MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem5 Structured version   Unicode version

Theorem abelthlem5 21785
Description: Lemma for abelth 21791. (Contributed by Mario Carneiro, 1-Apr-2015.)
Hypotheses
Ref Expression
abelth.1  |-  ( ph  ->  A : NN0 --> CC )
abelth.2  |-  ( ph  ->  seq 0 (  +  ,  A )  e. 
dom 
~~>  )
abelth.3  |-  ( ph  ->  M  e.  RR )
abelth.4  |-  ( ph  ->  0  <_  M )
abelth.5  |-  S  =  { z  e.  CC  |  ( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) }
abelth.6  |-  F  =  ( x  e.  S  |-> 
sum_ n  e.  NN0  ( ( A `  n )  x.  (
x ^ n ) ) )
abelth.7  |-  ( ph  ->  seq 0 (  +  ,  A )  ~~>  0 )
Assertion
Ref Expression
abelthlem5  |-  ( (
ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  ->  seq 0
(  +  ,  ( k  e.  NN0  |->  ( (  seq 0 (  +  ,  A ) `  k )  x.  ( X ^ k ) ) ) )  e.  dom  ~~>  )
Distinct variable groups:    k, n, x, z, M    k, X, n, x, z    A, k, n, x, z    ph, k, n, x    S, k, n, x
Allowed substitution hints:    ph( z)    S( z)    F( x, z, k, n)

Proof of Theorem abelthlem5
Dummy variables  i 
j  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 10883 . . . 4  |-  NN0  =  ( ZZ>= `  0 )
2 0zd 10646 . . . 4  |-  ( ph  ->  0  e.  ZZ )
3 1rp 10983 . . . . 5  |-  1  e.  RR+
43a1i 11 . . . 4  |-  ( ph  ->  1  e.  RR+ )
5 eqidd 2434 . . . 4  |-  ( (
ph  /\  m  e.  NN0 )  ->  (  seq 0 (  +  ,  A ) `  m
)  =  (  seq 0 (  +  ,  A ) `  m
) )
6 abelth.7 . . . 4  |-  ( ph  ->  seq 0 (  +  ,  A )  ~~>  0 )
71, 2, 4, 5, 6climi0 12974 . . 3  |-  ( ph  ->  E. j  e.  NN0  A. m  e.  ( ZZ>= `  j ) ( abs `  (  seq 0
(  +  ,  A
) `  m )
)  <  1 )
87adantr 462 . 2  |-  ( (
ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  ->  E. j  e.  NN0  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
)
9 simprl 748 . . 3  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  j  e.  NN0 )
10 oveq2 6088 . . . . . 6  |-  ( n  =  i  ->  (
( abs `  X
) ^ n )  =  ( ( abs `  X ) ^ i
) )
11 eqid 2433 . . . . . 6  |-  ( n  e.  NN0  |->  ( ( abs `  X ) ^ n ) )  =  ( n  e. 
NN0  |->  ( ( abs `  X ) ^ n
) )
12 ovex 6105 . . . . . 6  |-  ( ( abs `  X ) ^ i )  e. 
_V
1310, 11, 12fvmpt 5762 . . . . 5  |-  ( i  e.  NN0  ->  ( ( n  e.  NN0  |->  ( ( abs `  X ) ^ n ) ) `
 i )  =  ( ( abs `  X
) ^ i ) )
1413adantl 463 . . . 4  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  (
( n  e.  NN0  |->  ( ( abs `  X
) ^ n ) ) `  i )  =  ( ( abs `  X ) ^ i
) )
15 cnxmet 20194 . . . . . . . 8  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
16 0cn 9366 . . . . . . . 8  |-  0  e.  CC
17 rpxr 10986 . . . . . . . . 9  |-  ( 1  e.  RR+  ->  1  e. 
