MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abelth Structured version   Unicode version

Theorem abelth 22703
Description: Abel's theorem. If the power series  sum_ n  e.  NN0 A ( n ) ( x ^ n
) is convergent at  1, then it is equal to the limit from "below", along a Stolz angle  S (note that the  M  =  1 case of a Stolz angle is the real line  [ 0 ,  1 ]). (Continuity on  S  \  { 1 } follows more generally from psercn 22688.) (Contributed by Mario Carneiro, 2-Apr-2015.) (Revised by Mario Carneiro, 8-Sep-2015.)
Hypotheses
Ref Expression
abelth.1  |-  ( ph  ->  A : NN0 --> CC )
abelth.2  |-  ( ph  ->  seq 0 (  +  ,  A )  e. 
dom 
~~>  )
abelth.3  |-  ( ph  ->  M  e.  RR )
abelth.4  |-  ( ph  ->  0  <_  M )
abelth.5  |-  S  =  { z  e.  CC  |  ( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) }
abelth.6  |-  F  =  ( x  e.  S  |-> 
sum_ n  e.  NN0  ( ( A `  n )  x.  (
x ^ n ) ) )
Assertion
Ref Expression
abelth  |-  ( ph  ->  F  e.  ( S
-cn-> CC ) )
Distinct variable groups:    x, n, z, M    A, n, x, z    ph, n, x    S, n, x
Allowed substitution hints:    ph( z)    S( z)    F( x, z, n)

Proof of Theorem abelth
Dummy variables  j  w  y  r  t 
v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abelth.1 . . . 4  |-  ( ph  ->  A : NN0 --> CC )
2 abelth.2 . . . 4  |-  ( ph  ->  seq 0 (  +  ,  A )  e. 
dom 
~~>  )
3 abelth.3 . . . 4  |-  ( ph  ->  M  e.  RR )
4 abelth.4 . . . 4  |-  ( ph  ->  0  <_  M )
5 abelth.5 . . . 4  |-  S  =  { z  e.  CC  |  ( abs `  (
1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) }
6 abelth.6 . . . 4  |-  F  =  ( x  e.  S  |-> 
sum_ n  e.  NN0  ( ( A `  n )  x.  (
x ^ n ) ) )
71, 2, 3, 4, 5, 6abelthlem4 22696 . . 3  |-  ( ph  ->  F : S --> CC )
81, 2, 3, 4, 5, 6abelthlem9 22702 . . . . . . . . . 10  |-  ( (
ph  /\  r  e.  RR+ )  ->  E. w  e.  RR+  A. y  e.  S  ( ( abs `  ( 1  -  y
) )  <  w  ->  ( abs `  (
( F `  1
)  -  ( F `
 y ) ) )  <  r ) )
91, 2, 3, 4, 5abelthlem2 22694 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 1  e.  S  /\  ( S  \  {
1 } )  C_  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) ) )
109simpld 459 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  1  e.  S )
1110ad2antrr 725 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  S )  ->  1  e.  S )
12 simpr 461 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  S )  ->  y  e.  S )
1311, 12ovresd 6438 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  S )  ->  (
1 ( ( abs 
o.  -  )  |`  ( S  X.  S ) ) y )  =  ( 1 ( abs  o.  -  ) y ) )
14 ax-1cn 9562 . . . . . . . . . . . . . . . 16  |-  1  e.  CC
15 ssrab2 3590 . . . . . . . . . . . . . . . . . 18  |-  { z  e.  CC  |  ( abs `  ( 1  -  z ) )  <_  ( M  x.  ( 1  -  ( abs `  z ) ) ) }  C_  CC
165, 15eqsstri 3539 . . . . . . . . . . . . . . . . 17  |-  S  C_  CC
1716, 12sseldi 3507 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  S )  ->  y  e.  CC )
18 eqid 2467 . . . . . . . . . . . . . . . . 17  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
1918cnmetdval 21146 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  CC  /\  y  e.  CC )  ->  ( 1 ( abs 
o.  -  ) y
)  =  ( abs `  ( 1  -  y
) ) )
2014, 17, 19sylancr 663 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  S )  ->  (
1 ( abs  o.  -  ) y )  =  ( abs `  (
1  -  y ) ) )
2113, 20eqtrd 2508 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  S )  ->  (
1 ( ( abs 
o.  -  )  |`  ( S  X.  S ) ) y )  =  ( abs `  ( 1  -  y ) ) )
2221breq1d 4463 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  S )  ->  (
( 1 ( ( abs  o.  -  )  |`  ( S  X.  S
) ) y )  <  w  <->  ( abs `  ( 1  -  y
) )  <  w
) )
237ad2antrr 725 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  S )  ->  F : S --> CC )
2423, 11ffvelrnd 6033 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  S )  ->  ( F `  1 )  e.  CC )
257adantr 465 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  r  e.  RR+ )  ->  F : S
--> CC )
2625ffvelrnda 6032 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  S )  ->  ( F `  y )  e.  CC )
2718cnmetdval 21146 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  1
)  e.  CC  /\  ( F `  y )  e.  CC )  -> 
( ( F ` 
1 ) ( abs 
o.  -  ) ( F `  y )
)  =  ( abs `  ( ( F ` 
1 )  -  ( F `  y )
) ) )
2824, 26, 27syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  S )  ->  (
( F `  1
) ( abs  o.  -  ) ( F `
 y ) )  =  ( abs `  (
( F `  1
)  -  ( F `
 y ) ) ) )
2928breq1d 4463 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  S )  ->  (
( ( F ` 
1 ) ( abs 
o.  -  ) ( F `  y )
)  <  r  <->  ( abs `  ( ( F ` 
1 )  -  ( F `  y )
) )  <  r
) )
3022, 29imbi12d 320 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  y  e.  S )  ->  (
( ( 1 ( ( abs  o.  -  )  |`  ( S  X.  S ) ) y )  <  w  -> 
( ( F ` 
1 ) ( abs 
o.  -  ) ( F `  y )
)  <  r )  <->  ( ( abs `  (
1  -  y ) )  <  w  -> 
( abs `  (
( F `  1
)  -  ( F `
 y ) ) )  <  r ) ) )
3130ralbidva 2903 . . . . . . . . . . 11  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( A. y  e.  S  (
( 1 ( ( abs  o.  -  )  |`  ( S  X.  S
) ) y )  <  w  ->  (
( F `  1
) ( abs  o.  -  ) ( F `
 y ) )  <  r )  <->  A. y  e.  S  ( ( abs `  ( 1  -  y ) )  < 
w  ->  ( abs `  ( ( F ` 
1 )  -  ( F `  y )
) )  <  r
) ) )
3231rexbidv 2978 . . . . . . . . . 10  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( E. w  e.  RR+  A. y  e.  S  ( (
