MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem5 Structured version   Unicode version

Theorem abelthlem5 23255
Description: Lemma for abelth 23261. (Contributed by Mario Carneiro, 1-Apr-2015.)
Hypotheses
Ref Expression
abelth.1  |-  ( ph  ->  A : NN0 --> CC )
abelth.2  |-  ( ph  ->  seq 0 (  +  ,  A )  e. 
dom 
~~>  )
abelth.3  |-  ( ph  ->  M  e.  RR )
abelth.4  |-  ( ph  ->  0  <_  M )
abelth.5  |-  S  =  { z  e.  CC  |  ( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) }
abelth.6  |-  F  =  ( x  e.  S  |-> 
sum_ n  e.  NN0  ( ( A `  n )  x.  (
x ^ n ) ) )
abelth.7  |-  ( ph  ->  seq 0 (  +  ,  A )  ~~>  0 )
Assertion
Ref Expression
abelthlem5  |-  ( (
ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  ->  seq 0
(  +  ,  ( k  e.  NN0  |->  ( (  seq 0 (  +  ,  A ) `  k )  x.  ( X ^ k ) ) ) )  e.  dom  ~~>  )
Distinct variable groups:    k, n, x, z, M    k, X, n, x, z    A, k, n, x, z    ph, k, n, x    S, k, n, x
Allowed substitution hints:    ph( z)    S( z)    F( x, z, k, n)

Proof of Theorem abelthlem5
Dummy variables  i 
j  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 11193 . . . 4  |-  NN0  =  ( ZZ>= `  0 )
2 0zd 10949 . . . 4  |-  ( ph  ->  0  e.  ZZ )
3 1rp 11306 . . . . 5  |-  1  e.  RR+
43a1i 11 . . . 4  |-  ( ph  ->  1  e.  RR+ )
5 eqidd 2430 . . . 4  |-  ( (
ph  /\  m  e.  NN0 )  ->  (  seq 0 (  +  ,  A ) `  m
)  =  (  seq 0 (  +  ,  A ) `  m
) )
6 abelth.7 . . . 4  |-  ( ph  ->  seq 0 (  +  ,  A )  ~~>  0 )
71, 2, 4, 5, 6climi0 13554 . . 3  |-  ( ph  ->  E. j  e.  NN0  A. m  e.  ( ZZ>= `  j ) ( abs `  (  seq 0
(  +  ,  A
) `  m )
)  <  1 )
87adantr 466 . 2  |-  ( (
ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  ->  E. j  e.  NN0  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
)
9 simprl 762 . . 3  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  j  e.  NN0 )
10 oveq2 6313 . . . . . 6  |-  ( n  =  i  ->  (
( abs `  X
) ^ n )  =  ( ( abs `  X ) ^ i
) )
11 eqid 2429 . . . . . 6  |-  ( n  e.  NN0  |->  ( ( abs `  X ) ^ n ) )  =  ( n  e. 
NN0  |->  ( ( abs `  X ) ^ n
) )
12 ovex 6333 . . . . . 6  |-  ( ( abs `  X ) ^ i )  e. 
_V
1310, 11, 12fvmpt 5964 . . . . 5  |-  ( i  e.  NN0  ->  ( ( n  e.  NN0  |->  ( ( abs `  X ) ^ n ) ) `
 i )  =  ( ( abs `  X
) ^ i ) )
1413adantl 467 . . . 4  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  (
( n  e.  NN0  |->  ( ( abs `  X
) ^ n ) ) `  i )  =  ( ( abs `  X ) ^ i
) )
15 cnxmet 21704 . . . . . . . 8  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
16 0cn 9634 . . . . . . . 8  |-  0  e.  CC
17 rpxr 11309 . . . . . . . . 9  |-  ( 1  e.  RR+  ->  1  e. 
