Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  abeq1 Structured version   Unicode version

Theorem abeq1 2548
 Description: Equality of a class variable and a class abstraction. (Contributed by NM, 20-Aug-1993.)
Assertion
Ref Expression
abeq1
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem abeq1
StepHypRef Expression
1 abeq2 2547 . 2
2 eqcom 2432 . 2
3 bicom 204 . . 3
43albii 1688 . 2
51, 2, 43bitr4i 281 1
 Colors of variables: wff setvar class Syntax hints:   wb 188  wal 1436   wceq 1438   wcel 1869  cab 2408 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401 This theorem depends on definitions:  df-bi 189  df-an 373  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-clab 2409  df-cleq 2415  df-clel 2418 This theorem is referenced by:  abbi1dvOLD  2562  disj  3834  euabsn2  4069  dm0rn0  5068  dffo3  6050  dfsup2  7962  rankf  8268  dfon3  30658  dfiota3  30689  dffo3f  37344
 Copyright terms: Public domain W3C validator