1 ( ( abs 
o.  -  )  |`  ( S  X.  S ) ) y )  <  w  ->  ( ( F ` 
1 ) ( abs 
o.  -  ) ( F `  y )
)  <  r )  <->  E. w  e.  RR+  A. y  e.  S  ( ( abs `  ( 1  -  y ) )  < 
w  ->  ( abs `  ( ( F ` 
1 )  -  ( F `  y )
) )  <  r
) ) )
338, 32mpbird 232 . . . . . . . . 9  |-  ( (
ph  /\  r  e.  RR+ )  ->  E. w  e.  RR+  A. y  e.  S  ( ( 1 ( ( abs  o.  -  )  |`  ( S  X.  S ) ) y )  <  w  ->  ( ( F ` 
1 ) ( abs 
o.  -  ) ( F `  y )
)  <  r )
)
3433ralrimiva 2881 . . . . . . . 8  |-  ( ph  ->  A. r  e.  RR+  E. w  e.  RR+  A. y  e.  S  ( (
1 ( ( abs 
o.  -  )  |`  ( S  X.  S ) ) y )  <  w  ->  ( ( F ` 
1 ) ( abs 
o.  -  ) ( F `  y )
)  <  r )
)
35 cnxmet 21148 . . . . . . . . . . 11  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
36 xmetres2 20732 . . . . . . . . . . 11  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  S  C_  CC )  -> 
( ( abs  o.  -  )  |`  ( S  X.  S ) )  e.  ( *Met `  S ) )
3735, 16, 36mp2an 672 . . . . . . . . . 10  |-  ( ( abs  o.  -  )  |`  ( S  X.  S
) )  e.  ( *Met `  S
)
3837a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( ( abs  o.  -  )  |`  ( S  X.  S ) )  e.  ( *Met `  S ) )
3935a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( abs  o.  -  )  e.  ( *Met `  CC ) )
40 eqid 2467 . . . . . . . . . . . 12  |-  ( ( abs  o.  -  )  |`  ( S  X.  S
) )  =  ( ( abs  o.  -  )  |`  ( S  X.  S ) )
41 eqid 2467 . . . . . . . . . . . . 13  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
4241cnfldtopn 21157 . . . . . . . . . . . 12  |-  ( TopOpen ` fld )  =  ( MetOpen `  ( abs  o.  -  ) )
43 eqid 2467 . . . . . . . . . . . 12  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( S  X.  S ) ) )
4440, 42, 43metrest 20895 . . . . . . . . . . 11  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  S  C_  CC )  -> 
( ( TopOpen ` fld )t  S )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( S  X.  S ) ) ) )
4535, 16, 44mp2an 672 . . . . . . . . . 10  |-  ( (
TopOpen ` fld )t  S )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( S  X.  S ) ) )
4645, 42metcnp 20912 . . . . . . . . 9  |-  ( ( ( ( abs  o.  -  )  |`  ( S  X.  S ) )  e.  ( *Met `  S )  /\  ( abs  o.  -  )  e.  ( *Met `  CC )  /\  1  e.  S )  ->  ( F  e.  ( (
( ( TopOpen ` fld )t  S )  CnP  ( TopOpen
` fld
) ) `  1
)  <->  ( F : S
--> CC  /\  A. r  e.  RR+  E. w  e.  RR+  A. y  e.  S  ( ( 1 ( ( abs  o.  -  )  |`  ( S  X.  S ) ) y )  <  w  -> 
( ( F ` 
1 ) ( abs 
o.  -  ) ( F `  y )
)  <  r )
) ) )
4738, 39, 10, 46syl3anc 1228 . . . . . . . 8  |-  ( ph  ->  ( F  e.  ( ( ( ( TopOpen ` fld )t  S
)  CnP  ( TopOpen ` fld )
) `  1 )  <->  ( F : S --> CC  /\  A. r  e.  RR+  E. w  e.  RR+  A. y  e.  S  ( ( 1 ( ( abs  o.  -  )  |`  ( S  X.  S ) ) y )  <  w  ->  ( ( F ` 
1 ) ( abs 
o.  -  ) ( F `  y )
)  <  r )
) ) )
487, 34, 47mpbir2and 920 . . . . . . 7  |-  ( ph  ->  F  e.  ( ( ( ( TopOpen ` fld )t  S )  CnP  ( TopOpen
` fld
) ) `  1
) )
4948ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  y  e.  S )  /\  y  =  1 )  ->  F  e.  ( (
( ( TopOpen ` fld )t  S )  CnP  ( TopOpen
` fld
) ) `  1
) )
50 simpr 461 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  S )  /\  y  =  1 )  -> 
y  =  1 )
5150fveq2d 5876 . . . . . 6  |-  ( ( ( ph  /\  y  e.  S )  /\  y  =  1 )  -> 
( ( ( (
TopOpen ` fld )t  S )  CnP  ( TopOpen
` fld
) ) `  y
)  =  ( ( ( ( TopOpen ` fld )t  S )  CnP  ( TopOpen
` fld
) ) `  1
) )
5249, 51eleqtrrd 2558 . . . . 5  |-  ( ( ( ph  /\  y  e.  S )  /\  y  =  1 )  ->  F  e.  ( (
( ( TopOpen ` fld )t  S )  CnP  ( TopOpen
` fld
) ) `  y
) )
53 eldifsn 4158 . . . . . . 7  |-  ( y  e.  ( S  \  { 1 } )  <-> 
( y  e.  S  /\  y  =/=  1
) )
549simprd 463 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( S  \  {
1 } )  C_  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) )
55 abscl 13091 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  e.  CC  ->  ( abs `  w )  e.  RR )
5655adantl 466 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  w  e.  CC )  ->  ( abs `  w )  e.  RR )
5756a1d 25 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  w  e.  CC )  ->  ( ( abs `  w )  <  1  ->  ( abs `  w )  e.  RR ) )
58 absge0 13100 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  e.  CC  ->  0  <_  ( abs `  w
) )
5958adantl 466 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  w  e.  CC )  ->  0  <_ 
( abs `  w
) )
6059a1d 25 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  w  e.  CC )  ->  ( ( abs `  w )  <  1  ->  0  <_  ( abs `  w
) ) )
611, 2abelthlem1 22693 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  1  <_  sup ( { r  e.  RR  |  seq 0 (  +  ,  ( ( t  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( t ^
n ) ) ) ) `  r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) )
6261adantr 465 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  w  e.  CC )  ->  1  <_  sup ( { r  e.  RR  |  seq 0
(  +  ,  ( ( t  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
t ^ n ) ) ) ) `  r ) )  e. 
dom 
~~>  } ,  RR* ,  <  ) )
6356rexrd 9655 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  w  e.  CC )  ->  ( abs `  w )  e.  RR* )
64 1re 9607 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  1  e.  RR
65 rexr 9651 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 1  e.  RR  ->  1  e.  RR* )
6664, 65mp1i 12 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  w  e.  CC )  ->  1  e. 
