Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablcmn Structured version   Unicode version

Theorem ablcmn 17371
 Description: An Abelian group is a commutative monoid. (Contributed by Mario Carneiro, 6-Jan-2015.)
Assertion
Ref Expression
ablcmn CMnd

Proof of Theorem ablcmn
StepHypRef Expression
1 isabl 17369 . 2 CMnd
21simprbi 465 1 CMnd
 Colors of variables: wff setvar class Syntax hints:   wi 4   wcel 1870  cgrp 16620  CMndccmn 17365  cabl 17366 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407 This theorem depends on definitions:  df-bi 188  df-an 372  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-v 3089  df-in 3449  df-abl 17368 This theorem is referenced by:  ablcom  17382  abl32  17386  ablsub4  17390  mulgdi  17402  ghmabl  17408  ghmplusg  17419  ablcntzd  17430  prdsabld  17435  gsumsubgcl  17488  gsummulgz  17511  gsuminv  17514  gsumsub  17516  telgsumfzslem  17553  telgsums  17558  ringcmn  17746  lmodcmn  18071  lgseisenlem4  24143
 Copyright terms: Public domain W3C validator