MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aannenlem2 Structured version   Unicode version

Theorem aannenlem2 22851
Description: Lemma for aannen 22853. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypothesis
Ref Expression
aannenlem.a  |-  H  =  ( a  e.  NN0  |->  { b  e.  CC  |  E. c  e.  {
d  e.  (Poly `  ZZ )  |  (
d  =/=  0p  /\  (deg `  d
)  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 } )
Assertion
Ref Expression
aannenlem2  |-  AA  =  U. ran  H
Distinct variable group:    a, b, c, d, e
Allowed substitution hints:    H( e, a, b, c, d)

Proof of Theorem aannenlem2
Dummy variables  f 
g  h  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 998 . . . . . . . . . 10  |-  ( ( h  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( h `  g )  =  0  /\  g  e.  CC )  ->  g  e.  CC )
2 eldifi 3622 . . . . . . . . . . . . . 14  |-  ( h  e.  ( (Poly `  ZZ )  \  { 0p } )  ->  h  e.  (Poly `  ZZ ) )
32adantr 465 . . . . . . . . . . . . 13  |-  ( ( h  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  g  e.  CC )  ->  h  e.  (Poly `  ZZ ) )
433adant2 1015 . . . . . . . . . . . 12  |-  ( ( h  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( h `  g )  =  0  /\  g  e.  CC )  ->  h  e.  (Poly `  ZZ ) )
5 eldifsni 4158 . . . . . . . . . . . . . . 15  |-  ( h  e.  ( (Poly `  ZZ )  \  { 0p } )  ->  h  =/=  0p )
65adantr 465 . . . . . . . . . . . . . 14  |-  ( ( h  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  g  e.  CC )  ->  h  =/=  0p )
7 0nn0 10831 . . . . . . . . . . . . . . . . . 18  |-  0  e.  NN0
8 dgrcl 22756 . . . . . . . . . . . . . . . . . . 19  |-  ( h  e.  (Poly `  ZZ )  ->  (deg `  h
)  e.  NN0 )
93, 8syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( h  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  g  e.  CC )  ->  (deg `  h
)  e.  NN0 )
10 prssi 4188 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  NN0  /\  (deg `  h )  e. 
NN0 )  ->  { 0 ,  (deg `  h
) }  C_  NN0 )
117, 9, 10sylancr 663 . . . . . . . . . . . . . . . . 17  |-  ( ( h  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  g  e.  CC )  ->  { 0 ,  (deg `  h ) }  C_  NN0 )
12 ssrab2 3581 . . . . . . . . . . . . . . . . . 18  |-  { g  e.  NN0  |  E. i  e.  ( 0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } 
C_  NN0
1312a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( h  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  g  e.  CC )  ->  { g  e. 
NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } 
C_  NN0 )
1411, 13unssd 3676 . . . . . . . . . . . . . . . 16  |-  ( ( h  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  g  e.  CC )  ->  ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } )  C_  NN0 )
15 nn0ssre 10820 . . . . . . . . . . . . . . . . 17  |-  NN0  C_  RR
16 ressxr 9654 . . . . . . . . . . . . . . . . 17  |-  RR  C_  RR*
1715, 16sstri 3508 . . . . . . . . . . . . . . . 16  |-  NN0  C_  RR*
1814, 17syl6ss 3511 . . . . . . . . . . . . . . 15  |-  ( ( h  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  g  e.  CC )  ->  ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } )  C_  RR* )
19 fvex 5882 . . . . . . . . . . . . . . . . 17  |-  (deg `  h )  e.  _V
2019prid2 4141 . . . . . . . . . . . . . . . 16  |-  (deg `  h )  e.  {
0 ,  (deg `  h ) }
21 elun1 3667 . . . . . . . . . . . . . . . 16  |-  ( (deg
`  h )  e. 
{ 0 ,  (deg
`  h ) }  ->  (deg `  h
)  e.  ( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) )
2220, 21ax-mp 5 . . . . . . . . . . . . . . 15  |-  (deg `  h )  e.  ( { 0 ,  (deg
`  h ) }  u.  { g  e. 
NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } )
23 supxrub 11541 . . . . . . . . . . . . . . 15  |-  ( ( ( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } )  C_  RR*  /\  (deg `  h )  e.  ( { 0 ,  (deg
`  h ) }  u.  { g  e. 
NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) )  ->  (deg `  h )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) )
2418, 22, 23sylancl 662 . . . . . . . . . . . . . 14  |-  ( ( h  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  g  e.  CC )  ->  (deg `  h
)  <_  sup (
( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) )
2518adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( h  e.  ( (Poly `  ZZ )  \  { 0p }
)  /\  g  e.  CC )  /\  e  e.  NN0 )  ->  ( { 0 ,  (deg
`  h ) }  u.  { g  e. 
NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } )  C_  RR* )
26 fveq2 5872 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( (coeff `  h ) `  e )  =  0  ->  ( abs `  (
(coeff `  h ) `  e ) )  =  ( abs `  0
) )
27 abs0 13130 . . . . . . . . . . . . . . . . . . . 20  |-  ( abs `  0 )  =  0
2826, 27syl6eq 2514 . . . . . . . . . . . . . . . . . . 19  |-  ( ( (coeff `  h ) `  e )  =  0  ->  ( abs `  (
(coeff `  h ) `  e ) )  =  0 )
29 c0ex 9607 . . . . . . . . . . . . . . . . . . . . 21  |-  0  e.  _V
3029prid1 4140 . . . . . . . . . . . . . . . . . . . 20  |-  0  e.  { 0 ,  (deg
`  h ) }
31 elun1 3667 . . . . . . . . . . . . . . . . . . . 20  |-  ( 0  e.  { 0 ,  (deg `  h ) }  ->  0  e.  ( { 0 ,  (deg
`  h ) }  u.  { g  e. 
NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) )
3230, 31ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  0  e.  ( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } )
3328, 32syl6eqel 2553 . . . . . . . . . . . . . . . . . 18  |-  ( ( (coeff `  h ) `  e )  =  0  ->  ( abs `  (
(coeff `  h ) `  e ) )  e.  ( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) )
3433adantl 466 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( h  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  g  e.  CC )  /\  e  e.  NN0 )  /\  (
(coeff `  h ) `  e )  =  0 )  ->  ( abs `  ( (coeff `  h
) `  e )
)  e.  ( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) )
35 0z 10896 . . . . . . . . . . . . . . . . . . . . . . 23  |-  0  e.  ZZ
36 eqid 2457 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  (coeff `  h )  =  (coeff `  h )
3736coef2 22754 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( h  e.  (Poly `  ZZ )  /\  0  e.  ZZ )  ->  (coeff `  h ) : NN0 --> ZZ )
383, 35, 37sylancl 662 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( h  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  g  e.  CC )  ->  (coeff `  h
) : NN0 --> ZZ )
3938ffvelrnda 6032 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( h  e.  ( (Poly `  ZZ )  \  { 0p }
)  /\  g  e.  CC )  /\  e  e.  NN0 )  ->  (
(coeff `  h ) `  e )  e.  ZZ )
40 nn0abscl 13157 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( (coeff `  h ) `  e )  e.  ZZ  ->  ( abs `  (
(coeff `  h ) `  e ) )  e. 
NN0 )
4139, 40syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( h  e.  ( (Poly `  ZZ )  \  { 0p }
)  /\  g  e.  CC )  /\  e  e.  NN0 )  ->  ( abs `  ( (coeff `  h ) `  e
) )  e.  NN0 )
4241adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( h  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  g  e.  CC )  /\  e  e.  NN0 )  /\  (
(coeff `  h ) `  e )  =/=  0
)  ->  ( abs `  ( (coeff `  h
) `  e )
)  e.  NN0 )
43 simplr 755 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( h  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  g  e.  CC )  /\  e  e.  NN0 )  /\  (
(coeff `  h ) `  e )  =/=  0
)  ->  e  e.  NN0 )
449ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( h  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  g  e.  CC )  /\  e  e.  NN0 )  /\  (
(coeff `  h ) `  e )  =/=  0
)  ->  (deg `  h
)  e.  NN0 )
453ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( h  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  g  e.  CC )  /\  e  e.  NN0 )  /\  (
(coeff `  h ) `  e )  =/=  0
)  ->  h  e.  (Poly `  ZZ ) )
46 simpr 461 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( h  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  g  e.  CC )  /\  e  e.  NN0 )  /\  (
(coeff `  h ) `  e )  =/=  0
)  ->  ( (coeff `  h ) `  e
)  =/=  0 )
47 eqid 2457 . . . . . . . . . . . . . . . . . . . . . . 23  |-  (deg `  h )  =  (deg
`  h )
4836, 47dgrub 22757 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( h  e.  (Poly `  ZZ )  /\  e  e.  NN0  /\  ( (coeff `  h ) `  e
)  =/=  0 )  ->  e  <_  (deg `  h ) )
4945, 43, 46, 48syl3anc 1228 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( h  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  g  e.  CC )  /\  e  e.  NN0 )  /\  (
(coeff `  h ) `  e )  =/=  0
)  ->  e  <_  (deg
`  h ) )
50 elfz2nn0 11795 . . . . . . . . . . . . . . . . . . . . 21  |-  ( e  e.  ( 0 ... (deg `  h )
)  <->  ( e  e. 
