Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  abbi1dvOLD Structured version   Unicode version

Theorem abbi1dvOLD 2556
 Description: Obsolete proof of abbi1dv 2555 as of 16-Nov-2019. (Contributed by NM, 9-Jul-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
abbi1dv.1
Assertion
Ref Expression
abbi1dvOLD
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem abbi1dvOLD
StepHypRef Expression
1 abbi1dv.1 . . 3
21alrimiv 1767 . 2
3 abeq1 2542 . 2
42, 3sylibr 215 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 187  wal 1435   wceq 1437   wcel 1872  cab 2407 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401 This theorem depends on definitions:  df-bi 188  df-an 372  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-clab 2408  df-cleq 2414  df-clel 2417 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator