MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelthlem2 Structured version   Unicode version

Theorem abelthlem2 23119
Description: Lemma for abelth 23128. The peculiar region  S, known as a Stolz angle , is a teardrop-shaped subset of the closed unit ball containing  1. Indeed, except for  1 itself, the rest of the Stolz angle is enclosed in the open unit ball. (Contributed by Mario Carneiro, 31-Mar-2015.)
Hypotheses
Ref Expression
abelth.1  |-  ( ph  ->  A : NN0 --> CC )
abelth.2  |-  ( ph  ->  seq 0 (  +  ,  A )  e. 
dom 
~~>  )
abelth.3  |-  ( ph  ->  M  e.  RR )
abelth.4  |-  ( ph  ->  0  <_  M )
abelth.5  |-  S  =  { z  e.  CC  |  ( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) }
Assertion
Ref Expression
abelthlem2  |-  ( ph  ->  ( 1  e.  S  /\  ( S  \  {
1 } )  C_  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) ) )
Distinct variable groups:    z, M    z, A
Allowed substitution hints:    ph( z)    S( z)

Proof of Theorem abelthlem2
StepHypRef Expression
1 abelth.3 . 2  |-  ( ph  ->  M  e.  RR )
2 abelth.4 . 2  |-  ( ph  ->  0  <_  M )
3 1cnd 9642 . . . 4  |-  ( ( M  e.  RR  /\  0  <_  M )  -> 
1  e.  CC )
4 0le0 10666 . . . . 5  |-  0  <_  0
5 simpl 455 . . . . . . 7  |-  ( ( M  e.  RR  /\  0  <_  M )  ->  M  e.  RR )
65recnd 9652 . . . . . 6  |-  ( ( M  e.  RR  /\  0  <_  M )  ->  M  e.  CC )
76mul01d 9813 . . . . 5  |-  ( ( M  e.  RR  /\  0  <_  M )  -> 
( M  x.  0 )  =  0 )
84, 7syl5breqr 4431 . . . 4  |-  ( ( M  e.  RR  /\  0  <_  M )  -> 
0  <_  ( M  x.  0 ) )
9 oveq2 6286 . . . . . . . 8  |-  ( z  =  1  ->  (
1  -  z )  =  ( 1  -  1 ) )
10 1m1e0 10645 . . . . . . . 8  |-  ( 1  -  1 )  =  0
119, 10syl6eq 2459 . . . . . . 7  |-  ( z  =  1  ->  (
1  -  z )  =  0 )
1211abs00bd 13273 . . . . . 6  |-  ( z  =  1  ->  ( abs `  ( 1  -  z ) )  =  0 )
13 fveq2 5849 . . . . . . . . . 10  |-  ( z  =  1  ->  ( abs `  z )  =  ( abs `  1
) )
14 abs1 13279 . . . . . . . . . 10  |-  ( abs `  1 )  =  1
1513, 14syl6eq 2459 . . . . . . . . 9  |-  ( z  =  1  ->  ( abs `  z )  =  1 )
1615oveq2d 6294 . . . . . . . 8  |-  ( z  =  1  ->  (
1  -  ( abs `  z ) )  =  ( 1  -  1 ) )
1716, 10syl6eq 2459 . . . . . . 7  |-  ( z  =  1  ->  (
1  -  ( abs `  z ) )  =  0 )
1817oveq2d 6294 . . . . . 6  |-  ( z  =  1  ->  ( M  x.  ( 1  -  ( abs `  z
) ) )  =  ( M  x.  0 ) )
1912, 18breq12d 4408 . . . . 5  |-  ( z  =  1  ->  (
( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) )  <->  0  <_  ( M  x.  0 ) ) )
20 abelth.5 . . . . 5  |-  S  =  { z  e.  CC  |  ( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) }
2119, 20elrab2 3209 . . . 4  |-  ( 1  e.  S  <->  ( 1  e.  CC  /\  0  <_  ( M  x.  0 ) ) )
223, 8, 21sylanbrc 662 . . 3  |-  ( ( M  e.  RR  /\  0  <_  M )  -> 
1  e.  S )
23 elsn 3986 . . . . . . . . . 10  |-  ( z  e.  { 1 }  <-> 
z  =  1 )
2423necon3bbii 2664 . . . . . . . . 9  |-  ( -.  z  e.  { 1 }  <->  z  =/=  1
)
25 simprll 764 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  z  e.  CC )
26 0cn 9618 . . . . . . . . . . . . . . 15  |-  0  e.  CC
27 eqid 2402 . . . . . . . . . . . . . . . 16  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
2827cnmetdval 21570 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  CC  /\  0  e.  CC )  ->  ( z ( abs 
o.  -  ) 0 )  =  ( abs `  ( z  -  0 ) ) )
2925, 26, 28sylancl 660 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
z ( abs  o.  -  ) 0 )  =  ( abs `  (
z  -  0 ) ) )
3025subid1d 9956 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