RR* )
67 iccssxr 11619 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( 0 [,] +oo )  C_  RR*
68 eqid 2467 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( t  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( t ^
n ) ) ) )  =  ( t  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( t ^
n ) ) ) )
69 eqid 2467 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  sup ( { r  e.  RR  |  seq 0 (  +  ,  ( ( t  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( t ^
n ) ) ) ) `  r ) )  e.  dom  ~~>  } ,  RR* ,  <  )  =  sup ( { r  e.  RR  |  seq 0 (  +  , 
( ( t  e.  CC  |->  ( n  e. 
NN0  |->  ( ( A `
 n )  x.  ( t ^ n
) ) ) ) `
 r ) )  e.  dom  ~~>  } ,  RR* ,  <  )
7068, 1, 69radcnvcl 22679 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  sup ( { r  e.  RR  |  seq 0 (  +  , 
( ( t  e.  CC  |->  ( n  e. 
NN0  |->  ( ( A `
 n )  x.  ( t ^ n
) ) ) ) `
 r ) )  e.  dom  ~~>  } ,  RR* ,  <  )  e.  ( 0 [,] +oo ) )
7167, 70sseldi 3507 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  sup ( { r  e.  RR  |  seq 0 (  +  , 
( ( t  e.  CC  |->  ( n  e. 
NN0  |->  ( ( A `
 n )  x.  ( t ^ n
) ) ) ) `
 r ) )  e.  dom  ~~>  } ,  RR* ,  <  )  e. 
RR* )
7271adantr 465 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  w  e.  CC )  ->  sup ( { r  e.  RR  |  seq 0 (  +  ,  ( ( t  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( t ^
n ) ) ) ) `  r ) )  e.  dom  ~~>  } ,  RR* ,  <  )  e. 
RR* )
73 xrltletr 11372 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( abs `  w
)  e.  RR*  /\  1  e.  RR*  /\  sup ( { r  e.  RR  |  seq 0 (  +  ,  ( ( t  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( t ^
n ) ) ) ) `  r ) )  e.  dom  ~~>  } ,  RR* ,  <  )  e. 
RR* )  ->  (
( ( abs `  w
)  <  1  /\  1  <_  sup ( { r  e.  RR  |  seq 0 (  +  , 
( ( t  e.  CC  |->  ( n  e. 
NN0  |->  ( ( A `
 n )  x.  ( t ^ n
) ) ) ) `
 r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) )  ->  ( abs `  w
)  <  sup ( { r  e.  RR  |  seq 0 (  +  ,  ( ( t  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( t ^
n ) ) ) ) `  r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) ) )
7463, 66, 72, 73syl3anc 1228 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  w  e.  CC )  ->  ( ( ( abs `  w
)  <  1  /\  1  <_  sup ( { r  e.  RR  |  seq 0 (  +  , 
( ( t  e.  CC  |->  ( n  e. 
NN0  |->  ( ( A `
 n )  x.  ( t ^ n
) ) ) ) `
 r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) )  ->  ( abs `  w
)  <  sup ( { r  e.  RR  |  seq 0 (  +  ,  ( ( t  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( t ^
n ) ) ) ) `  r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) ) )
7562, 74mpan2d 674 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  w  e.  CC )  ->  ( ( abs `  w )  <  1  ->  ( abs `  w )  <  sup ( { r  e.  RR  |  seq 0
(  +  ,  ( ( t  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
t ^ n ) ) ) ) `  r ) )  e. 
dom 
~~>  } ,  RR* ,  <  ) ) )
7657, 60, 753jcad 1177 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  w  e.  CC )  ->  ( ( abs `  w )  <  1  ->  (
( abs `  w
)  e.  RR  /\  0  <_  ( abs `  w
)  /\  ( abs `  w )  <  sup ( { r  e.  RR  |  seq 0 (  +  ,  ( ( t  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( t ^
n ) ) ) ) `  r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) ) ) )
77 0cn 9600 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  0  e.  CC
7818cnmetdval 21146 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 0  e.  CC  /\  w  e.  CC )  ->  ( 0 ( abs 
o.  -  ) w
)  =  ( abs `  ( 0  -  w
) ) )
7977, 78mpan 670 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  e.  CC  ->  (
0 ( abs  o.  -  ) w )  =  ( abs `  (
0  -  w ) ) )
80 abssub 13139 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 0  e.  CC  /\  w  e.  CC )  ->  ( abs `  (
0  -  w ) )  =  ( abs `  ( w  -  0 ) ) )
8177, 80mpan 670 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  e.  CC  ->  ( abs `  ( 0  -  w ) )  =  ( abs `  (
w  -  0 ) ) )
82 subid1 9851 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( w  e.  CC  ->  (
w  -  0 )  =  w )
8382fveq2d 5876 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  e.  CC  ->  ( abs `  ( w  - 
0 ) )  =  ( abs `  w
) )
8479, 81, 833eqtrd 2512 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( w  e.  CC  ->  (
0 ( abs  o.  -  ) w )  =  ( abs `  w
) )
8584breq1d 4463 . . . . . . . . . . . . . . . . . . . . 21  |-  ( w  e.  CC  ->  (
( 0 ( abs 
o.  -  ) w
)  <  1  <->  ( abs `  w )  <  1
) )
8685adantl 466 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  w  e.  CC )  ->  ( ( 0 ( abs  o.  -  ) w )  <  1  <->  ( abs `  w )  <  1
) )
87 0re 9608 . . . . . . . . . . . . . . . . . . . . 21  |-  0  e.  RR
88 elico2 11600 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 0  e.  RR  /\  sup ( { r  e.  RR  |  seq 0
(  +  ,  ( ( t  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
t ^ n ) ) ) ) `  r ) )  e. 
dom 
~~>  } ,  RR* ,  <  )  e.  RR* )  ->  (
( abs `  w
)  e.  ( 0 [,) sup ( { r  e.  RR  |  seq 0 (  +  , 
( ( t  e.  CC  |->  ( n  e. 
NN0  |->  ( ( A `
 n )  x.  ( t ^ n
) ) ) ) `
 r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) )  <-> 
( ( abs `  w
)  e.  RR  /\  0  <_  ( abs `  w
)  /\  ( abs `  w )  <  sup ( { r  e.  RR  |  seq 0 (  +  ,  ( ( t  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( t ^
n ) ) ) ) `  r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) ) ) )
8987, 72, 88sylancr 663 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  w  e.  CC )  ->  ( ( abs `  w )  e.  ( 0 [,)
sup ( { r  e.  RR  |  seq 0 (  +  , 
( ( t  e.  CC  |->  ( n  e. 