RR* )
183, 17ax-mp 5 . . . . . . . 8  |-  1  e.  RR*
19 blssm 21364 . . . . . . . 8  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  0  e.  CC  /\  1  e.  RR* )  ->  (
0 ( ball `  ( abs  o.  -  ) ) 1 )  C_  CC )
2015, 16, 18, 19mp3an 1360 . . . . . . 7  |-  ( 0 ( ball `  ( abs  o.  -  ) ) 1 )  C_  CC
21 simplr 760 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )
2220, 21sseldi 3468 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  X  e.  CC )
2322abscld 13476 . . . . 5  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( abs `  X )  e.  RR )
24 reexpcl 12286 . . . . 5  |-  ( ( ( abs `  X
)  e.  RR  /\  i  e.  NN0 )  -> 
( ( abs `  X
) ^ i )  e.  RR )
2523, 24sylan 473 . . . 4  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  (
( abs `  X
) ^ i )  e.  RR )
2614, 25eqeltrd 2517 . . 3  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  (
( n  e.  NN0  |->  ( ( abs `  X
) ^ n ) ) `  i )  e.  RR )
27 fveq2 5881 . . . . . . 7  |-  ( k  =  i  ->  (  seq 0 (  +  ,  A ) `  k
)  =  (  seq 0 (  +  ,  A ) `  i
) )
28 oveq2 6313 . . . . . . 7  |-  ( k  =  i  ->  ( X ^ k )  =  ( X ^ i
) )
2927, 28oveq12d 6323 . . . . . 6  |-  ( k  =  i  ->  (
(  seq 0 (  +  ,  A ) `  k )  x.  ( X ^ k ) )  =  ( (  seq 0 (  +  ,  A ) `  i
)  x.  ( X ^ i ) ) )
30 eqid 2429 . . . . . 6  |-  ( k  e.  NN0  |->  ( (  seq 0 (  +  ,  A ) `  k )  x.  ( X ^ k ) ) )  =  ( k  e.  NN0  |->  ( (  seq 0 (  +  ,  A ) `  k )  x.  ( X ^ k ) ) )
31 ovex 6333 . . . . . 6  |-  ( (  seq 0 (  +  ,  A ) `  i )  x.  ( X ^ i ) )  e.  _V
3229, 30, 31fvmpt 5964 . . . . 5  |-  ( i  e.  NN0  ->  ( ( k  e.  NN0  |->  ( (  seq 0 (  +  ,  A ) `  k )  x.  ( X ^ k ) ) ) `  i )  =  ( (  seq 0 (  +  ,  A ) `  i
)  x.  ( X ^ i ) ) )
3332adantl 467 . . . 4  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  (
( k  e.  NN0  |->  ( (  seq 0
(  +  ,  A
) `  k )  x.  ( X ^ k
) ) ) `  i )  =  ( (  seq 0 (  +  ,  A ) `
 i )  x.  ( X ^ i
) ) )
34 abelth.1 . . . . . . . . 9  |-  ( ph  ->  A : NN0 --> CC )
3534ffvelrnda 6037 . . . . . . . 8  |-  ( (
ph  /\  x  e.  NN0 )  ->  ( A `  x )  e.  CC )
361, 2, 35serf 12238 . . . . . . 7  |-  ( ph  ->  seq 0 (  +  ,  A ) : NN0 --> CC )
3736ad2antrr 730 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  seq 0 (  +  ,  A ) : NN0 --> CC )
3837ffvelrnda 6037 . . . . 5  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  (  seq 0 (  +  ,  A ) `  i
)  e.  CC )
39 expcl 12287 . . . . . 6  |-  ( ( X  e.  CC  /\  i  e.  NN0 )  -> 
( X ^ i
)  e.  CC )
4022, 39sylan 473 . . . . 5  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  ( X ^ i )  e.  CC )
4138, 40mulcld 9662 . . . 4  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  (
(  seq 0 (  +  ,  A ) `  i )  x.  ( X ^ i ) )  e.  CC )
4233, 41eqeltrd 2517 . . 3  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  NN0 )  ->  (
( k  e.  NN0  |->  ( (  seq 0
(  +  ,  A
) `  k )  x.  ( X ^ k
) ) ) `  i )  e.  CC )
4323recnd 9668 . . . . 5  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( abs `  X )  e.  CC )
44 absidm 13365 . . . . . . 7  |-  ( X  e.  CC  ->  ( abs `  ( abs `  X
) )  =  ( abs `  X ) )
4522, 44syl 17 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( abs `  ( abs `  X
) )  =  ( abs `  X ) )
46 eqid 2429 . . . . . . . . . 10  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
4746cnmetdval 21702 . . . . . . . . 9  |-  ( ( X  e.  CC  /\  0  e.  CC )  ->  ( X ( abs 
o.  -  ) 0 )  =  ( abs `  ( X  -  0 ) ) )
4822, 16, 47sylancl 666 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( X ( abs  o.  -  ) 0 )  =  ( abs `  ( X  -  0 ) ) )
4922subid1d 9974 . . . . . . . . 9  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( X  -  0 )  =  X )
5049fveq2d 5885 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( abs `  ( X  - 
0 ) )  =  ( abs `  X
) )
5148, 50eqtrd 2470 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( X ( abs  o.  -  ) 0 )  =  ( abs `  X
) )
52 elbl3 21338 . . . . . . . . . 10  |-  ( ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  1  e.  RR* )  /\  ( 0  e.  CC  /\  X  e.  CC ) )  -> 
( X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 )  <->  ( X
( abs  o.  -  )
0 )  <  1
) )
5315, 18, 52mpanl12 686 . . . . . . . . 9  |-  ( ( 0  e.  CC  /\  X  e.  CC )  ->  ( X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 )  <->  ( X
( abs  o.  -  )
0 )  <  1
) )
5416, 22, 53sylancr 667 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 )  <->  ( X
( abs  o.  -  )
0 )  <  1
) )
5521, 54mpbid 213 . . . . . . 7  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( X ( abs  o.  -  ) 0 )  <  1 )
5651, 55eqbrtrrd 4448 . . . . . 6  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( abs `  X )  <  1 )
5745, 56eqbrtrd 4446 . . . . 5  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  ( abs `  ( abs `  X
) )  <  1
)
5843, 57, 14geolim 13904 . . . 4  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( abs `  X
) ^ n ) ) )  ~~>  ( 1  /  ( 1  -  ( abs `  X
) ) ) )
59 climrel 13534 . . . . 5  |-  Rel  ~~>
6059releldmi 5091 . . . 4  |-  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( abs `  X
) ^ n ) ) )  ~~>  ( 1  /  ( 1  -  ( abs `  X
) ) )  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( abs `  X
) ^ n ) ) )  e.  dom  ~~>  )
6158, 60syl 17 . . 3  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  seq 0 (  +  , 
( n  e.  NN0  |->  ( ( abs `  X
) ^ n ) ) )  e.  dom  ~~>  )
62 1red 9657 . . 3  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  1  e.  RR )
6337adantr 466 . . . . . . . 8  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  seq 0
(  +  ,  A
) : NN0 --> CC )
64 eluznn0 11228 . . . . . . . . 9  |-  ( ( j  e.  NN0  /\  i  e.  ( ZZ>= `  j ) )  -> 
i  e.  NN0 )
659, 64sylan 473 . . . . . . . 8  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  i  e.  NN0 )
6663, 65ffvelrnd 6038 . . . . . . 7  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  (  seq 0 (  +  ,  A ) `  i
)  e.  CC )
6765, 40syldan 472 . . . . . . 7  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( X ^ i )  e.  CC )
6866, 67absmuld 13494 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( (  seq 0
(  +  ,  A
) `  i )  x.  ( X ^ i
) ) )  =  ( ( abs `  (  seq 0 (  +  ,  A ) `  i
) )  x.  ( abs `  ( X ^
i ) ) ) )
6922adantr 466 . . . . . . . 8  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  X  e.  CC )
7069, 65absexpd 13492 . . . . . . 7  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( X ^ i
) )  =  ( ( abs `  X
) ^ i ) )
7170oveq2d 6321 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  (  seq 0
(  +  ,  A
) `  i )
)  x.  ( abs `  ( X ^ i
) ) )  =  ( ( abs `  (  seq 0 (  +  ,  A ) `  i
) )  x.  (
( abs `  X
) ^ i ) ) )
7268, 71eqtrd 2470 . . . . 5  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( (  seq 0
(  +  ,  A
) `  i )  x.  ( X ^ i
) ) )  =  ( ( abs `  (  seq 0 (  +  ,  A ) `  i
) )  x.  (
( abs `  X
) ^ i ) ) )
7366abscld 13476 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  (  seq 0 (  +  ,  A ) `
 i ) )  e.  RR )
74 1red 9657 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  1  e.  RR )
7565, 25syldan 472 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  X ) ^
i )  e.  RR )
7667absge0d 13484 . . . . . . 7  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  0  <_  ( abs `  ( X ^ i ) ) )
7776, 70breqtrd 4450 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  0  <_  ( ( abs `  X
) ^ i ) )
78 simprr 764 . . . . . . . 8  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
)
79 fveq2 5881 . . . . . . . . . . 11  |-  ( m  =  i  ->  (  seq 0 (  +  ,  A ) `  m
)  =  (  seq 0 (  +  ,  A ) `  i
) )
8079fveq2d 5885 . . . . . . . . . 10  |-  ( m  =  i  ->  ( abs `  (  seq 0
(  +  ,  A
) `  m )
)  =  ( abs `  (  seq 0
(  +  ,  A
) `  i )
) )
8180breq1d 4436 . . . . . . . . 9  |-  ( m  =  i  ->  (
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1  <->  ( abs `  (  seq 0 (  +  ,  A ) `  i
) )  <  1
) )
8281rspccva 3187 . . . . . . . 8  |-  ( ( A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1  /\  i  e.  ( ZZ>=
`  j ) )  ->  ( abs `  (  seq 0 (  +  ,  A ) `  i
) )  <  1
)
8378, 82sylan 473 . . . . . . 7  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  (  seq 0 (  +  ,  A ) `
 i ) )  <  1 )
84 1re 9641 . . . . . . . 8  |-  1  e.  RR
85 ltle 9721 . . . . . . . 8  |-  ( ( ( abs `  (  seq 0 (  +  ,  A ) `  i
) )  e.  RR  /\  1  e.  RR )  ->  ( ( abs `  (  seq 0
(  +  ,  A
) `  i )
)  <  1  ->  ( abs `  (  seq 0 (  +  ,  A ) `  i
) )  <_  1
) )
8673, 84, 85sylancl 666 . . . . . . 7  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  (  seq 0
(  +  ,  A
) `  i )
)  <  1  ->  ( abs `  (  seq 0 (  +  ,  A ) `  i
) )  <_  1
) )
8783, 86mpd 15 . . . . . 6  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  (  seq 0 (  +  ,  A ) `
 i ) )  <_  1 )
8873, 74, 75, 77, 87lemul1ad 10546 . . . . 5  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  (  seq 0
(  +  ,  A
) `  i )
)  x.  ( ( abs `  X ) ^ i ) )  <_  ( 1  x.  ( ( abs `  X
) ^ i ) ) )
8972, 88eqbrtrd 4446 . . . 4  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( (  seq 0
(  +  ,  A
) `  i )  x.  ( X ^ i
) ) )  <_ 
( 1  x.  (
( abs `  X
) ^ i ) ) )
9065, 32syl 17 . . . . 5  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( (
k  e.  NN0  |->  ( (  seq 0 (  +  ,  A ) `  k )  x.  ( X ^ k ) ) ) `  i )  =  ( (  seq 0 (  +  ,  A ) `  i
)  x.  ( X ^ i ) ) )
9190fveq2d 5885 . . . 4  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( ( k  e. 
