Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  abeq1 Structured version   Unicode version

Theorem abeq1 2585
 Description: Equality of a class variable and a class abstraction. (Contributed by NM, 20-Aug-1993.)
Assertion
Ref Expression
abeq1
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem abeq1
StepHypRef Expression
1 abeq2 2584 . 2
2 eqcom 2469 . 2
3 bicom 200 . . 3
43albii 1615 . 2
51, 2, 43bitr4i 277 1
 Colors of variables: wff setvar class Syntax hints:   wb 184  wal 1372   wceq 1374   wcel 1762  cab 2445 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-clab 2446  df-cleq 2452  df-clel 2455 This theorem is referenced by:  abbi1dvOLD  2599  disj  3860  euabsn2  4091  dm0rn0  5210  dffo3  6027  dfsup2  7891  dfsup2OLD  7892  rankf  8201  dfon3  29105  dfiota3  29136
 Copyright terms: Public domain W3C validator