NN0  |->  ( ( A `
 n )  x.  ( t ^ n
) ) ) ) `
 r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) )  <-> 
( ( abs `  w
)  e.  RR  /\  0  <_  ( abs `  w
)  /\  ( abs `  w )  <  sup ( { r  e.  RR  |  seq 0 (  +  ,  ( ( t  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( t ^
n ) ) ) ) `  r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) ) ) )
9076, 86, 893imtr4d 268 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  e.  CC )  ->  ( ( 0 ( abs  o.  -  ) w )  <  1  ->  ( abs `  w )  e.  ( 0 [,) sup ( { r  e.  RR  |  seq 0 (  +  ,  ( ( t  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( t ^
n ) ) ) ) `  r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) ) ) )
9190imdistanda 693 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( w  e.  CC  /\  ( 0 ( abs  o.  -  ) w )  <  1 )  ->  (
w  e.  CC  /\  ( abs `  w )  e.  ( 0 [,)
sup ( { r  e.  RR  |  seq 0 (  +  , 
( ( t  e.  CC  |->  ( n  e. 
NN0  |->  ( ( A `
 n )  x.  ( t ^ n
) ) ) ) `
 r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) ) ) ) )
9264rexri 9658 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  RR*
93 elbl 20759 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  0  e.  CC  /\  1  e.  RR* )  ->  (
w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 )  <->  ( w  e.  CC  /\  ( 0 ( abs  o.  -  ) w )  <  1 ) ) )
9435, 77, 92, 93mp3an 1324 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  ( 0 (
ball `  ( abs  o. 
-  ) ) 1 )  <->  ( w  e.  CC  /\  ( 0 ( abs  o.  -  ) w )  <  1 ) )
95 absf 13150 . . . . . . . . . . . . . . . . . . 19  |-  abs : CC
--> RR
96 ffn 5737 . . . . . . . . . . . . . . . . . . 19  |-  ( abs
: CC --> RR  ->  abs 
Fn  CC )
97 elpreima 6008 . . . . . . . . . . . . . . . . . . 19  |-  ( abs 
Fn  CC  ->  ( w  e.  ( `' abs " ( 0 [,) sup ( { r  e.  RR  |  seq 0 (  +  ,  ( ( t  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( t ^
n ) ) ) ) `  r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) ) )  <->  ( w  e.  CC  /\  ( abs `  w )  e.  ( 0 [,) sup ( { r  e.  RR  |  seq 0 (  +  ,  ( ( t  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( t ^
n ) ) ) ) `  r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) ) ) ) )
9895, 96, 97mp2b 10 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  ( `' abs " ( 0 [,) sup ( { r  e.  RR  |  seq 0 (  +  ,  ( ( t  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( t ^
n ) ) ) ) `  r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) ) )  <->  ( w  e.  CC  /\  ( abs `  w )  e.  ( 0 [,) sup ( { r  e.  RR  |  seq 0 (  +  ,  ( ( t  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( t ^
n ) ) ) ) `  r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) ) ) )
9991, 94, 983imtr4g 270 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( w  e.  ( 0 ( ball `  ( abs  o.  -  ) ) 1 )  ->  w  e.  ( `' abs " (
0 [,) sup ( { r  e.  RR  |  seq 0 (  +  ,  ( ( t  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( t ^
n ) ) ) ) `  r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) ) ) ) )
10099ssrdv 3515 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 0 ( ball `  ( abs  o.  -  ) ) 1 ) 
C_  ( `' abs " ( 0 [,) sup ( { r  e.  RR  |  seq 0 (  +  ,  ( ( t  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( t ^
n ) ) ) ) `  r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) ) ) )
10154, 100sstrd 3519 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( S  \  {
1 } )  C_  ( `' abs " ( 0 [,) sup ( { r  e.  RR  |  seq 0 (  +  , 
( ( t  e.  CC  |->  ( n  e. 
NN0  |->  ( ( A `
 n )  x.  ( t ^ n
) ) ) ) `
 r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) ) ) )
102 resmpt 5329 . . . . . . . . . . . . . . 15  |-  ( ( S  \  { 1 } )  C_  ( `' abs " ( 0 [,) sup ( { r  e.  RR  |  seq 0 (  +  , 
( ( t  e.  CC  |->  ( n  e. 
NN0  |->  ( ( A `
 n )  x.  ( t ^ n
) ) ) ) `
 r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) ) )  ->  ( (
x  e.  ( `' abs " ( 0 [,) sup ( { r  e.  RR  |  seq 0 (  +  , 
( ( t  e.  CC  |->  ( n  e. 
NN0  |->  ( ( A `
 n )  x.  ( t ^ n
) ) ) ) `
 r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) ) )  |->  sum_ n  e.  NN0  ( ( A `  n )  x.  (
x ^ n ) ) )  |`  ( S  \  { 1 } ) )  =  ( x  e.  ( S 
\  { 1 } )  |->  sum_ n  e.  NN0  ( ( A `  n )  x.  (
x ^ n ) ) ) )
103101, 102syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( x  e.  ( `' abs " (
0 [,) sup ( { r  e.  RR  |  seq 0 (  +  ,  ( ( t  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( t ^
n ) ) ) ) `  r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) ) )  |->  sum_ n  e.  NN0  ( ( A `  n )  x.  (
x ^ n ) ) )  |`  ( S  \  { 1 } ) )  =  ( x  e.  ( S 
\  { 1 } )  |->  sum_ n  e.  NN0  ( ( A `  n )  x.  (
x ^ n ) ) ) )
1046reseq1i 5275 . . . . . . . . . . . . . . 15  |-  ( F  |`  ( S  \  {
1 } ) )  =  ( ( x  e.  S  |->  sum_ n  e.  NN0  ( ( A `
 n )  x.  ( x ^ n
) ) )  |`  ( S  \  { 1 } ) )
105 difss 3636 . . . . . . . . . . . . . . . 16  |-  ( S 
\  { 1 } )  C_  S
106 resmpt 5329 . . . . . . . . . . . . . . . 16  |-  ( ( S  \  { 1 } )  C_  S  ->  ( ( x  e.  S  |->  sum_ n  e.  NN0  ( ( A `  n )  x.  (
x ^ n ) ) )  |`  ( S  \  { 1 } ) )  =  ( x  e.  ( S 
\  { 1 } )  |->  sum_ n  e.  NN0  ( ( A `  n )  x.  (
x ^ n ) ) ) )
107105, 106ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  S  |->  sum_
n  e.  NN0  (
( A `  n
)  x.  ( x ^ n ) ) )  |`  ( S  \  { 1 } ) )  =  ( x  e.  ( S  \  { 1 } ) 
|->  sum_ n  e.  NN0  ( ( A `  n )  x.  (
x ^ n ) ) )
108104, 107eqtri 2496 . . . . . . . . . . . . . 14  |-  ( F  |`  ( S  \  {
1 } ) )  =  ( x  e.  ( S  \  {
1 } )  |->  sum_
n  e.  NN0  (
( A `  n
)  x.  ( x ^ n ) ) )
109103, 108syl6eqr 2526 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( x  e.  ( `' abs " (
0 [,) sup ( { r  e.  RR  |  seq 0 (  +  ,  ( ( t  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( t ^
n ) ) ) ) `  r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) ) )  |->  sum_ n  e.  NN0  ( ( A `  n )  x.  (
x ^ n ) ) )  |`  ( S  \  { 1 } ) )  =  ( F  |`  ( S  \  { 1 } ) ) )
110 cnvimass 5363 . . . . . . . . . . . . . . . . . . 19  |-  ( `' abs " ( 0 [,) sup ( { r  e.  RR  |  seq 0 (  +  , 
( ( t  e.  CC  |->  ( n  e. 
