MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abladdsub4 Structured version   Unicode version

Theorem abladdsub4 16308
Description: Abelian group addition/subtraction law. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
ablsubadd.b  |-  B  =  ( Base `  G
)
ablsubadd.p  |-  .+  =  ( +g  `  G )
ablsubadd.m  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
abladdsub4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .+  Y
)  =  ( Z 
.+  W )  <->  ( X  .-  Z )  =  ( W  .-  Y ) ) )

Proof of Theorem abladdsub4
StepHypRef Expression
1 ablgrp 16287 . . . 4  |-  ( G  e.  Abel  ->  G  e. 
Grp )
213ad2ant1 1009 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  G  e.  Grp )
3 simp2l 1014 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  X  e.  B )
4 simp2r 1015 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  Y  e.  B )
5 ablsubadd.b . . . . 5  |-  B  =  ( Base `  G
)
6 ablsubadd.p . . . . 5  |-  .+  =  ( +g  `  G )
75, 6grpcl 15556 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y
)  e.  B )
82, 3, 4, 7syl3anc 1218 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  ( X  .+  Y )  e.  B )
9 simp3l 1016 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  Z  e.  B )
10 simp3r 1017 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  W  e.  B )
115, 6grpcl 15556 . . . 4  |-  ( ( G  e.  Grp  /\  Z  e.  B  /\  W  e.  B )  ->  ( Z  .+  W
)  e.  B )
122, 9, 10, 11syl3anc 1218 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  ( Z  .+  W )  e.  B )
135, 6grpcl 15556 . . . 4  |-  ( ( G  e.  Grp  /\  Z  e.  B  /\  Y  e.  B )  ->  ( Z  .+  Y
)  e.  B )
142, 9, 4, 13syl3anc 1218 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  ( Z  .+  Y )  e.  B )
15 ablsubadd.m . . . 4  |-  .-  =  ( -g `  G )
165, 15grpsubrcan 15612 . . 3  |-  ( ( G  e.  Grp  /\  ( ( X  .+  Y )  e.  B  /\  ( Z  .+  W
)  e.  B  /\  ( Z  .+  Y )  e.  B ) )  ->  ( ( ( X  .+  Y ) 
.-  ( Z  .+  Y ) )  =  ( ( Z  .+  W )  .-  ( Z  .+  Y ) )  <-> 
( X  .+  Y
)  =  ( Z 
.+  W ) ) )
172, 8, 12, 14, 16syl13anc 1220 . 2  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( ( X  .+  Y )  .-  ( Z  .+  Y ) )  =  ( ( Z 
.+  W )  .-  ( Z  .+  Y ) )  <->  ( X  .+  Y )  =  ( Z  .+  W ) ) )
18 simp1 988 . . . . 5  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  G  e.  Abel )
195, 6, 15ablsub4 16307 . . . . 5  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  Y  e.  B
) )  ->  (
( X  .+  Y
)  .-  ( Z  .+  Y ) )  =  ( ( X  .-  Z )  .+  ( Y  .-  Y ) ) )
2018, 3, 4, 9, 4, 19syl122anc 1227 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .+  Y
)  .-  ( Z  .+  Y ) )  =  ( ( X  .-  Z )  .+  ( Y  .-  Y ) ) )
21 eqid 2443 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
225, 21, 15grpsubid 15615 . . . . . 6  |-  ( ( G  e.  Grp  /\  Y  e.  B )  ->  ( Y  .-  Y
)  =  ( 0g
`  G ) )
232, 4, 22syl2anc 661 . . . . 5  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  ( Y  .-  Y )  =  ( 0g `  G
) )
2423oveq2d 6112 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .-  Z
)  .+  ( Y  .-  Y ) )  =  ( ( X  .-  Z )  .+  ( 0g `  G ) ) )
255, 15grpsubcl 15611 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .-  Z
)  e.  B )
262, 3, 9, 25syl3anc 1218 . . . . 5  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  ( X  .-  Z )  e.  B )
275, 6, 21grprid 15574 . . . . 5  |-  ( ( G  e.  Grp  /\  ( X  .-  Z )  e.  B )  -> 
( ( X  .-  Z )  .+  ( 0g `  G ) )  =  ( X  .-  Z ) )
282, 26, 27syl2anc 661 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .-  Z
)  .+  ( 0g `  G ) )  =  ( X  .-  Z
) )
2920, 24, 283eqtrd 2479 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .+  Y
)  .-  ( Z  .+  Y ) )  =  ( X  .-  Z
) )
305, 6, 15ablsub4 16307 . . . . 5  |-  ( ( G  e.  Abel  /\  ( Z  e.  B  /\  W  e.  B )  /\  ( Z  e.  B  /\  Y  e.  B
) )  ->  (
( Z  .+  W
)  .-  ( Z  .+  Y ) )  =  ( ( Z  .-  Z )  .+  ( W  .-  Y ) ) )
3118, 9, 10, 9, 4, 30syl122anc 1227 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( Z  .+  W
)  .-  ( Z  .+  Y ) )  =  ( ( Z  .-  Z )  .+  ( W  .-  Y ) ) )
325, 21, 15grpsubid 15615 . . . . . 6  |-  ( ( G  e.  Grp  /\  Z  e.  B )  ->  ( Z  .-  Z
)  =  ( 0g
`  G ) )
332, 9, 32syl2anc 661 . . . . 5  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  ( Z  .-  Z )  =  ( 0g `  G
) )
3433oveq1d 6111 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( Z  .-  Z
)  .+  ( W  .-  Y ) )  =  ( ( 0g `  G )  .+  ( W  .-  Y ) ) )
355, 15grpsubcl 15611 . . . . . 6  |-  ( ( G  e.  Grp  /\  W  e.  B  /\  Y  e.  B )  ->  ( W  .-  Y
)  e.  B )
362, 10, 4, 35syl3anc 1218 . . . . 5  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  ( W  .-  Y )  e.  B )
375, 6, 21grplid 15573 . . . . 5  |-  ( ( G  e.  Grp  /\  ( W  .-  Y )  e.  B )  -> 
( ( 0g `  G )  .+  ( W  .-  Y ) )  =  ( W  .-  Y ) )
382, 36, 37syl2anc 661 . . . 4  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( 0g `  G
)  .+  ( W  .-  Y ) )  =  ( W  .-  Y
) )
3931, 34, 383eqtrd 2479 . . 3  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( Z  .+  W
)  .-  ( Z  .+  Y ) )  =  ( W  .-  Y
) )
4029, 39eqeq12d 2457 . 2  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( ( X  .+  Y )  .-  ( Z  .+  Y ) )  =  ( ( Z 
.+  W )  .-  ( Z  .+  Y ) )  <->  ( X  .-  Z )  =  ( W  .-  Y ) ) )
4117, 40bitr3d 255 1  |-  ( ( G  e.  Abel  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .+  Y
)  =  ( Z 
.+  W )  <->  ( X  .-  Z )  =  ( W  .-  Y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   ` cfv 5423  (class class class)co 6096   Basecbs 14179   +g cplusg 14243   0gc0g 14383   Grpcgrp 15415   -gcsg 15418   Abelcabel 16283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-1st 6582  df-2nd 6583  df-0g 14385  df-mnd 15420  df-grp 15550  df-minusg 15551  df-sbg 15552  df-cmn 16284  df-abl 16285
This theorem is referenced by:  lmodvaddsub4  17002
  Copyright terms: Public domain W3C validator