RR* )
183, 17ax-mp 5 . . . . . . . 8  |-  1  e.  RR*
19 blssm 19835 . . . . . . . 8  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  0  e.  CC  /\  1  e.  RR* )  ->  (
0 ( ball `  ( abs  o.  -  ) ) 1 )  C_  CC )
2015, 16, 18, 19mp3an 1307 . . . . . . 7  |-  ( 0 ( ball `  ( abs  o.  -  ) ) 1 )  C_  CC
21 simplr 747 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )
2220, 21sseldi 3342 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  X  e.  CC )
2322abscld 12906 . . . . 5  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( abs `  X )  e.  RR )
24 reexpcl 11866 . . . . 5  |-  ( ( ( abs `  X
)  e.  RR  /\  i  e.  NN0 )  -> 
( ( abs `  X
) ^ i )  e.  RR )
2523, 24sylan 468 . . . 4  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  (
( abs `  X
) ^ i )  e.  RR )
2614, 25eqeltrd 2507 . . 3  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  (
( n  e.  NN0  |->  ( ( abs `  X
) ^ n ) ) `  i )  e.  RR )
27 fveq2 5679 . . . . . . 7  |-  ( k  =  i  ->  (  seq 0 (  +  ,  A ) `  k
)  =  (  seq 0 (  +  ,  A ) `  i
) )
28 oveq2 6088 . . . . . . 7  |-  ( k  =  i  ->  ( X ^ k )  =  ( X ^ i
) )
2927, 28oveq12d 6098 . . . . . 6  |-  ( k  =  i  ->  (
(  seq 0 (  +  ,  A ) `  k )  x.  ( X ^ k ) )  =  ( (  seq 0 (  +  ,  A ) `  i
)  x.  ( X ^ i ) ) )
30 eqid 2433 . . . . . 6  |-  ( k  e.  NN0  |->  ( (  seq 0 (  +  ,  A ) `  k )  x.  ( X ^ k ) ) )  =  ( k  e.  NN0  |->  ( (  seq 0 (  +  ,  A ) `  k )  x.  ( X ^ k ) ) )
31 ovex 6105 . . . . . 6  |-  ( (  seq 0 (  +  ,  A ) `  i )  x.  ( X ^ i ) )  e.  _V
3229, 30, 31fvmpt 5762 . . . . 5  |-  ( i  e.  NN0  ->  ( ( k  e.  NN0  |->  ( (  seq 0 (  +  ,  A ) `  k )  x.  ( X ^ k ) ) ) `  i )  =  ( (  seq 0 (  +  ,  A ) `  i
)  x.  ( X ^ i ) ) )
3332adantl 463 . . . 4  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  (
( k  e.  NN0  |->  ( (  seq 0
(  +  ,  A
) `  k )  x.  ( X ^ k
) ) ) `  i )  =  ( (  seq 0 (  +  ,  A ) `
 i )  x.  ( X ^ i
) ) )
34 abelth.1 . . . . . . . . 9  |-  ( ph  ->  A : NN0 --> CC )
3534ffvelrnda 5831 . . . . . . . 8  |-  ( (
ph  /\  x  e.  NN0 )  ->  ( A `  x )  e.  CC )
361, 2, 35serf 11818 . . . . . . 7  |-  ( ph  ->  seq 0 (  +  ,  A ) : NN0 --> CC )
3736ad2antrr 718 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  seq 0 (  +  ,  A ) : NN0 --> CC )
3837ffvelrnda 5831 . . . . 5  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  (  seq 0 (  +  ,  A ) `  i
)  e.  CC )
39 expcl 11867 . . . . . 6  |-  ( ( X  e.  CC  /\  i  e.  NN0 )  -> 
( X ^ i
)  e.  CC )
4022, 39sylan 468 . . . . 5  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  ( X ^ i )  e.  CC )
4138, 40mulcld 9394 . . . 4  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  (
(  seq 0 (  +  ,  A ) `  i )  x.  ( X ^ i ) )  e.  CC )
4233, 41eqeltrd 2507 . . 3  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  (
( k  e.  NN0  |->  ( (  seq 0
(  +  ,  A
) `  k )  x.  ( X ^ k
) ) ) `  i )  e.  CC )
4323recnd 9400 . . . . 5  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( abs `  X )  e.  CC )
44 absidm 12795 . . . . . . 7  |-  ( X  e.  CC  ->  ( abs `  ( abs `  X
) )  =  ( abs `  X ) )
4522, 44syl 16 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( abs `  ( abs `  X
) )  =  ( abs `  X ) )
46 eqid 2433 . . . . . . . . . 10  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
4746cnmetdval 20192 . . . . . . . . 9  |-  ( ( X  e.  CC  /\  0  e.  CC )  ->  ( X ( abs 
o.  -  ) 0 )  =  ( abs `  ( X  -  0 ) ) )
4822, 16, 47sylancl 655 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( X ( abs  o.  -  ) 0 )  =  ( abs `  ( X  -  0 ) ) )
4922subid1d 9696 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( X  -  0 )  =  X )
5049fveq2d 5683 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( abs `  ( X  - 
0 ) )  =  ( abs `  X
) )
5148, 50eqtrd 2465 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( X ( abs  o.  -  ) 0 )  =  ( abs `  X
) )
52 elbl3 19809 . . . . . . . . . 10  |-  ( ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  1  e.  RR* )  /\  ( 0  e.  CC  /\  X  e.  CC ) )  -> 
( X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 )  <->  ( X
( abs  o.  -  )
0 )  <  1
) )
5315, 18, 52mpanl12 675 . . . . . . . . 9  |-  ( ( 0  e.  CC  /\  X  e.  CC )  ->  ( X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 )  <->  ( X
( abs  o.  -  )
0 )  <  1
) )
5416, 22, 53sylancr 656 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 )  <->  ( X
( abs  o.  -  )
0 )  <  1
) )
5521, 54mpbid 210 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( X ( abs  o.  -  ) 0 )  <  1 )
5651, 55eqbrtrrd 4302 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( abs `  X )  <  1 )