NN0  |->  ( ( A `
 n )  x.  ( t ^ n
) ) ) ) `
 r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) ) )  C_  dom  abs
11195fdmi 5742 . . . . . . . . . . . . . . . . . . 19  |-  dom  abs  =  CC
112110, 111sseqtri 3541 . . . . . . . . . . . . . . . . . 18  |-  ( `' abs " ( 0 [,) sup ( { r  e.  RR  |  seq 0 (  +  , 
( ( t  e.  CC  |->  ( n  e. 
NN0  |->  ( ( A `
 n )  x.  ( t ^ n
) ) ) ) `
 r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) ) )  C_  CC
113112sseli 3505 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( `' abs " ( 0 [,) sup ( { r  e.  RR  |  seq 0 (  +  ,  ( ( t  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( t ^
n ) ) ) ) `  r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) ) )  ->  x  e.  CC )
11468pserval2 22673 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  CC  /\  j  e.  NN0 )  -> 
( ( ( t  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( t ^
n ) ) ) ) `  x ) `
 j )  =  ( ( A `  j )  x.  (
x ^ j ) ) )
115114sumeq2dv 13505 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  CC  ->  sum_ j  e.  NN0  ( ( ( t  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( t ^
n ) ) ) ) `  x ) `
 j )  = 
sum_ j  e.  NN0  ( ( A `  j )  x.  (
x ^ j ) ) )
116 fveq2 5872 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  j  ->  ( A `  n )  =  ( A `  j ) )
117 oveq2 6303 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  j  ->  (
x ^ n )  =  ( x ^
j ) )
118116, 117oveq12d 6313 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  j  ->  (
( A `  n
)  x.  ( x ^ n ) )  =  ( ( A `
 j )  x.  ( x ^ j
) ) )
119118cbvsumv 13498 . . . . . . . . . . . . . . . . . 18  |-  sum_ n  e.  NN0  ( ( A `
 n )  x.  ( x ^ n
) )  =  sum_ j  e.  NN0  ( ( A `  j )  x.  ( x ^
j ) )
120115, 119syl6reqr 2527 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  CC  ->  sum_ n  e.  NN0  ( ( A `
 n )  x.  ( x ^ n
) )  =  sum_ j  e.  NN0  ( ( ( t  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
t ^ n ) ) ) ) `  x ) `  j
) )
121113, 120syl 16 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( `' abs " ( 0 [,) sup ( { r  e.  RR  |  seq 0 (  +  ,  ( ( t  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( t ^
n ) ) ) ) `  r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) ) )  ->  sum_ n  e. 
NN0  ( ( A `
 n )  x.  ( x ^ n
) )  =  sum_ j  e.  NN0  ( ( ( t  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
t ^ n ) ) ) ) `  x ) `  j
) )
122121mpteq2ia 4535 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( `' abs " ( 0 [,) sup ( { r  e.  RR  |  seq 0 (  +  ,  ( ( t  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( t ^
n ) ) ) ) `  r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) ) )  |->  sum_ n  e.  NN0  ( ( A `  n )  x.  (
x ^ n ) ) )  =  ( x  e.  ( `' abs " ( 0 [,) sup ( { r  e.  RR  |  seq 0 (  +  , 
( ( t  e.  CC  |->  ( n  e. 
NN0  |->  ( ( A `
 n )  x.  ( t ^ n
) ) ) ) `
 r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) ) )  |->  sum_ j  e.  NN0  ( ( ( t  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( t ^
n ) ) ) ) `  x ) `
 j ) )
123 eqid 2467 . . . . . . . . . . . . . . 15  |-  ( `' abs " ( 0 [,) sup ( { r  e.  RR  |  seq 0 (  +  , 
( ( t  e.  CC  |->  ( n  e. 
NN0  |->  ( ( A `
 n )  x.  ( t ^ n
) ) ) ) `
 r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) ) )  =  ( `' abs " ( 0 [,) sup ( { r  e.  RR  |  seq 0 (  +  , 
( ( t  e.  CC  |->  ( n  e. 
NN0  |->  ( ( A `
 n )  x.  ( t ^ n
) ) ) ) `
 r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) ) )
124 eqid 2467 . . . . . . . . . . . . . . 15  |-  if ( sup ( { r  e.  RR  |  seq 0 (  +  , 
( ( t  e.  CC  |->  ( n  e. 
NN0  |->  ( ( A `
 n )  x.  ( t ^ n
) ) ) ) `
 r ) )  e.  dom  ~~>  } ,  RR* ,  <  )  e.  RR ,  ( ( ( abs `  v
)  +  sup ( { r  e.  RR  |  seq 0 (  +  ,  ( ( t  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( t ^
n ) ) ) ) `  r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) )  /  2 ) ,  ( ( abs `  v
)  +  1 ) )  =  if ( sup ( { r  e.  RR  |  seq 0 (  +  , 
( ( t  e.  CC  |->  ( n  e. 
NN0  |->  ( ( A `
 n )  x.  ( t ^ n
) ) ) ) `
 r ) )  e.  dom  ~~>  } ,  RR* ,  <  )  e.  RR ,  ( ( ( abs `  v
)  +  sup ( { r  e.  RR  |  seq 0 (  +  ,  ( ( t  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( t ^
n ) ) ) ) `  r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) )  /  2 ) ,  ( ( abs `  v
)  +  1 ) )
12568, 122, 1, 69, 123, 124psercn 22688 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  e.  ( `' abs " ( 0 [,) sup ( { r  e.  RR  |  seq 0 (  +  , 
( ( t  e.  CC  |->  ( n  e. 