NN0  /\  (deg `  h
)  e.  NN0  /\  e  <_  (deg `  h
) ) )
5143, 44, 49, 50syl3anbrc 1180 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( h  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  g  e.  CC )  /\  e  e.  NN0 )  /\  (
(coeff `  h ) `  e )  =/=  0
)  ->  e  e.  ( 0 ... (deg `  h ) ) )
52 eqid 2457 . . . . . . . . . . . . . . . . . . . 20  |-  ( abs `  ( (coeff `  h
) `  e )
)  =  ( abs `  ( (coeff `  h
) `  e )
)
53 fveq2 5872 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( i  =  e  ->  (
(coeff `  h ) `  i )  =  ( (coeff `  h ) `  e ) )
5453fveq2d 5876 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( i  =  e  ->  ( abs `  ( (coeff `  h ) `  i
) )  =  ( abs `  ( (coeff `  h ) `  e
) ) )
5554eqeq2d 2471 . . . . . . . . . . . . . . . . . . . . 21  |-  ( i  =  e  ->  (
( abs `  (
(coeff `  h ) `  e ) )  =  ( abs `  (
(coeff `  h ) `  i ) )  <->  ( abs `  ( (coeff `  h
) `  e )
)  =  ( abs `  ( (coeff `  h
) `  e )
) ) )
5655rspcev 3210 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( e  e.  ( 0 ... (deg `  h
) )  /\  ( abs `  ( (coeff `  h ) `  e
) )  =  ( abs `  ( (coeff `  h ) `  e
) ) )  ->  E. i  e.  (
0 ... (deg `  h
) ) ( abs `  ( (coeff `  h
) `  e )
)  =  ( abs `  ( (coeff `  h
) `  i )
) )
5751, 52, 56sylancl 662 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( h  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  g  e.  CC )  /\  e  e.  NN0 )  /\  (
(coeff `  h ) `  e )  =/=  0
)  ->  E. i  e.  ( 0 ... (deg `  h ) ) ( abs `  ( (coeff `  h ) `  e
) )  =  ( abs `  ( (coeff `  h ) `  i
) ) )
58 eqeq1 2461 . . . . . . . . . . . . . . . . . . . . 21  |-  ( g  =  ( abs `  (
(coeff `  h ) `  e ) )  -> 
( g  =  ( abs `  ( (coeff `  h ) `  i
) )  <->  ( abs `  ( (coeff `  h
) `  e )
)  =  ( abs `  ( (coeff `  h
) `  i )
) ) )
5958rexbidv 2968 . . . . . . . . . . . . . . . . . . . 20  |-  ( g  =  ( abs `  (
(coeff `  h ) `  e ) )  -> 
( E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) )  <->  E. i  e.  ( 0 ... (deg `  h ) ) ( abs `  ( (coeff `  h ) `  e
) )  =  ( abs `  ( (coeff `  h ) `  i
) ) ) )
6059elrab 3257 . . . . . . . . . . . . . . . . . . 19  |-  ( ( abs `  ( (coeff `  h ) `  e
) )  e.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) }  <-> 
( ( abs `  (
(coeff `  h ) `  e ) )  e. 