NN0  |->  ( (  seq 0 (  +  ,  A ) `  k
)  x.  ( X ^ k ) ) ) `  i ) )  =  ( abs `  ( (  seq 0
(  +  ,  A
) `  i )  x.  ( X ^ i
) ) ) )
9265, 13syl 17 . . . . 5  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( (
n  e.  NN0  |->  ( ( abs `  X ) ^ n ) ) `
 i )  =  ( ( abs `  X
) ^ i ) )
9392oveq2d 6321 . . . 4  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( 1  x.  ( ( n  e.  NN0  |->  ( ( abs `  X ) ^ n ) ) `
 i ) )  =  ( 1  x.  ( ( abs `  X
) ^ i ) ) )
9489, 91, 933brtr4d 4456 . . 3  |-  ( ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  j ) ( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  /\  i  e.  ( ZZ>= `  j )
)  ->  ( abs `  ( ( k  e. 
NN0  |->  ( (  seq 0 (  +  ,  A ) `  k
)  x.  ( X ^ k ) ) ) `  i ) )  <_  ( 1  x.  ( ( n  e.  NN0  |->  ( ( abs `  X ) ^ n ) ) `
 i ) ) )
951, 9, 26, 42, 61, 62, 94cvgcmpce 13856 . 2  |-  ( ( ( ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  /\  ( j  e.  NN0  /\  A. m  e.  ( ZZ>= `  j )
( abs `  (  seq 0 (  +  ,  A ) `  m
) )  <  1
) )  ->  seq 0 (  +  , 
( k  e.  NN0  |->  ( (  seq 0
(  +  ,  A
) `  k )  x.  ( X ^ k
) ) ) )  e.  dom  ~~>  )
968, 95rexlimddv 2928 1  |-  ( (
ph  /\  X  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  ->  seq 0
(  +  ,  ( k  e.  NN0  |->  ( (  seq 0 (  +  ,  A ) `  k )  x.  ( X ^ k ) ) ) )  e.  dom  ~~>  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1870   A.wral 2782   E.wrex 2783   {crab 2786    C_ wss 3442   class class class wbr 4426    |-> cmpt 4484   dom cdm 4854    o. ccom 4858   -->wf 5597   ` cfv 5601  (class class class)co 6305   CCcc 9536   RRcr 9537   0cc0 9538   1c1 9539    + caddc 9541    x. cmul 9543   RR*cxr 9673    < clt 9674    <_ cle 9675    - cmin 9859    / cdiv 10268   NN0cn0 10869   ZZ>=cuz 11159   RR+crp 11302    seqcseq 12210   ^cexp 12269   abscabs 13276    ~~> cli 13526   sum_csu 13730   *Metcxmt 18890   ballcbl 18892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-inf2 8146  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616  ax-addf 9617  ax-mulf 9618
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-se 4814  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-oadd 7194  df-er 7371  df-map 7482  df-pm 7483  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-sup 7962  df-inf 7963  df-oi 8025  df-card 8372  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-rp 11303  df-xadd 11410  df-ico 11641  df-fz 11783  df-fzo 11914  df-fl 12025  df-seq 12211  df-exp 12270  df-hash 12513  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278  df-limsup 13504  df-clim 13530  df-rlim 13531  df-sum 13731  df-psmet 18897  df-xmet 18898  df-met 18899  df-bl 18900
This theorem is referenced by:  abelthlem6  23256  abelthlem7  23258
  Copyright terms: Public domain W3C validator