NN0  |->  ( ( A `
 n )  x.  ( t ^ n
) ) ) ) `
 r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) ) )  |->  sum_ n  e.  NN0  ( ( A `  n )  x.  (
x ^ n ) ) )  e.  ( ( `' abs " (
0 [,) sup ( { r  e.  RR  |  seq 0 (  +  ,  ( ( t  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( t ^
n ) ) ) ) `  r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) ) ) -cn-> CC ) )
126 rescncf 21269 . . . . . . . . . . . . . 14  |-  ( ( S  \  { 1 } )  C_  ( `' abs " ( 0 [,) sup ( { r  e.  RR  |  seq 0 (  +  , 
( ( t  e.  CC  |->  ( n  e. 
NN0  |->  ( ( A `
 n )  x.  ( t ^ n
) ) ) ) `
 r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) ) )  ->  ( (
x  e.  ( `' abs " ( 0 [,) sup ( { r  e.  RR  |  seq 0 (  +  , 
( ( t  e.  CC  |->  ( n  e. 
NN0  |->  ( ( A `
 n )  x.  ( t ^ n
) ) ) ) `
 r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) ) )  |->  sum_ n  e.  NN0  ( ( A `  n )  x.  (
x ^ n ) ) )  e.  ( ( `' abs " (
0 [,) sup ( { r  e.  RR  |  seq 0 (  +  ,  ( ( t  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( t ^
n ) ) ) ) `  r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) ) ) -cn-> CC )  ->  (
( x  e.  ( `' abs " ( 0 [,) sup ( { r  e.  RR  |  seq 0 (  +  , 
( ( t  e.  CC  |->  ( n  e. 
NN0  |->  ( ( A `
 n )  x.  ( t ^ n
) ) ) ) `
 r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) ) )  |->  sum_ n  e.  NN0  ( ( A `  n )  x.  (
x ^ n ) ) )  |`  ( S  \  { 1 } ) )  e.  ( ( S  \  {
1 } ) -cn-> CC ) ) )
127101, 125, 126sylc 60 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( x  e.  ( `' abs " (
0 [,) sup ( { r  e.  RR  |  seq 0 (  +  ,  ( ( t  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  ( t ^
n ) ) ) ) `  r ) )  e.  dom  ~~>  } ,  RR* ,  <  ) ) )  |->  sum_ n  e.  NN0  ( ( A `  n )  x.  (
x ^ n ) ) )  |`  ( S  \  { 1 } ) )  e.  ( ( S  \  {
1 } ) -cn-> CC ) )
128109, 127eqeltrrd 2556 . . . . . . . . . . . 12  |-  ( ph  ->  ( F  |`  ( S  \  { 1 } ) )  e.  ( ( S  \  {
1 } ) -cn-> CC ) )
129128adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( S  \  { 1 } ) )  -> 
( F  |`  ( S  \  { 1 } ) )  e.  ( ( S  \  {
1 } ) -cn-> CC ) )
130105, 16sstri 3518 . . . . . . . . . . . 12  |-  ( S 
\  { 1 } )  C_  CC
131 ssid 3528 . . . . . . . . . . . 12  |-  CC  C_  CC
132 eqid 2467 . . . . . . . . . . . . 13  |-  ( (
TopOpen ` fld )t  ( S  \  {
1 } ) )  =  ( ( TopOpen ` fld )t  ( S  \  { 1 } ) )
13341cnfldtop 21159 . . . . . . . . . . . . . . 15  |-  ( TopOpen ` fld )  e.  Top
13441cnfldtopon 21158 . . . . . . . . . . . . . . . . 17  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
135134toponunii 19302 . . . . . . . . . . . . . . . 16  |-  CC  =  U. ( TopOpen ` fld )
136135restid 14706 . . . . . . . . . . . . . . 15  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
137133, 136ax-mp 5 . . . . . . . . . . . . . 14  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
138137eqcomi 2480 . . . . . . . . . . . . 13  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
13941, 132, 138cncfcn 21281 . . . . . . . . . . . 12  |-  ( ( ( S  \  {
1 } )  C_  CC  /\  CC  C_  CC )  ->  ( ( S 
\  { 1 } ) -cn-> CC )  =  ( ( ( TopOpen ` fld )t  ( S  \  { 1 } ) )  Cn  ( TopOpen ` fld )
) )
140130, 131, 139mp2an 672 . . . . . . . . . . 11  |-  ( ( S  \  { 1 } ) -cn-> CC )  =  ( ( (
TopOpen ` fld )t  ( S  \  {
1 } ) )  Cn  ( TopOpen ` fld ) )
141129, 140syl6eleq 2565 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( S  \  { 1 } ) )  -> 
( F  |`  ( S  \  { 1 } ) )  e.  ( ( ( TopOpen ` fld )t  ( S  \  { 1 } ) )  Cn  ( TopOpen ` fld )
) )
142 simpr 461 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( S  \  { 1 } ) )  -> 
y  e.  ( S 
\  { 1 } ) )
143 resttopon 19530 . . . . . . . . . . . . 13  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  ( S  \  { 1 } )  C_  CC )  ->  ( ( TopOpen ` fld )t  ( S  \  { 1 } ) )  e.  (TopOn `  ( S  \  { 1 } ) ) )
144134, 130, 143mp2an 672 . . . . . . . . . . . 12  |-  ( (
TopOpen ` fld )t  ( S  \  {
1 } ) )  e.  (TopOn `  ( S  \  { 1 } ) )
145144toponunii 19302 . . . . . . . . . . 11  |-  ( S 
\  { 1 } )  =  U. (
( TopOpen ` fld )t  ( S  \  { 1 } ) )
146145cncnpi 19647 . . . . . . . . . 10  |-  ( ( ( F  |`  ( S  \  { 1 } ) )  e.  ( ( ( TopOpen ` fld )t  ( S  \  { 1 } ) )  Cn  ( TopOpen ` fld )
)  /\  y  e.  ( S  \  { 1 } ) )  -> 
( F  |`  ( S  \  { 1 } ) )  e.  ( ( ( ( TopOpen ` fld )t  ( S  \  { 1 } ) )  CnP  ( TopOpen
` fld
) ) `  y
) )
147141, 142, 146syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( S  \  { 1 } ) )  -> 
( F  |`  ( S  \  { 1 } ) )  e.  ( ( ( ( TopOpen ` fld )t  ( S  \  { 1 } ) )  CnP  ( TopOpen
` fld
) ) `  y
) )
148 cnex 9585 . . . . . . . . . . . . 13  |-  CC  e.  _V
149148, 16ssexi 4598 . . . . . . . . . . . 12  |-  S  e. 