NN0  /\  E. i  e.  ( 0 ... (deg `  h ) ) ( abs `  ( (coeff `  h ) `  e
) )  =  ( abs `  ( (coeff `  h ) `  i
) ) ) )
6142, 57, 60sylanbrc 664 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( h  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  g  e.  CC )  /\  e  e.  NN0 )  /\  (
(coeff `  h ) `  e )  =/=  0
)  ->  ( abs `  ( (coeff `  h
) `  e )
)  e.  { g  e.  NN0  |  E. i  e.  ( 0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } )
62 elun2 3668 . . . . . . . . . . . . . . . . . 18  |-  ( ( abs `  ( (coeff `  h ) `  e
) )  e.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) }  ->  ( abs `  (
(coeff `  h ) `  e ) )  e.  ( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) )
6361, 62syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( h  e.  ( (Poly `  ZZ )  \  { 0p } )  /\  g  e.  CC )  /\  e  e.  NN0 )  /\  (
(coeff `  h ) `  e )  =/=  0
)  ->  ( abs `  ( (coeff `  h
) `  e )
)  e.  ( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) )
6434, 63pm2.61dane 2775 . . . . . . . . . . . . . . . 16  |-  ( ( ( h  e.  ( (Poly `  ZZ )  \  { 0p }
)  /\  g  e.  CC )  /\  e  e.  NN0 )  ->  ( abs `  ( (coeff `  h ) `  e
) )  e.  ( { 0 ,  (deg
`  h ) }  u.  { g  e. 
NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) )
65 supxrub 11541 . . . . . . . . . . . . . . . 16  |-  ( ( ( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } )  C_  RR*  /\  ( abs `  ( (coeff `  h ) `  e
) )  e.  ( { 0 ,  (deg
`  h ) }  u.  { g  e. 
NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) )  ->  ( abs `  ( (coeff `  h ) `  e
) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) )
6625, 64, 65syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( h  e.  ( (Poly `  ZZ )  \  { 0p }
)  /\  g  e.  CC )  /\  e  e.  NN0 )  ->  ( abs `  ( (coeff `  h ) `  e
) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) )
6766ralrimiva 2871 . . . . . . . . . . . . . 14  |-  ( ( h  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  g  e.  CC )  ->  A. e  e.  NN0  ( abs `  ( (coeff `  h ) `  e
) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) )
686, 24, 673jca 1176 . . . . . . . . . . . . 13  |-  ( ( h  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  g  e.  CC )  ->  ( h  =/=  0p  /\  (deg `  h )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  h ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) )
69683adant2 1015 . . . . . . . . . . . 12  |-  ( ( h  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( h `  g )  =  0  /\  g  e.  CC )  ->  ( h  =/=  0p  /\  (deg `  h )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  h ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) )
70 neeq1 2738 . . . . . . . . . . . . . 14  |-  ( d  =  h  ->  (
d  =/=  0p  <-> 
h  =/=  0p ) )
71 fveq2 5872 . . . . . . . . . . . . . . 15  |-  ( d  =  h  ->  (deg `  d )  =  (deg
`  h ) )
7271breq1d 4466 . . . . . . . . . . . . . 14  |-  ( d  =  h  ->  (
(deg `  d )  <_  sup ( ( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  <-> 
(deg `  h )  <_  sup ( ( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) )
73 fveq2 5872 . . . . . . . . . . . . . . . . . 18  |-  ( d  =  h  ->  (coeff `  d )  =  (coeff `  h ) )
7473fveq1d 5874 . . . . . . . . . . . . . . . . 17  |-  ( d  =  h  ->  (
(coeff `  d ) `  e )  =  ( (coeff `  h ) `  e ) )
7574fveq2d 5876 . . . . . . . . . . . . . . . 16  |-  ( d  =  h  ->  ( abs `  ( (coeff `  d ) `  e
) )  =  ( abs `  ( (coeff `  h ) `  e
) ) )
7675breq1d 4466 . . . . . . . . . . . . . . 15  |-  ( d  =  h  ->  (
( abs `  (
(coeff `  d ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  <-> 
( abs `  (
(coeff `  h ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) )
7776ralbidv 2896 . . . . . . . . . . . . . 14  |-  ( d  =  h  ->  ( A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  <->  A. e  e.  NN0  ( abs `  ( (coeff `  h ) `  e
) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) )
7870, 72, 773anbi123d 1299 . . . . . . . . . . . . 13  |-  ( d  =  h  ->  (
( d  =/=  0p  /\  (deg `  d
)  <_  sup (
( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) )  <->  ( h  =/=  0p  /\  (deg `  h )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  h ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) ) )
7978elrab 3257 . . . . . . . . . . . 12  |-  ( h  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) }  <->  ( h  e.  (Poly `  ZZ )  /\  ( h  =/=  0p  /\  (deg `  h
)  <_  sup (
( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  h ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) ) )
