MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aannenlem3 Structured version   Unicode version

Theorem aannenlem3 22476
Description: The algebraic numbers are countable. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypothesis
Ref Expression
aannenlem.a  |-  H  =  ( a  e.  NN0  |->  { b  e.  CC  |  E. c  e.  {
d  e.  (Poly `  ZZ )  |  (
d  =/=  0p  /\  (deg `  d
)  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 } )
Assertion
Ref Expression
aannenlem3  |-  AA  ~~  NN
Distinct variable group:    a, b, c, d, e
Allowed substitution hints:    H( e, a, b, c, d)

Proof of Theorem aannenlem3
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnso 13840 . . . 4  |-  E. f 
f  Or  CC
2 aannenlem.a . . . . . . 7  |-  H  =  ( a  e.  NN0  |->  { b  e.  CC  |  E. c  e.  {
d  e.  (Poly `  ZZ )  |  (
d  =/=  0p  /\  (deg `  d
)  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 } )
32aannenlem2 22475 . . . . . 6  |-  AA  =  U. ran  H
4 omelon 8062 . . . . . . . . . . 11  |-  om  e.  On
5 nn0ennn 12056 . . . . . . . . . . . . 13  |-  NN0  ~~  NN
6 nnenom 12057 . . . . . . . . . . . . 13  |-  NN  ~~  om
75, 6entri 7569 . . . . . . . . . . . 12  |-  NN0  ~~  om
87ensymi 7565 . . . . . . . . . . 11  |-  om  ~~  NN0
9 isnumi 8326 . . . . . . . . . . 11  |-  ( ( om  e.  On  /\  om 
~~  NN0 )  ->  NN0  e.  dom  card )
104, 8, 9mp2an 672 . . . . . . . . . 10  |-  NN0  e.  dom  card
11 cnex 9572 . . . . . . . . . . . . 13  |-  CC  e.  _V
1211rabex 4598 . . . . . . . . . . . 12  |-  { b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 }  e.  _V
1312, 2fnmpti 5708 . . . . . . . . . . 11  |-  H  Fn  NN0
14 dffn4 5800 . . . . . . . . . . 11  |-  ( H  Fn  NN0  <->  H : NN0 -onto-> ran  H )
1513, 14mpbi 208 . . . . . . . . . 10  |-  H : NN0 -onto-> ran  H
16 fodomnum 8437 . . . . . . . . . 10  |-  ( NN0 
e.  dom  card  ->  ( H : NN0 -onto-> ran  H  ->  ran  H  ~<_  NN0 )
)
1710, 15, 16mp2 9 . . . . . . . . 9  |-  ran  H  ~<_  NN0
18 domentr 7574 . . . . . . . . 9  |-  ( ( ran  H  ~<_  NN0  /\  NN0  ~~  om )  ->  ran  H  ~<_  om )
1917, 7, 18mp2an 672 . . . . . . . 8  |-  ran  H  ~<_  om
2019a1i 11 . . . . . . 7  |-  ( f  Or  CC  ->  ran  H  ~<_  om )
21 fvelrnb 5914 . . . . . . . . . . 11  |-  ( H  Fn  NN0  ->  ( f  e.  ran  H  <->  E. g  e.  NN0  ( H `  g )  =  f ) )
2213, 21ax-mp 5 . . . . . . . . . 10  |-  ( f  e.  ran  H  <->  E. g  e.  NN0  ( H `  g )  =  f )
232aannenlem1 22474 . . . . . . . . . . . 12  |-  ( g  e.  NN0  ->  ( H `
 g )  e. 
Fin )
24 eleq1 2539 . . . . . . . . . . . 12  |-  ( ( H `  g )  =  f  ->  (
( H `  g
)  e.  Fin  <->  f  e.  Fin ) )
2523, 24syl5ibcom 220 . . . . . . . . . . 11  |-  ( g  e.  NN0  ->  ( ( H `  g )  =  f  ->  f  e.  Fin ) )
2625rexlimiv 2949 . . . . . . . . . 10  |-  ( E. g  e.  NN0  ( H `  g )  =  f  ->  f  e. 