_V
150 restabs 19534 . . . . . . . . . . . 12  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  ( S  \  {
1 } )  C_  S  /\  S  e.  _V )  ->  ( ( (
TopOpen ` fld )t  S )t  ( S  \  { 1 } ) )  =  ( (
TopOpen ` fld )t  ( S  \  {
1 } ) ) )
151133, 105, 149, 150mp3an 1324 . . . . . . . . . . 11  |-  ( ( ( TopOpen ` fld )t  S )t  ( S  \  { 1 } ) )  =  ( (
TopOpen ` fld )t  ( S  \  {
1 } ) )
152151oveq1i 6305 . . . . . . . . . 10  |-  ( ( ( ( TopOpen ` fld )t  S )t  ( S  \  { 1 } ) )  CnP  ( TopOpen ` fld )
)  =  ( ( ( TopOpen ` fld )t  ( S  \  { 1 } ) )  CnP  ( TopOpen ` fld )
)
153152fveq1i 5873 . . . . . . . . 9  |-  ( ( ( ( ( TopOpen ` fld )t  S
)t  ( S  \  {
1 } ) )  CnP  ( TopOpen ` fld ) ) `  y
)  =  ( ( ( ( TopOpen ` fld )t  ( S  \  { 1 } ) )  CnP  ( TopOpen ` fld )
) `  y )
154147, 153syl6eleqr 2566 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( S  \  { 1 } ) )  -> 
( F  |`  ( S  \  { 1 } ) )  e.  ( ( ( ( (
TopOpen ` fld )t  S )t  ( S  \  { 1 } ) )  CnP  ( TopOpen ` fld )
) `  y )
)
155 resttop 19529 . . . . . . . . . . 11  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  S  e.  _V )  ->  ( ( TopOpen ` fld )t  S )  e.  Top )
156133, 149, 155mp2an 672 . . . . . . . . . 10  |-  ( (
TopOpen ` fld )t  S )  e.  Top
157156a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( S  \  { 1 } ) )  -> 
( ( TopOpen ` fld )t  S )  e.  Top )
158105a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( S  \  { 1 } ) )  -> 
( S  \  {
1 } )  C_  S )
15910snssd 4178 . . . . . . . . . . . . 13  |-  ( ph  ->  { 1 }  C_  S )
16041cnfldhaus 21160 . . . . . . . . . . . . . . 15  |-  ( TopOpen ` fld )  e.  Haus
161135sncld 19740 . . . . . . . . . . . . . . 15  |-  ( ( ( TopOpen ` fld )  e.  Haus  /\  1  e.  CC )  ->  { 1 }  e.  ( Clsd `  ( TopOpen
` fld
) ) )
162160, 14, 161mp2an 672 . . . . . . . . . . . . . 14  |-  { 1 }  e.  ( Clsd `  ( TopOpen ` fld ) )
163135restcldi 19542 . . . . . . . . . . . . . 14  |-  ( ( S  C_  CC  /\  {
1 }  e.  (
Clsd `  ( TopOpen ` fld ) )  /\  {
1 }  C_  S
)  ->  { 1 }  e.  ( Clsd `  ( ( TopOpen ` fld )t  S ) ) )
16416, 162, 163mp3an12 1314 . . . . . . . . . . . . 13  |-  ( { 1 }  C_  S  ->  { 1 }  e.  ( Clsd `  ( ( TopOpen
` fld
)t 
S ) ) )
165135restuni 19531 . . . . . . . . . . . . . . 15  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  S  C_  CC )  ->  S  =  U. (
( TopOpen ` fld )t  S ) )
166133, 16, 165mp2an 672 . . . . . . . . . . . . . 14  |-  S  = 
U. ( ( TopOpen ` fld )t  S
)
167166cldopn 19400 . . . . . . . . . . . . 13  |-  ( { 1 }  e.  (
Clsd `  ( ( TopOpen
` fld
)t 
S ) )  -> 
( S  \  {
1 } )  e.  ( ( TopOpen ` fld )t  S ) )
168159, 164, 1673syl 20 . . . . . . . . . . . 12  |-  ( ph  ->  ( S  \  {
1 } )  e.  ( ( TopOpen ` fld )t  S ) )
169166isopn3 19435 . . . . . . . . . . . . 13  |-  ( ( ( ( TopOpen ` fld )t  S )  e.  Top  /\  ( S  \  {
1 } )  C_  S )  ->  (
( S  \  {
1 } )  e.  ( ( TopOpen ` fld )t  S )  <->  ( ( int `  ( ( TopOpen ` fld )t  S
) ) `  ( S  \  { 1 } ) )  =  ( S  \  { 1 } ) ) )
170156, 105, 169mp2an 672 . . . . . . . . . . . 12  |-  ( ( S  \  { 1 } )  e.  ( ( TopOpen ` fld )t  S )  <->  ( ( int `  ( ( TopOpen ` fld )t  S
) ) `  ( S  \  { 1 } ) )  =  ( S  \  { 1 } ) )
171168, 170sylib 196 . . . . . . . . . . 11  |-  ( ph  ->  ( ( int `  (
( TopOpen ` fld )t  S ) ) `  ( S  \  { 1 } ) )  =  ( S  \  {
1 } ) )
172171eleq2d 2537 . . . . . . . . . 10  |-  ( ph  ->  ( y  e.  ( ( int `  (
( TopOpen ` fld )t  S ) ) `  ( S  \  { 1 } ) )  <->  y  e.  ( S  \  { 1 } ) ) )
173172biimpar 485 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( S  \  { 1 } ) )  -> 
y  e.  ( ( int `  ( (
TopOpen ` fld )t  S ) ) `  ( S  \  { 1 } ) ) )
1747adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( S  \  { 1 } ) )  ->  F : S --> CC )
175166, 135cnprest 19658 . . . . . . . . 9  |-  ( ( ( ( ( TopOpen ` fld )t  S
)  e.  Top  /\  ( S  \  { 1 } )  C_  S
)  /\  ( y  e.  ( ( int `  (
( TopOpen ` fld )t  S ) ) `  ( S  \  { 1 } ) )  /\  F : S --> CC ) )  ->  ( F  e.  ( ( ( (
TopOpen ` fld )t  S )  CnP  ( TopOpen
` fld
) ) `  y
)  <->  ( F  |`  ( S  \  { 1 } ) )  e.  ( ( ( ( ( TopOpen ` fld )t  S )t  ( S  \  { 1 } ) )  CnP  ( TopOpen ` fld )
) `  y )
) )
176157, 158, 173, 174, 175syl22anc 1229 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( S  \  { 1 } ) )  -> 
( F  e.  ( ( ( ( TopOpen ` fld )t  S
)  CnP  ( TopOpen ` fld )
) `  y )  <->  ( F  |`  ( S  \  { 1 } ) )  e.  ( ( ( ( ( TopOpen ` fld )t  S
)t  ( S  \  {
1 } ) )  CnP  ( TopOpen ` fld ) ) `  y
) ) )
177154, 176mpbird 232 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( S  \  { 1 } ) )  ->  F  e.  ( (
( ( TopOpen ` fld )t  S )  CnP  ( TopOpen
` fld
) ) `  y
) )
17853, 177sylan2br 476 . . . . . 6  |-  ( (
ph  /\  ( y  e.  S  /\  y  =/=  1 ) )  ->  F  e.  ( (
( ( TopOpen ` fld )t  S )  CnP  ( TopOpen
