MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abianfplem Unicode version

Theorem abianfplem 6674
Description: Lemma for abianfp 6675. We prove by transfinite induction that if  F has a fixed point  x, then its iterates also equal  x. This lemma is used for the "trivial" direction of the main theorem. (Contributed by NM, 4-Sep-2004.)
Hypotheses
Ref Expression
abianfp.1  |-  A  e. 
_V
abianfp.2  |-  G  =  rec ( ( z  e.  _V  |->  ( F `
 z ) ) ,  x )
Assertion
Ref Expression
abianfplem  |-  ( v  e.  On  ->  (
( F `  x
)  =  x  -> 
( G `  v
)  =  x ) )
Distinct variable groups:    x, v    z, v, F    v, G
Allowed substitution hints:    A( x, z, v)    F( x)    G( x, z)

Proof of Theorem abianfplem
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fveq2 5687 . . 3  |-  ( v  =  (/)  ->  ( G `
 v )  =  ( G `  (/) ) )
21eqeq1d 2412 . 2  |-  ( v  =  (/)  ->  ( ( G `  v )  =  x  <->  ( G `  (/) )  =  x ) )
3 fveq2 5687 . . 3  |-  ( v  =  y  ->  ( G `  v )  =  ( G `  y ) )
43eqeq1d 2412 . 2  |-  ( v  =  y  ->  (
( G `  v
)  =  x  <->  ( G `  y )  =  x ) )
5 fveq2 5687 . . 3  |-  ( v  =  suc  y  -> 
( G `  v
)  =  ( G `
 suc  y )
)
65eqeq1d 2412 . 2  |-  ( v  =  suc  y  -> 
( ( G `  v )  =  x  <-> 
( G `  suc  y )  =  x ) )
7 abianfp.2 . . . . 5  |-  G  =  rec ( ( z  e.  _V  |->  ( F `
 z ) ) ,  x )
87fveq1i 5688 . . . 4  |-  ( G `
 (/) )  =  ( rec ( ( z  e.  _V  |->  ( F `
 z ) ) ,  x ) `  (/) )
9 vex 2919 . . . . 5  |-  x  e. 
_V
109rdg0 6638 . . . 4  |-  ( rec ( ( z  e. 
_V  |->  ( F `  z ) ) ,  x ) `  (/) )  =  x
118, 10eqtri 2424 . . 3  |-  ( G `
 (/) )  =  x
1211a1i 11 . 2  |-  ( ( F `  x )  =  x  ->  ( G `  (/) )  =  x )
13 fvex 5701 . . . . 5  |-  ( F `
 ( G `  y ) )  e. 
_V
14 fveq2 5687 . . . . . 6  |-  ( v  =  z  ->  ( F `  v )  =  ( F `  z ) )
15 fveq2 5687 . . . . . 6  |-  ( v  =  ( G `  y )  ->  ( F `  v )  =  ( F `  ( G `  y ) ) )
167, 14, 15rdgsucmpt2 6647 . . . . 5  |-  ( ( y  e.  On  /\  ( F `  ( G `
 y ) )  e.  _V )  -> 
( G `  suc  y )  =  ( F `  ( G `
 y ) ) )
1713, 16mpan2 653 . . . 4  |-  ( y  e.  On  ->  ( G `  suc  y )  =  ( F `  ( G `  y ) ) )
18 fveq2 5687 . . . . 5  |-  ( ( G `  y )  =  x  ->  ( F `  ( G `  y ) )  =  ( F `  x
) )
19 id 20 . . . . 5  |-  ( ( F `  x )  =  x  ->  ( F `  x )  =  x )
2018, 19sylan9eqr 2458 . . . 4  |-  ( ( ( F `  x
)  =  x  /\  ( G `  y )  =  x )  -> 
( F `  ( G `  y )
)  =  x )
2117, 20sylan9eq 2456 . . 3  |-  ( ( y  e.  On  /\  ( ( F `  x )  =  x  /\  ( G `  y )  =  x ) )  ->  ( G `  suc  y )  =  x )
2221exp32 589 . 2  |-  ( y  e.  On  ->  (
( F `  x
)  =  x  -> 
( ( G `  y )  =  x  ->  ( G `  suc  y )  =  x ) ) )
23 vex 2919 . . . . . . . 8  |-  v  e. 