z  -  0 )  =  z )
3130fveq2d 5853 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( abs `  ( z  - 
0 ) )  =  ( abs `  z
) )
3229, 31eqtrd 2443 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
z ( abs  o.  -  ) 0 )  =  ( abs `  z
) )
33 simprlr 765 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( abs `  ( 1  -  z ) )  <_ 
( M  x.  (
1  -  ( abs `  z ) ) ) )
34 ax-1cn 9580 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  CC
35 subcl 9855 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  e.  CC  /\  z  e.  CC )  ->  ( 1  -  z
)  e.  CC )
3634, 25, 35sylancr 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
1  -  z )  e.  CC )
3736abscld 13416 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( abs `  ( 1  -  z ) )  e.  RR )
38 simpll 752 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  M  e.  RR )
39 1re 9625 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  RR
4025abscld 13416 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( abs `  z )  e.  RR )
41 resubcl 9919 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  e.  RR  /\  ( abs `  z )  e.  RR )  -> 
( 1  -  ( abs `  z ) )  e.  RR )
4239, 40, 41sylancr 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
1  -  ( abs `  z ) )  e.  RR )
4338, 42remulcld 9654 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( M  x.  ( 1  -  ( abs `  z
) ) )  e.  RR )
4437, 43lenltd 9763 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) )  <->  -.  ( M  x.  ( 1  -  ( abs `  z ) ) )  <  ( abs `  ( 1  -  z
) ) ) )
4533, 44mpbid 210 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  -.  ( M  x.  (
1  -  ( abs `  z ) ) )  <  ( abs `  (
1  -  z ) ) )
467adantr 463 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( M  x.  0 )  =  0 )
47 simprr 758 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  z  =/=  1 )
4847necomd 2674 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  1  =/=  z )
49 subeq0 9881 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1  e.  CC  /\  z  e.  CC )  ->  ( ( 1  -  z )  =  0  <->  1  =  z ) )
5049necon3bid 2661 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 1  e.  CC  /\  z  e.  CC )  ->  ( ( 1  -  z )  =/=  0  <->  1  =/=  z ) )
5134, 25, 50sylancr 661 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( 1  -  z
)  =/=  0  <->  1  =/=  z ) )
5248, 51mpbird 232 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
1  -  z )  =/=  0 )
53 absgt0 13306 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1  -  z )  e.  CC  ->  (
( 1  -  z
)  =/=  0  <->  0  <  ( abs `  (
1  -  z ) ) ) )
5436, 53syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( 1  -  z
)  =/=  0  <->  0  <  ( abs `  (
1  -  z ) ) ) )
5552, 54mpbid 210 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  0  <  ( abs `  (
1  -  z ) ) )
5646, 55eqbrtrd 4415 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( M  x.  0 )  <  ( abs `  (
1  -  z ) ) )
57 oveq2 6286 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1  =  ( abs `  z
)  ->  ( 1  -  1 )  =  ( 1  -  ( abs `  z ) ) )
5810, 57syl5eqr 2457 . . . . . . . . . . . . . . . . . . 19  |-  ( 1  =  ( abs `  z
)  ->  0  =  ( 1  -  ( abs `  z ) ) )
5958oveq2d 6294 . . . . . . . . . . . . . . . . . 18  |-  ( 1  =  ( abs `  z
)  ->  ( M  x.  0 )  =  ( M  x.  ( 1  -  ( abs `  z
) ) ) )
6059breq1d 4405 . . . . . . . . . . . . . . . . 17  |-  ( 1  =  ( abs `  z
)  ->  ( ( M  x.  0 )  <  ( abs `  (
1  -  z ) )  <->  ( M  x.  ( 1  -  ( abs `  z ) ) )  <  ( abs `  ( 1  -  z