804, 69, 79sylanbrc 664 . . . . . . . . . . 11  |-  ( ( h  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( h `  g )  =  0  /\  g  e.  CC )  ->  h  e.  {
d  e.  (Poly `  ZZ )  |  (
d  =/=  0p  /\  (deg `  d
)  <_  sup (
( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) } )
81 simp2 997 . . . . . . . . . . 11  |-  ( ( h  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( h `  g )  =  0  /\  g  e.  CC )  ->  ( h `  g )  =  0 )
82 fveq1 5871 . . . . . . . . . . . . 13  |-  ( c  =  h  ->  (
c `  g )  =  ( h `  g ) )
8382eqeq1d 2459 . . . . . . . . . . . 12  |-  ( c  =  h  ->  (
( c `  g
)  =  0  <->  (
h `  g )  =  0 ) )
8483rspcev 3210 . . . . . . . . . . 11  |-  ( ( h  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) }  /\  (
h `  g )  =  0 )  ->  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) }  ( c `
 g )  =  0 )
8580, 81, 84syl2anc 661 . . . . . . . . . 10  |-  ( ( h  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( h `  g )  =  0  /\  g  e.  CC )  ->  E. c  e.  {
d  e.  (Poly `  ZZ )  |  (
d  =/=  0p  /\  (deg `  d
)  <_  sup (
( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) }  ( c `
 g )  =  0 )
86 fveq2 5872 . . . . . . . . . . . . 13  |-  ( b  =  g  ->  (
c `  b )  =  ( c `  g ) )
8786eqeq1d 2459 . . . . . . . . . . . 12  |-  ( b  =  g  ->  (
( c `  b
)  =  0  <->  (
c `  g )  =  0 ) )
8887rexbidv 2968 . . . . . . . . . . 11  |-  ( b  =  g  ->  ( E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) }  ( c `
 b )  =  0  <->  E. c  e.  {
d  e.  (Poly `  ZZ )  |  (
d  =/=  0p  /\  (deg `  d
)  <_  sup (
( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) }  ( c `
 g )  =  0 ) )
8988elrab 3257 . . . . . . . . . 10  |-  ( g  e.  { b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d
)  <_  sup (
( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) }  ( c `
 b )  =  0 }  <->  ( g  e.  CC  /\  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d
)  <_  sup (
( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) }  ( c `
 g )  =  0 ) )
901, 85, 89sylanbrc 664 . . . . . . . . 9  |-  ( ( h  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( h `  g )  =  0  /\  g  e.  CC )  ->  g  e.  {
b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) }  ( c `
 b )  =  0 } )
91 prfi 7813 . . . . . . . . . . . . . . 15  |-  { 0 ,  (deg `  h
) }  e.  Fin
92 fzfi 12085 . . . . . . . . . . . . . . . . 17  |-  ( 0 ... (deg `  h
) )  e.  Fin
93 abrexfi 7838 . . . . . . . . . . . . . . . . 17  |-  ( ( 0 ... (deg `  h ) )  e. 
Fin  ->  { g  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) }  e.  Fin )
9492, 93ax-mp 5 . . . . . . . . . . . . . . . 16  |-  { g  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) }  e.  Fin
95 rabssab 3583 . . . . . . . . . . . . . . . 16  |-  { g  e.  NN0  |  E. i  e.  ( 0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } 
C_  { g  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) }
96 ssfi 7759 . . . . . . . . . . . . . . . 16  |-  ( ( { g  |  E. i  e.  ( 0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) }  e.  Fin  /\  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } 
C_  { g  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } )  ->  { g  e.  NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) }  e.  Fin )
9794, 95, 96mp2an 672 . . . . . . . . . . . . . . 15  |-  { g  e.  NN0  |  E. i  e.  ( 0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) }  e.  Fin
98 unfi 7805 . . . . . . . . . . . . . . 15  |-  ( ( { 0 ,  (deg
`  h ) }  e.  Fin  /\  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) }  e.  Fin )  -> 
( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } )  e.  Fin )
9991, 97, 98mp2an 672 . . . . . . . . . . . . . 14  |-  ( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } )  e.  Fin
10099a1i 11 . . . . . . . . . . . . 13  |-  ( ( h  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  g  e.  CC )  ->  ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } )  e.  Fin )
10122ne0ii 3800 . . . . . . . . . . . . . 14  |-  ( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } )  =/=  (/)
102101a1i 11 . . . . . . . . . . . . 13  |-  ( ( h  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  g  e.  CC )  ->  ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } )  =/=  (/) )
103 xrltso 11372 . . . . . . . . . . . . . 14  |-  <  Or  RR*
104 fisupcl 7945 . . . . . . . . . . . . . 14  |-  ( (  <  Or  RR*  /\  (
( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } )  e.  Fin  /\  ( { 0 ,  (deg
`  h ) }  u.  { g  e. 
NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } )  =/=  (/)  /\  ( { 0 ,  (deg
`  h ) }  u.  { g  e. 
NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } )  C_  RR* ) )  ->  sup ( ( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  e.  ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) )
105103, 104mpan 670 . . . . . . . . . . . . 13  |-  ( ( ( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } )  e.  Fin  /\  ( { 0 ,  (deg
`  h ) }  u.  { g  e. 
NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } )  =/=  (/)  /\  ( { 0 ,  (deg
`  h ) }  u.  { g  e. 
NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } )  C_  RR* )  ->  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  e.  ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) )
106100, 102, 18, 105syl3anc 1228 . . . . . . . . . . . 12  |-  ( ( h  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  g  e.  CC )  ->  sup ( ( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  e.  ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) )
10714, 106sseldd 3500 . . . . . . . . . . 11  |-  ( ( h  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  g  e.  CC )  ->  sup ( ( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  e.  NN0 )
1081073adant2 1015 . . . . . . . . . 10  |-  ( ( h  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( h `  g )  =  0  /\  g  e.  CC )  ->  sup ( ( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  e.  NN0 )
109 eqidd 2458 . . . . . . . . . 10  |-  ( ( h  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( h `  g )  =  0  /\  g  e.  CC )  ->  { b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d
)  <_  sup (
( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) }  ( c `
 b )  =  0 }  =  {
b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) }  ( c `
 b )  =  0 } )
110 breq2 4460 . . . . . . . . . . . . . . . 16  |-  ( a  =  sup ( ( { 0 ,  (deg
`  h ) }  u.  { g  e. 
NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  ->  ( (deg `  d )  <_  a  <->  (deg
`  d )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) )
111 breq2 4460 . . . . . . . . . . . . . . . . 17  |-  ( a  =  sup ( ( { 0 ,  (deg
`  h ) }  u.  { g  e. 
NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  ->  ( ( abs `  ( (coeff `  d
) `  e )
)  <_  a  <->  ( abs `  ( (coeff `  d
) `  e )
)  <_  sup (
( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) )
112111ralbidv 2896 . . . . . . . . . . . . . . . 16  |-  ( a  =  sup ( ( { 0 ,  (deg
`  h ) }  u.  { g  e. 
NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  ->  ( A. e  e.  NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_ 
a  <->  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) )
113110, 1123anbi23d 1302 . . . . . . . . . . . . . . 15  |-  ( a  =  sup ( ( { 0 ,  (deg
`  h ) }  u.  { g  e. 
NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  ->  ( ( d  =/=  0p  /\  (deg `  d )  <_ 
a  /\  A. e  e.  NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_ 
a )  <->  ( d  =/=  0p  /\  (deg `  d )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) ) )
114113rabbidv 3101 . . . . . . . . . . . . . 14  |-  ( a  =  sup ( ( { 0 ,  (deg
`  h ) }  u.  { g  e. 
NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  ->  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  =  {
d  e.  (Poly `  ZZ )  |  (
d  =/=  0p  /\  (deg `  d
)  <_  sup (
( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) } )
115114rexeqdv 3061 . . . . . . . . . . . . 13  |-  ( a  =  sup ( ( { 0 ,  (deg
`  h ) }  u.  { g  e. 
NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  ->  ( E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d
)  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0  <->  E. c  e.  {
d  e.  (Poly `  ZZ )  |  (
d  =/=  0p  /\  (deg `  d
)  <_  sup (
( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) }  ( c `
 b )  =  0 ) )
116115rabbidv 3101 . . . . . . . . . . . 12  |-  ( a  =  sup ( ( { 0 ,  (deg
`  h ) }  u.  { g  e. 
NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  ->  { b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d
)  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 }  =  {
b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) }  ( c `
 b )  =  0 } )
117116eqeq2d 2471 . . . . . . . . . . 11  |-  ( a  =  sup ( ( { 0 ,  (deg
`  h ) }  u.  { g  e. 
NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  ->  ( { b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) }  ( c `
 b )  =  0 }  =  {
b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 }  <->  { b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d
)  <_  sup (
( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) }  ( c `
 b )  =  0 }  =  {
b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) }  ( c `
 b )  =  0 } ) )
118117rspcev 3210 . . . . . . . . . 10  |-  ( ( sup ( ( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  e.  NN0  /\  { b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) }  ( c `
 b )  =  0 }  =  {
b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) }  ( c `
 b )  =  0 } )  ->  E. a  e.  NN0  { b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) }  ( c `
 b )  =  0 }  =  {
b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 } )
119108, 109, 118syl2anc 661 . . . . . . . . 9  |-  ( ( h  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( h `  g )  =  0  /\  g  e.  CC )  ->  E. a  e.  NN0  { b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) }  ( c `
 b )  =  0 }  =  {
b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 } )
120 cnex 9590 . . . . . . . . . . 11  |-  CC  e.  _V
121120rabex 4607 . . . . . . . . . 10  |-  { b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) }  ( c `
 b )  =  0 }  e.  _V
122 eleq2 2530 . . . . . . . . . . 11  |-  ( f  =  { b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d
)  <_  sup (
( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) }  ( c `
 b )  =  0 }  ->  (
g  e.  f  <->  g  e.  { b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) }  ( c `
 b )  =  0 } ) )
123 eqeq1 2461 . . . . . . . . . . . 12  |-  ( f  =  { b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d
)  <_  sup (
( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) }  ( c `
 b )  =  0 }  ->  (
f  =  { b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 }  <->  { b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d
)  <_  sup (
( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) }  ( c `
 b )  =  0 }  =  {
b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 } ) )
124123rexbidv 2968 . . . . . . . . . . 11  |-  ( f  =  { b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d
)  <_  sup (
( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) }  ( c `
 b )  =  0 }  ->  ( E. a  e.  NN0  f  =  { b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d
)  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 }  <->  E. a  e.  NN0  { b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d
)  <_  sup (
( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) }  ( c `
 b )  =  0 }  =  {
b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 } ) )
125122, 124anbi12d 710 . . . . . . . . . 10  |-  ( f  =  { b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d
)  <_  sup (
( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) }  ( c `
 b )  =  0 }  ->  (
( g  e.  f  /\  E. a  e. 
NN0  f  =  {
b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 } )  <->  ( g  e.  { b  e.  CC  |  E. c  e.  {
d  e.  (Poly `  ZZ )  |  (
d  =/=  0p  /\  (deg `  d
)  <_  sup (
( { 0 ,  (deg `  h ) }  u.  { g  e.  NN0  |  E. i  e.  ( 0 ... (deg `  h ) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) }  ( c `
 b )  =  0 }  /\  E. a  e.  NN0  { b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) }  ( c `
 b )  =  0 }  =  {
b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 } ) ) )
126121, 125spcev 3201 . . . . . . . . 9  |-  ( ( g  e.  { b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) }  ( c `
 b )  =  0 }  /\  E. a  e.  NN0  { b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  )  /\  A. e  e. 
NN0  ( abs `  (
(coeff `  d ) `  e ) )  <_  sup ( ( { 0 ,  (deg `  h
) }  u.  {
g  e.  NN0  |  E. i  e.  (
0 ... (deg `  h
) ) g  =  ( abs `  (
(coeff `  h ) `  i ) ) } ) ,  RR* ,  <  ) ) }  ( c `
 b )  =  0 }  =  {
b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 } )  ->  E. f ( g  e.  f  /\  E. a  e.  NN0  f  =  {
b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 } ) )
12790, 119, 126syl2anc 661 . . . . . . . 8  |-  ( ( h  e.  ( (Poly `  ZZ )  \  {
0p } )  /\  ( h `  g )  =  0  /\  g  e.  CC )  ->  E. f ( g  e.  f  /\  E. a  e.  NN0  f  =  { b  e.  CC  |  E. c  e.  {
d  e.  (Poly `  ZZ )  |  (
d  =/=  0p  /\  (deg `  d
)  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 } ) )
1281273exp 1195 . . . . . . 7  |-  ( h  e.  ( (Poly `  ZZ )  \  { 0p } )  -> 
( ( h `  g )  =  0  ->  ( g  e.  CC  ->  E. f
( g  e.  f  /\  E. a  e. 
