80mpbird 235 . . . . . . . . . . . 12  |-  ( ph  ->  ( # `  ( G DProd  S ) )  e.  NN )
8281adantr 466 . . . . . . . . . . 11  |-  ( (
ph  /\  q  e.  Prime )  ->  ( # `  ( G DProd  S ) )  e.  NN )
8357, 82pccld 14763 . . . . . . . . . 10  |-  ( (
ph  /\  q  e.  Prime )  ->  ( q  pCnt  ( # `  ( G DProd  S ) ) )  e.  NN0 )
8483nn0ge0d 10928 . . . . . . . . 9  |-  ( (
ph  /\  q  e.  Prime )  ->  0  <_  ( q  pCnt  ( # `  ( G DProd  S ) ) ) )
8584adantr 466 . . . . . . . 8  |-  ( ( ( ph  /\  q  e.  Prime )  /\  -.  q  ||  ( # `  B
) )  ->  0  <_  ( q  pCnt  ( # `
 ( G DProd  S
) ) ) )
8674, 85eqbrtrd 4446 . . . . . . 7  |-  ( ( ( ph  /\  q  e.  Prime )  /\  -.  q  ||  ( # `  B
) )  ->  (
q  pCnt  ( # `  B
) )  <_  (
q  pCnt  ( # `  ( G DProd  S ) ) ) )
8771, 86pm2.61dan 798 . . . . . 6  |-  ( (
ph  /\  q  e.  Prime )  ->  ( q  pCnt  ( # `  B
) )  <_  (
q  pCnt  ( # `  ( G DProd  S ) ) ) )
8887ralrimiva 2846 . . . . 5  |-  ( ph  ->  A. q  e.  Prime  ( q  pCnt  ( # `  B
) )  <_  (
q  pCnt  ( # `  ( G DProd  S ) ) ) )
8910nn0zd 11038 . . . . . 6  |-  ( ph  ->  ( # `  B
)  e.  ZZ )
90 pc2dvds 14791 . . . . . 6  |-  ( ( ( # `  B
)  e.  ZZ  /\  ( # `  ( G DProd 
S ) )  e.  ZZ )  ->  (
( # `  B ) 
||  ( # `  ( G DProd  S ) )  <->  A. q  e.  Prime  ( q  pCnt  (
# `  B )
)  <_  ( q  pCnt  ( # `  ( G DProd  S ) ) ) ) )
9189, 55, 90syl2anc 665 . . . . 5  |-  ( ph  ->  ( ( # `  B
)  ||  ( # `  ( G DProd  S ) )  <->  A. q  e.  Prime  ( q  pCnt  (
# `  B )
)  <_  ( q  pCnt  ( # `  ( G DProd  S ) ) ) ) )
9288, 91mpbird 235 . . . 4  |-  ( ph  ->  ( # `  B
)  ||  ( # `  ( G DProd  S ) ) )
93 dvdseq 14330 . . . 4  |-  ( ( ( ( # `  ( G DProd  S ) )  e. 
NN0  /\  ( # `  B
)  e.  NN0 )  /\  ( ( # `  ( G DProd  S ) )  ||  ( # `  B )  /\  ( # `  B
)  ||  ( # `  ( G DProd  S ) ) ) )  ->  ( # `  ( G DProd  S ) )  =  ( # `  B
) )
948, 10, 19, 92, 93syl22anc 1265 . . 3  |-  ( ph  ->  ( # `  ( G DProd  S ) )  =  ( # `  B
) )
95 hashen 12527 . . . 4  |-  ( ( ( G DProd  S )  e.  Fin  /\  B  e.  Fin )  ->  (
( # `  ( G DProd 
S ) )  =  ( # `  B
)  <->  ( G DProd  S
)  ~~  B )
)
966, 1, 95syl2anc 665 . . 3  |-  ( ph  ->  ( ( # `  ( G DProd  S ) )  =  ( # `  B
)  <->  ( G DProd  S
)  ~~  B )
)
9794, 96mpbid 213 . 2  |-  ( ph  ->  ( G DProd  S ) 
~~  B )
98 fisseneq 7789 . 2  |-  ( ( B  e.  Fin  /\  ( G DProd  S )  C_  B  /\  ( G DProd  S
)  ~~  B )  ->  ( G DProd  S )  =  B )
991, 4, 97, 98syl3anc 1264 1  |-  ( ph  ->  ( G DProd  S )  =  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1870    =/= wne 2625   A.wral 2782   {crab 2786   _Vcvv 3087    C_ wss 3442   (/)c0 3767   class class class wbr 4426    |-> cmpt 4484   dom cdm 4854   ` cfv 5601  (class class class)co 6305    ~~ cen 7574   Fincfn 7577   0cc0 9538    <_ cle 9675   NNcn 10609   NN0cn0 10869   ZZcz 10937   ^cexp 12269   #chash 12512    || cdvds 14283   Primecprime 14593    pCnt cpc 14749   Basecbs 15084   ↾s cress 15085   0gc0g 15297   Grpcgrp 16620  SubGrpcsubg 16762   odcod 17116   Abelcabl 17366   DProd cdprd 17560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-inf2 8146  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-iin 4305  df-disj 4398  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-se 4814  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-om 6707  df-1st 6807  df-2nd 6808  df-supp 6926  df-tpos 6981  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-2o 7191  df-oadd 7194  df-omul 7195  df-er 7371  df-ec 7373  df-qs 7377  df-map 7482  df-ixp 7531  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-fsupp 7890  df-sup 7962  df-inf 7963  df-oi 8025  df-card 8372  df-acn 8375  df-cda 8596  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-q 11265  df-rp 11303  df-fz 11783  df-fzo 11914  df-fl 12025  df-mod 12094  df-seq 12211  df-exp 12270  df-fac 12457  df-bc 12485  df-hash 12513  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278  df-clim 13530  df-sum 13731  df-dvds 14284  df-gcd 14443  df-prm 14594  df-pc 14750  df-ndx 15087  df-slot 15088  df-base 15089  df-sets 15090  df-ress 15091  df-plusg 15165  df-0g 15299  df-gsum 15300  df-mre 15443  df-mrc 15444  df-acs 15446  df-mgm 16439  df-sgrp 16478  df-mnd 16488  df-mhm 16533  df-submnd 16534  df-grp 16624  df-minusg 16625  df-sbg 16626  df-mulg 16627  df-subg 16765  df-eqg 16767  df-ghm 16832  df-gim 16874  df-ga 16895  df-cntz 16922  df-oppg 16948  df-od 17120  df-lsm 17223  df-pj1 17224  df-cmn 17367  df-abl 17368  df-dprd 17562
This theorem is referenced by:  ablfaclem2  17654
  Copyright terms: Public domain W3C validator