) ) ) )
6156, 60syl5ibcom 220 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
1  =  ( abs `  z )  ->  ( M  x.  ( 1  -  ( abs `  z
) ) )  < 
( abs `  (
1  -  z ) ) ) )
6261necon3bd 2615 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( -.  ( M  x.  (
1  -  ( abs `  z ) ) )  <  ( abs `  (
1  -  z ) )  ->  1  =/=  ( abs `  z ) ) )
6345, 62mpd 15 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  1  =/=  ( abs `  z
) )
64 1red 9641 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  1  e.  RR )
65 resubcl 9919 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( abs `  z
)  e.  RR  /\  1  e.  RR )  ->  ( ( abs `  z
)  -  1 )  e.  RR )
6640, 39, 65sylancl 660 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( abs `  z
)  -  1 )  e.  RR )
6714oveq2i 6289 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( abs `  z )  -  ( abs `  1
) )  =  ( ( abs `  z
)  -  1 )
68 abs2dif 13314 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( z  e.  CC  /\  1  e.  CC )  ->  ( ( abs `  z
)  -  ( abs `  1 ) )  <_  ( abs `  (
z  -  1 ) ) )
6925, 34, 68sylancl 660 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( abs `  z
)  -  ( abs `  1 ) )  <_  ( abs `  (
z  -  1 ) ) )
7067, 69syl5eqbrr 4429 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( abs `  z
)  -  1 )  <_  ( abs `  (
z  -  1 ) ) )
71 abssub 13308 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( z  e.  CC  /\  1  e.  CC )  ->  ( abs `  (
z  -  1 ) )  =  ( abs `  ( 1  -  z
) ) )
7225, 34, 71sylancl 660 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( abs `  ( z  - 
1 ) )  =  ( abs `  (
1  -  z ) ) )
7370, 72breqtrd 4419 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( abs `  z
)  -  1 )  <_  ( abs `  (
1  -  z ) ) )
7466, 37, 43, 73, 33letrd 9773 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( abs `  z
)  -  1 )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) )
7540, 64, 43lesubaddd 10189 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( ( abs `  z
)  -  1 )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) )  <->  ( abs `  z
)  <_  ( ( M  x.  ( 1  -  ( abs `  z
) ) )  +  1 ) ) )
7674, 75mpbid 210 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( abs `  z )  <_ 
( ( M  x.  ( 1  -  ( abs `  z ) ) )  +  1 ) )
776adantr 463 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  M  e.  CC )
78 1cnd 9642 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  1  e.  CC )
7938, 40remulcld 9654 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( M  x.  ( abs `  z ) )  e.  RR )
8079recnd 9652 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( M  x.  ( abs `  z ) )  e.  CC )
8177, 78, 80addsubd 9988 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( M  +  1 )  -  ( M  x.  ( abs `  z
) ) )  =  ( ( M  -  ( M  x.  ( abs `  z ) ) )  +  1 ) )
8240recnd 9652 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( abs `  z )  e.  CC )
8377, 78, 82subdid 10053 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( M  x.  ( 1  -  ( abs `  z
) ) )  =  ( ( M  x.  1 )  -  ( M  x.  ( abs `  z ) ) ) )
8477mulid1d 9643 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( M  x.  1 )  =  M )
8584oveq1d 6293 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( M  x.  1 )  -  ( M  x.  ( abs `  z
) ) )  =  ( M  -  ( M  x.  ( abs `  z ) ) ) )
8683, 85eqtrd 2443 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( M  x.  ( 1  -  ( abs `  z
) ) )  =  ( M  -  ( M  x.  ( abs `  z ) ) ) )