_V
24 rdglim2a 6650 . . . . . . . 8  |-  ( ( v  e.  _V  /\  Lim  v )  ->  ( rec ( ( z  e. 
_V  |->  ( F `  z ) ) ,  x ) `  v
)  =  U_ y  e.  v  ( rec ( ( z  e. 
_V  |->  ( F `  z ) ) ,  x ) `  y
) )
2523, 24mpan 652 . . . . . . 7  |-  ( Lim  v  ->  ( rec ( ( z  e. 
_V  |->  ( F `  z ) ) ,  x ) `  v
)  =  U_ y  e.  v  ( rec ( ( z  e. 
_V  |->  ( F `  z ) ) ,  x ) `  y
) )
267fveq1i 5688 . . . . . . 7  |-  ( G `
 v )  =  ( rec ( ( z  e.  _V  |->  ( F `  z ) ) ,  x ) `
 v )
277fveq1i 5688 . . . . . . . . 9  |-  ( G `
 y )  =  ( rec ( ( z  e.  _V  |->  ( F `  z ) ) ,  x ) `
 y )
2827a1i 11 . . . . . . . 8  |-  ( y  e.  v  ->  ( G `  y )  =  ( rec (
( z  e.  _V  |->  ( F `  z ) ) ,  x ) `
 y ) )
2928iuneq2i 4071 . . . . . . 7  |-  U_ y  e.  v  ( G `  y )  =  U_ y  e.  v  ( rec ( ( z  e. 
_V  |->  ( F `  z ) ) ,  x ) `  y
)
3025, 26, 293eqtr4g 2461 . . . . . 6  |-  ( Lim  v  ->  ( G `  v )  =  U_ y  e.  v  ( G `  y )
)
3130adantr 452 . . . . 5  |-  ( ( Lim  v  /\  A. y  e.  v  ( G `  y )  =  x )  ->  ( G `  v )  =  U_ y  e.  v  ( G `  y
) )
32 iuneq2 4069 . . . . . 6  |-  ( A. y  e.  v  ( G `  y )  =  x  ->  U_ y  e.  v  ( G `  y )  =  U_ y  e.  v  x
)
33 df-lim 4546 . . . . . . . 8  |-  ( Lim  v  <->  ( Ord  v  /\  v  =/=  (/)  /\  v  =  U. v ) )
3433simp2bi 973 . . . . . . 7  |-  ( Lim  v  ->  v  =/=  (/) )
35 iunconst 4061 . . . . . . 7  |-  ( v  =/=  (/)  ->  U_ y  e.  v  x  =  x )
3634, 35syl 16 . . . . . 6  |-  ( Lim  v  ->  U_ y  e.  v  x  =  x )
3732, 36sylan9eqr 2458 . . . . 5  |-  ( ( Lim  v  /\  A. y  e.  v  ( G `  y )  =  x )  ->  U_ y  e.  v  ( G `  y )  =  x )
3831, 37eqtrd 2436 . . . 4  |-  ( ( Lim  v  /\  A. y  e.  v  ( G `  y )  =  x )  ->  ( G `  v )  =  x )
3938ex 424 . . 3  |-  ( Lim  v  ->  ( A. y  e.  v  ( G `  y )  =  x  ->  ( G `
 v )  =  x ) )
4039a1d 23 . 2  |-  ( Lim  v  ->  ( ( F `  x )  =  x  ->  ( A. y  e.  v  ( G `  y )  =  x  ->  ( G `
 v )  =  x ) ) )
412, 4, 6, 12, 22, 40tfinds2 4802 1  |-  ( v  e.  On  ->  (
( F `  x
)  =  x  -> 
( G `  v
)  =  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   _Vcvv 2916   (/)c0 3588   U.cuni 3975   U_ciun 4053    e. cmpt 4226   Ord word 4540   Oncon0 4541   Lim wlim 4542   suc csuc 4543   ` cfv 5413   reccrdg 6626
This theorem is referenced by:  abianfp  6675
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-recs 6592  df-rdg 6627
  Copyright terms: Public domain W3C validator