5745, 56eqbrtrd 4300 . . . . 5  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( abs `  ( abs `  X
) )  <  1
)
5843, 57, 14geolim 13313 . . . 4  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( abs `  X
) ^ n ) ) )  ~~>  ( 1  /  ( 1  -  ( abs `  X
) ) ) )
59 climrel 12954 . . . . 5  |-  Rel  ~~>
6059releldmi 5063 . . . 4  |-  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( abs `  X
) ^ n ) ) )  ~~>  ( 1  /  ( 1  -  ( abs `  X
) ) )  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( abs `  X
) ^ n ) ) )  e.  dom  ~~>  )
6158, 60syl 16 . . 3  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( abs `  X
) ^ n ) ) )  e.  dom  ~~>  )
62 1red 9389 . . 3  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  1  e.  RR )
6337adantr 462 . . . . . . . 8  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  seq 0
(  +  ,  A
) : NN0 --> CC )
64 eluznn0 10912 . . . . . . . . 9  |-  ( ( j  e.  NN0  /\  i  e.  ( ZZ>= `  j ) )  -> 
i  e.  NN0 )
659, 64sylan 468 . . . . . . . 8  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  i  e.  NN0 )
6663, 65ffvelrnd 5832 . . . . . . 7  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  (  seq 0 (  +  ,  A ) `  i
)  e.  CC )
6765, 40syldan 467 . . . . . . 7  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( X ^ i )  e.  CC )
6866, 67absmuld 12924 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( (  seq 0
(  +  ,  A
) `  i )  x.  ( X ^ i
) ) )  =  ( ( abs `  (  seq 0 (  +  ,  A ) `  i
) )  x.  ( abs `  ( X ^
i ) ) ) )
6922adantr 462 . . . . . . . 8  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  X  e.  CC )
7069, 65absexpd 12922 . . . . . . 7  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( X ^ i
) )  =  ( ( abs `  X
) ^ i ) )
7170oveq2d 6096 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  (  seq 0
(  +  ,  A
) `  i )
)  x.  ( abs `  ( X ^ i
) ) )  =  ( ( abs `  (  seq 0 (  +  ,  A ) `  i
) )  x.  (
( abs `  X
) ^ i ) ) )
7268, 71eqtrd 2465 . . . . 5  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( (  seq 0
(  +  ,  A
) `  i )  x.  ( X ^ i
) ) )  =  ( ( abs `  (  seq 0 (  +  ,  A ) `  i
) )  x.  (
( abs `  X
) ^ i ) ) )
7366abscld 12906 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  (  seq 0 (  +  ,  A ) `
 i ) )  e.  RR )
74 1red 9389 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  1  e.  RR )
7565, 25syldan 467 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  X ) ^
i )  e.  RR )
7667absge0d 12914 . . . . . . 7  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  0  <_  ( abs `  ( X ^ i ) ) )
7776, 70breqtrd 4304 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  0  <_  ( ( abs `  X
) ^ i ) )
78 simprr 749 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
)
79 fveq2 5679 . . . . . . . . . . 11  |-  ( m  =  i  ->  (  seq 0 (  +  ,  A ) `  m
)  =  (  seq 0 (  +  ,  A ) `  i
) )
8079fveq2d 5683 . . . . . . . . . 10  |-  ( m  =  i  ->  ( abs `  (  seq 0
(  +  ,  A
) `  m )
)  =  ( abs `  (  seq 0
(  +  ,  A
) `  i )
) )
8180breq1d 4290 . . . . . . . . 9  |-  ( m  =  i  ->  (
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1  <->  ( abs `  (  seq 0 (  +  ,  A ) `  i
) )  <  1
) )
8281rspccva 3061 . . . . . . . 8  |-  ( ( A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1  /\  i  e.  ( ZZ>=
`  j ) )  ->  ( abs `  (  seq 0 (  +  ,  A ) `  i
) )  <  1
)
8378, 82sylan 468 . . . . . . 7  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  (  seq 0 (  +  ,  A ) `
 i ) )  <  1 )
84 1re 9373 . . . . . . . 8  |-  1  e.  RR
85 ltle 9451 . . . . . . . 8  |-  ( ( ( abs `  (  seq 0 (  +  ,  A ) `  i
) )  e.  RR  /\  1  e.  RR )  ->  ( ( abs `  (  seq 0
(  +  ,  A
) `  i )
)  <  1  ->  ( abs `  (  seq 0 (  +  ,  A ) `  i
) )  <_  1
) )
8673, 84, 85sylancl 655 . . . . . . 7  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  (  seq 0
(  +  ,  A
) `  i )
)  <  1  ->  ( abs `  (  seq 0 (  +  ,  A ) `  i
) )  <_  1
) )
8783, 86mpd 15 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  (  seq 0 (  +  ,  A ) `
 i ) )  <_  1 )
8873, 74, 75, 77, 87lemul1ad 10260 . . . . 5  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  (  seq 0
(  +  ,  A
) `  i )
)  x.  ( ( abs `  X ) ^ i ) )  <_  ( 1  x.  ( ( abs `  X
) ^ i ) ) )
8972, 88eqbrtrd 4300 . . . 4  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( (  seq 0
(  +  ,  A
) `  i )  x.  ( X ^ i
) ) )  <_ 
( 1  x.  (
( abs `  X
) ^ i ) ) )
9065, 32syl 16 . . . . 5  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( (
k  e.  NN0  |->  ( (  seq 0 (  +  ,  A ) `  k )  x.  ( X ^ k ) ) ) `  i )  =  ( (  seq 0 (  +  ,  A ) `  i
)  x.  ( X ^ i ) ) )
9190fveq2d 5683 . . . 4  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( ( k  e. 