8786oveq1d 6293 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( M  x.  (
1  -  ( abs `  z ) ) )  +  1 )  =  ( ( M  -  ( M  x.  ( abs `  z ) ) )  +  1 ) )
8881, 87eqtr4d 2446 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( M  +  1 )  -  ( M  x.  ( abs `  z
) ) )  =  ( ( M  x.  ( 1  -  ( abs `  z ) ) )  +  1 ) )
8976, 88breqtrrd 4421 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( abs `  z )  <_ 
( ( M  + 
1 )  -  ( M  x.  ( abs `  z ) ) ) )
90 peano2re 9787 . . . . . . . . . . . . . . . . . . . 20  |-  ( M  e.  RR  ->  ( M  +  1 )  e.  RR )
9138, 90syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( M  +  1 )  e.  RR )
9279, 40, 91leaddsub2d 10194 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( ( M  x.  ( abs `  z ) )  +  ( abs `  z ) )  <_ 
( M  +  1 )  <->  ( abs `  z
)  <_  ( ( M  +  1 )  -  ( M  x.  ( abs `  z ) ) ) ) )
9389, 92mpbird 232 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( M  x.  ( abs `  z ) )  +  ( abs `  z
) )  <_  ( M  +  1 ) )
9477, 78, 82adddird 9651 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( M  +  1 )  x.  ( abs `  z ) )  =  ( ( M  x.  ( abs `  z ) )  +  ( 1  x.  ( abs `  z
) ) ) )
9582mulid2d 9644 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
1  x.  ( abs `  z ) )  =  ( abs `  z
) )
9695oveq2d 6294 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( M  x.  ( abs `  z ) )  +  ( 1  x.  ( abs `  z
) ) )  =  ( ( M  x.  ( abs `  z ) )  +  ( abs `  z ) ) )
9794, 96eqtrd 2443 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( M  +  1 )  x.  ( abs `  z ) )  =  ( ( M  x.  ( abs `  z ) )  +  ( abs `  z ) ) )
9891recnd 9652 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( M  +  1 )  e.  CC )
9998mulid1d 9643 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( M  +  1 )  x.  1 )  =  ( M  + 
1 ) )
10093, 97, 993brtr4d 4425 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( M  +  1 )  x.  ( abs `  z ) )  <_ 
( ( M  + 
1 )  x.  1 ) )
101 0red 9627 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  0  e.  RR )
102 simplr 754 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  0  <_  M )
10338ltp1d 10516 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  M  <  ( M  +  1 ) )
104101, 38, 91, 102, 103lelttrd 9774 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  0  <  ( M  +  1 ) )
105 lemul2 10436 . . . . . . . . . . . . . . . . 17  |-  ( ( ( abs `  z
)  e.  RR  /\  1  e.  RR  /\  (
( M  +  1 )  e.  RR  /\  0  <  ( M  + 
1 ) ) )  ->  ( ( abs `  z )  <_  1  <->  ( ( M  +  1 )  x.  ( abs `  z ) )  <_ 
( ( M  + 
1 )  x.  1 ) ) )
10640, 64, 91, 104, 105syl112anc 1234 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( abs `  z
)  <_  1  <->  ( ( M  +  1 )  x.  ( abs `  z
) )  <_  (
( M  +  1 )  x.  1 ) ) )
107100, 106mpbird 232 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( abs `  z )  <_ 
1 )
10840, 64, 107leltned 9770 . . . . . . . . . . . . . 14  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
( abs `  z
)  <  1  <->  1  =/=  ( abs `  z ) ) )
10963, 108mpbird 232 . . . . . . . . . . . . 13  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  ( abs `  z )  <  1 )
11032, 109eqbrtrd 4415 . . . . . . . . . . . 12  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
z ( abs  o.  -  ) 0 )  <  1 )
111 cnxmet 21572 . . . . . . . . . . . . . 14  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
112 1rp 11269 . . . . . . . . . . . . . . 15  |-  1  e.  RR+
113 rpxr 11272 . . . . . . . . . . . . . . 15  |-  ( 1  e.  RR+  ->  1  e. 