Fin )
2722, 26sylbi 195 . . . . . . . . 9  |-  ( f  e.  ran  H  -> 
f  e.  Fin )
2827ssriv 3508 . . . . . . . 8  |-  ran  H  C_ 
Fin
2928a1i 11 . . . . . . 7  |-  ( f  Or  CC  ->  ran  H 
C_  Fin )
30 aasscn 22464 . . . . . . . . 9  |-  AA  C_  CC
313, 30eqsstr3i 3535 . . . . . . . 8  |-  U. ran  H 
C_  CC
32 soss 4818 . . . . . . . 8  |-  ( U. ran  H  C_  CC  ->  ( f  Or  CC  ->  f  Or  U. ran  H
) )
3331, 32ax-mp 5 . . . . . . 7  |-  ( f  Or  CC  ->  f  Or  U. ran  H )
34 iunfictbso 8494 . . . . . . 7  |-  ( ( ran  H  ~<_  om  /\  ran  H  C_  Fin  /\  f  Or  U. ran  H )  ->  U. ran  H  ~<_  om )
3520, 29, 33, 34syl3anc 1228 . . . . . 6  |-  ( f  Or  CC  ->  U. ran  H  ~<_  om )
363, 35syl5eqbr 4480 . . . . 5  |-  ( f  Or  CC  ->  AA  ~<_  om )
3736exlimiv 1698 . . . 4  |-  ( E. f  f  Or  CC  ->  AA  ~<_  om )
381, 37ax-mp 5 . . 3  |-  AA  ~<_  om
396ensymi 7565 . . 3  |-  om  ~~  NN
40 domentr 7574 . . 3  |-  ( ( AA  ~<_  om  /\  om  ~~  NN )  ->  AA  ~<_  NN )
4138, 39, 40mp2an 672 . 2  |-  AA  ~<_  NN
4211, 30ssexi 4592 . . 3  |-  AA  e.  _V
43 nnssq 11190 . . . 4  |-  NN  C_  QQ
44 qssaa 22470 . . . 4  |-  QQ  C_  AA
4543, 44sstri 3513 . . 3  |-  NN  C_  AA
46 ssdomg 7561 . . 3  |-  ( AA  e.  _V  ->  ( NN  C_  AA  ->  NN  ~<_  AA ) )
4742, 45, 46mp2 9 . 2  |-  NN  ~<_  AA
48 sbth 7637 . 2  |-  ( ( AA  ~<_  NN  /\  NN  ~<_  AA )  ->  AA  ~~  NN )
4941, 47, 48mp2an 672 1  |-  AA  ~~  NN
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ w3a 973    = wceq 1379   E.wex 1596    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815   {crab 2818   _Vcvv 3113    C_ wss 3476   U.cuni 4245   class class class wbr 4447    |-> cmpt 4505    Or wor 4799   Oncon0 4878   dom cdm 4999   ran crn 5000    Fn wfn 5582   -onto->wfo 5585   ` cfv 5587   omcom 6679    ~~ cen 7513    ~<_ cdom 7514   Fincfn 7516   cardccrd 8315   CCcc 9489   0cc0 9491    <_ cle 9628   NNcn 10535   NN0cn0 10794   ZZcz 10863   QQcq 11181   abscabs 13029   0pc0p 21827  Polycply 22332  coeffccoe 22334  degcdgr 22335   AAcaa 22460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575  ax-inf2 8057  ax-cnex 9547  ax-resscn 9548  ax-1cn 9549  ax-icn 9550  ax-addcl 9551  ax-addrcl 9552  ax-mulcl 9553  ax-mulrcl 9554  ax-mulcom 9555  ax-addass 9556  ax-mulass 9557  ax-distr 9558  ax-i2m1 9559  ax-1ne0 9560  ax-1rid 9561  ax-rnegex 9562  ax-rrecex 9563  ax-cnre 9564  ax-pre-lttri 9565  ax-pre-lttrn 9566  ax-pre-ltadd 9567  ax-pre-mulgt0 9568  ax-pre-sup 9569  ax-addf 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-isom 5596  df-riota 6244  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-of 6523  df-om 6680  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-omul 7135  df-er 7311  df-map 7422  df-pm 7423  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-sup 7900  df-oi 7934  df-card 8319  df-acn 8322  df-cda 8547  df-pnf 9629  df-mnf 9630  df-xr 9631  df-ltxr 9632  df-le 9633  df-sub 9806  df-neg 9807  df-div 10206  df-nn 10536  df-2 10593  df-3 10594  df-n0 10795  df-z 10864  df-uz 11082  df-q 11182  df-rp 11220  df-ico 11534  df-icc 11535  df-fz 11672  df-fzo 11792  df-fl 11896  df-mod 11964  df-seq 12075  df-exp 12134  df-hash 12373  df-cj 12894  df-re 12895  df-im 12896  df-sqrt 13030  df-abs 13031  df-limsup 13256  df-clim 13273  df-rlim 13274  df-sum 13471  df-0p 21828  df-ply 22336  df-idp 22337  df-coe 22338  df-dgr 22339  df-quot 22437  df-aa 22461
This theorem is referenced by:  aannen  22477
  Copyright terms: Public domain W3C validator