NN0  |->  ( (  seq 0 (  +  ,  A ) `  k
)  x.  ( X ^ k ) ) ) `  i ) )  =  ( abs `  ( (  seq 0
(  +  ,  A
) `  i )  x.  ( X ^ i
) ) ) )
9265, 13syl 16 . . . . 5  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( (
n  e.  NN0  |->  ( ( abs `  X ) ^ n ) ) `
 i )  =  ( ( abs `  X
) ^ i ) )
9392oveq2d 6096 . . . 4  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( 1  x.  ( ( n  e.  NN0  |->  ( ( abs `  X ) ^ n ) ) `
 i ) )  =  ( 1  x.  ( ( abs `  X
) ^ i ) ) )
9489, 91, 933brtr4d 4310 . . 3  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( ( k  e. 
NN0  |->  ( (  seq 0 (  +  ,  A ) `  k
)  x.  ( X ^ k ) ) ) `  i ) )  <_  ( 1  x.  ( ( n  e.  NN0  |->  ( ( abs `  X ) ^ n ) ) `
 i ) ) )
951, 9, 26, 42, 61, 62, 94cvgcmpce 13264 . 2  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  seq 0 (  +  , 
( k  e.  NN0  |->  ( (  seq 0
(  +  ,  A
) `  k )  x.  ( X ^ k
) ) ) )  e.  dom  ~~>  )
968, 95rexlimddv 2835 1  |-  ( (
ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  ->  seq 0
(  +  ,  ( k  e.  NN0  |->  ( (  seq 0 (  +  ,  A ) `  k )  x.  ( X ^ k ) ) ) )  e.  dom  ~~>  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1362    e. wcel 1755   A.wral 2705   E.wrex 2706   {crab 2709    C_ wss 3316   class class class wbr 4280    e. cmpt 4338   dom cdm 4827    o. ccom 4831   -->wf 5402   ` cfv 5406  (class class class)co 6080   CCcc 9268   RRcr 9269   0cc0 9270   1c1 9271    + caddc 9273    x. cmul 9275   RR*cxr 9405    < clt 9406    <_ cle 9407    - cmin 9583    / cdiv 9981   NN0cn0 10567   ZZ>=cuz 10849   RR+crp 10979    seqcseq 11790   ^cexp 11849   abscabs 12707    ~~> cli 12946   sum_csu 13147   *Metcxmt 17645   ballcbl 17647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347  ax-pre-sup 9348  ax-addf 9349  ax-mulf 9350
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-fal 1368  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-er 7089  df-map 7204  df-pm 7205  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-sup 7679  df-oi 7712  df-card 8097  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-div 9982  df-nn 10311  df-2 10368  df-3 10369  df-n0 10568  df-z 10635  df-uz 10850  df-rp 10980  df-xadd 11078  df-ico 11294  df-fz 11425  df-fzo 11533  df-fl 11626  df-seq 11791  df-exp 11850  df-hash 12088  df-cj 12572  df-re 12573  df-im 12574  df-sqr 12708  df-abs 12709  df-limsup 12933  df-clim 12950  df-rlim 12951  df-sum 13148  df-psmet 17653  df-xmet 17654  df-met 17655  df-bl 17656
This theorem is referenced by:  abelthlem6  21786  abelthlem7  21788
  Copyright terms: Public domain W3C validator