RR* )
114112, 113ax-mp 5 . . . . . . . . . . . . . 14  |-  1  e.  RR*
115 elbl3 21187 . . . . . . . . . . . . . 14  |-  ( ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  1  e.  RR* )  /\  ( 0  e.  CC  /\  z  e.  CC ) )  -> 
( z  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 )  <->  ( z
( abs  o.  -  )
0 )  <  1
) )
116111, 114, 115mpanl12 680 . . . . . . . . . . . . 13  |-  ( ( 0  e.  CC  /\  z  e.  CC )  ->  ( z  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 )  <->  ( z
( abs  o.  -  )
0 )  <  1
) )
11726, 25, 116sylancr 661 . . . . . . . . . . . 12  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  (
z  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 )  <->  ( z
( abs  o.  -  )
0 )  <  1
) )
118110, 117mpbird 232 . . . . . . . . . . 11  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( ( z  e.  CC  /\  ( abs `  ( 1  -  z
) )  <_  ( M  x.  ( 1  -  ( abs `  z
) ) ) )  /\  z  =/=  1
) )  ->  z  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )
119118expr 613 . . . . . . . . . 10  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  ( z  e.  CC  /\  ( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) ) )  -> 
( z  =/=  1  ->  z  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) ) )
1201193impb 1193 . . . . . . . . 9  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  z  e.  CC  /\  ( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) )  ->  (
z  =/=  1  -> 
z  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) ) )
12124, 120syl5bi 217 . . . . . . . 8  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  z  e.  CC  /\  ( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) )  ->  ( -.  z  e.  { 1 }  ->  z  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) ) )
122121orrd 376 . . . . . . 7  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  z  e.  CC  /\  ( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) )  ->  (
z  e.  { 1 }  \/  z  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) ) )
123 elun 3584 . . . . . . 7  |-  ( z  e.  ( { 1 }  u.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  <->  ( z  e.  { 1 }  \/  z  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) ) )
124122, 123sylibr 212 . . . . . 6  |-  ( ( ( M  e.  RR  /\  0  <_  M )  /\  z  e.  CC  /\  ( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) )  ->  z  e.  ( { 1 }  u.  ( 0 (
ball `  ( abs  o. 
-  ) ) 1 ) ) )
125124rabssdv 3519 . . . . 5  |-  ( ( M  e.  RR  /\  0  <_  M )  ->  { z  e.  CC  |  ( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) }  C_  ( { 1 }  u.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) ) )
12620, 125syl5eqss 3486 . . . 4  |-  ( ( M  e.  RR  /\  0  <_  M )  ->  S  C_  ( { 1 }  u.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) ) )
127 ssundif 3855 . . . 4  |-  ( S 
C_  ( { 1 }  u.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )  <->  ( S  \  { 1 } ) 
C_  ( 0 (
ball `  ( abs  o. 
-  ) ) 1 ) )
128126, 127sylib 196 . . 3  |-  ( ( M  e.  RR  /\  0  <_  M )  -> 
( S  \  {
1 } )  C_  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )
12922, 128jca 530 . 2  |-  ( ( M  e.  RR  /\  0  <_  M )  -> 
( 1  e.  S  /\  ( S  \  {
1 } )  C_  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) ) )
1301, 2, 129syl2anc 659 1  |-  ( ph  ->  ( 1  e.  S  /\  ( S  \  {
1 } )  C_  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842    =/= wne 2598   {crab 2758    \ cdif 3411    u. cun 3412    C_ wss 3414   {csn 3972   class class class wbr 4395   dom cdm 4823    o. ccom 4827   -->wf 5565   ` cfv 5569  (class class class)co 6278   CCcc 9520   RRcr 9521   0cc0 9522   1c1 9523    + caddc 9525    x. cmul 9527   RR*cxr 9657    < clt 9658    <_ cle 9659    - cmin 9841   NN0cn0 10836   RR+crp 11265    seqcseq 12151   abscabs 13216    ~~> cli 13456   *Metcxmt 18723   ballcbl 18725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599  ax-pre-sup 9600
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-er 7348  df-map 7459  df-en 7555  df-dom 7556  df-sdom 7557  df-sup 7935  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-div 10248  df-nn 10577  df-2 10635  df-3 10636  df-n0 10837  df-z 10906  df-uz 11128  df-rp 11266  df-xadd 11372  df-seq 12152  df-exp 12211  df-cj 13081  df-re 13082  df-im 13083  df-sqrt 13217  df-abs 13218  df-psmet 18731  df-xmet 18732  df-met 18733  df-bl 18734
This theorem is referenced by:  abelthlem3  23120  abelthlem6  23123  abelthlem7  23125  abelthlem8  23126  abelthlem9  23127  abelth  23128
  Copyright terms: Public domain W3C validator