` fld
) ) `  y
) )
179178anassrs 648 . . . . 5  |-  ( ( ( ph  /\  y  e.  S )  /\  y  =/=  1 )  ->  F  e.  ( ( ( (
TopOpen ` fld )t  S )  CnP  ( TopOpen
` fld
) ) `  y
) )
18052, 179pm2.61dane 2785 . . . 4  |-  ( (
ph  /\  y  e.  S )  ->  F  e.  ( ( ( (
TopOpen ` fld )t  S )  CnP  ( TopOpen
` fld
) ) `  y
) )
181180ralrimiva 2881 . . 3  |-  ( ph  ->  A. y  e.  S  F  e.  ( (
( ( TopOpen ` fld )t  S )  CnP  ( TopOpen
` fld
) ) `  y
) )
182 resttopon 19530 . . . . 5  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  S  C_  CC )  ->  (
( TopOpen ` fld )t  S )  e.  (TopOn `  S ) )
183134, 16, 182mp2an 672 . . . 4  |-  ( (
TopOpen ` fld )t  S )  e.  (TopOn `  S )
184 cncnp 19649 . . . 4  |-  ( ( ( ( TopOpen ` fld )t  S )  e.  (TopOn `  S )  /\  ( TopOpen
` fld
)  e.  (TopOn `  CC ) )  ->  ( F  e.  ( (
( TopOpen ` fld )t  S )  Cn  ( TopOpen
` fld
) )  <->  ( F : S --> CC  /\  A. y  e.  S  F  e.  ( ( ( (
TopOpen ` fld )t  S )  CnP  ( TopOpen
` fld
) ) `  y
) ) ) )
185183, 134, 184mp2an 672 . . 3  |-  ( F  e.  ( ( (
TopOpen ` fld )t  S )  Cn  ( TopOpen
` fld
) )  <->  ( F : S --> CC  /\  A. y  e.  S  F  e.  ( ( ( (
TopOpen ` fld )t  S )  CnP  ( TopOpen
` fld
) ) `  y
) ) )
1867, 181, 185sylanbrc 664 . 2  |-  ( ph  ->  F  e.  ( ( ( TopOpen ` fld )t  S )  Cn  ( TopOpen
` fld
) ) )
187 eqid 2467 . . . 4  |-  ( (
TopOpen ` fld )t  S )  =  ( ( TopOpen ` fld )t  S )
18841, 187, 138cncfcn 21281 . . 3  |-  ( ( S  C_  CC  /\  CC  C_  CC )  ->  ( S -cn-> CC )  =  ( ( ( TopOpen ` fld )t  S )  Cn  ( TopOpen
` fld
) ) )
18916, 131, 188mp2an 672 . 2  |-  ( S
-cn-> CC )  =  ( ( ( TopOpen ` fld )t  S )  Cn  ( TopOpen
` fld
) )
190186, 189syl6eleqr 2566 1  |-  ( ph  ->  F  e.  ( S
-cn-> CC ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2817   E.wrex 2818   {crab 2821   _Vcvv 3118    \ cdif 3478    C_ wss 3481   ifcif 3945   {csn 4033   U.cuni 4251   class class class wbr 4453    |-> cmpt 4511    X. cxp 5003   `'ccnv 5004   dom cdm 5005    |` cres 5007   "cima 5008    o. ccom 5009    Fn wfn 5589   -->wf 5590   ` cfv 5594  (class class class)co 6295   supcsup 7912   CCcc 9502   RRcr 9503   0cc0 9504   1c1 9505    + caddc 9507    x. cmul 9509   +oocpnf 9637   RR*cxr 9639    < clt 9640    <_ cle 9641    - cmin 9817    / cdiv 10218   2c2 10597   NN0cn0 10807   RR+crp 11232   [,)cico 11543   [,]cicc 11544    seqcseq 12087   ^cexp 12146   abscabs 13047    ~~> cli 13287   sum_csu 13488   ↾t crest 14693   TopOpenctopn 14694   *Metcxmt 18273   ballcbl 18275   MetOpencmopn 18278  ℂfldccnfld 18290   Topctop 19263  TopOnctopon 19264   Clsdccld 19385   intcnt 19386    Cn ccn 19593    CnP ccnp 19594   Hauscha 19677   -cn->ccncf 21248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-inf2 8070  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582  ax-addf 9583  ax-mulf 9584
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-iin 4334  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-se 4845  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-of 6535  df-om 6696  df-1st 6795  df-2nd 6796  df-supp 6914  df-recs 7054  df-rdg 7088  df-1o 7142  df-2o 7143  df-oadd 7146  df-er 7323  df-map 7434  df-pm 7435  df-ixp 7482  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-fsupp 7842  df-fi 7883  df-sup 7913  df-oi 7947  df-card 8332  df-cda 8560  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-4 10608  df-5 10609  df-6 10610  df-7 10611  df-8 10612  df-9 10613  df-10 10614  df-n0 10808  df-z 10877  df-dec 10989  df-uz 11095  df-q 11195  df-rp 11233  df-xneg 11330  df-xadd 11331  df-xmul 11332  df-ico 11547  df-icc 11548  df-fz 11685  df-fzo 11805  df-fl 11909  df-seq 12088  df-exp 12147  df-hash 12386  df-shft 12880  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049  df-limsup 13274  df-clim 13291  df-rlim 13292  df-sum 13489  df-struct 14509  df-ndx 14510  df-slot 14511  df-base 14512  df-sets 14513  df-ress 14514  df-plusg 14585  df-mulr 14586  df-starv 14587  df-sca 14588  df-vsca 14589  df-ip 14590  df-tset 14591  df-ple 14592  df-ds 14594  df-unif 14595  df-hom 14596  df-cco 14597  df-rest 14695  df-topn 14696  df-0g 14714  df-gsum 14715  df-topgen 14716  df-pt 14717  df-prds 14720  df-xrs 14774  df-qtop 14779  df-imas 14780  df-xps 14782  df-mre 14858  df-mrc 14859  df-acs 14861  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-submnd 15840  df-mulg 15932  df-cntz 16227  df-cmn 16673  df-psmet 18281  df-xmet 18282  df-met 18283  df-bl 18284  df-mopn 18285  df-cnfld 18291  df-top 19268  df-bases 19270  df-topon 19271  df-topsp 19272  df-cld 19388  df-ntr 19389  df-cn 19596  df-cnp 19597  df-t1 19683  df-haus 19684  df-tx 19931  df-hmeo 20124  df-xms 20691  df-ms 20692  df-tms 20693  df-cncf 21250  df-ulm 22639
This theorem is referenced by:  abelth2  22704
  Copyright terms: Public domain W3C validator