NN0  f  =  {
b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 } ) ) ) )
129128rexlimiv 2943 . . . . . 6  |-  ( E. h  e.  ( (Poly `  ZZ )  \  {
0p } ) ( h `  g
)  =  0  -> 
( g  e.  CC  ->  E. f ( g  e.  f  /\  E. a  e.  NN0  f  =  { b  e.  CC  |  E. c  e.  {
d  e.  (Poly `  ZZ )  |  (
d  =/=  0p  /\  (deg `  d
)  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 } ) ) )
130129impcom 430 . . . . 5  |-  ( ( g  e.  CC  /\  E. h  e.  ( (Poly `  ZZ )  \  {
0p } ) ( h `  g
)  =  0 )  ->  E. f ( g  e.  f  /\  E. a  e.  NN0  f  =  { b  e.  CC  |  E. c  e.  {
d  e.  (Poly `  ZZ )  |  (
d  =/=  0p  /\  (deg `  d
)  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 } ) )
131 eleq2 2530 . . . . . . . . 9  |-  ( f  =  { b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d
)  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 }  ->  (
g  e.  f  <->  g  e.  { b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 } ) )
13287rexbidv 2968 . . . . . . . . . . 11  |-  ( b  =  g  ->  ( E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0  <->  E. c  e.  {
d  e.  (Poly `  ZZ )  |  (
d  =/=  0p  /\  (deg `  d
)  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 g )  =  0 ) )
133132elrab 3257 . . . . . . . . . 10  |-  ( g  e.  { b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d
)  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 }  <->  ( g  e.  CC  /\  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d
)  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 g )  =  0 ) )
134 simp1 996 . . . . . . . . . . . . . . 15  |-  ( ( h  =/=  0p  /\  (deg `  h
)  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  h ) `  e
) )  <_  a
)  ->  h  =/=  0p )
135134anim2i 569 . . . . . . . . . . . . . 14  |-  ( ( h  e.  (Poly `  ZZ )  /\  (
h  =/=  0p  /\  (deg `  h
)  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  h ) `  e
) )  <_  a
) )  ->  (
h  e.  (Poly `  ZZ )  /\  h  =/=  0p ) )
13671breq1d 4466 . . . . . . . . . . . . . . . 16  |-  ( d  =  h  ->  (
(deg `  d )  <_  a  <->  (deg `  h )  <_  a ) )
13775breq1d 4466 . . . . . . . . . . . . . . . . 17  |-  ( d  =  h  ->  (
( abs `  (
(coeff `  d ) `  e ) )  <_ 
a  <->  ( abs `  (
(coeff `  h ) `  e ) )  <_ 
a ) )
138137ralbidv 2896 . . . . . . . . . . . . . . . 16  |-  ( d  =  h  ->  ( A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a  <->  A. e  e.  NN0  ( abs `  ( (coeff `  h ) `  e
) )  <_  a
) )
13970, 136, 1383anbi123d 1299 . . . . . . . . . . . . . . 15  |-  ( d  =  h  ->  (
( d  =/=  0p  /\  (deg `  d
)  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
)  <->  ( h  =/=  0p  /\  (deg `  h )  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  h ) `  e
) )  <_  a
) ) )
140139elrab 3257 . . . . . . . . . . . . . 14  |-  ( h  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  <->  ( h  e.  (Poly `  ZZ )  /\  ( h  =/=  0p  /\  (deg `  h
)  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  h ) `  e
) )  <_  a
) ) )
141 eldifsn 4157 . . . . . . . . . . . . . 14  |-  ( h  e.  ( (Poly `  ZZ )  \  { 0p } )  <->  ( h  e.  (Poly `  ZZ )  /\  h  =/=  0p ) )
142135, 140, 1413imtr4i 266 . . . . . . . . . . . . 13  |-  ( h  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ->  h  e.  ( (Poly `  ZZ )  \  { 0p } ) )
143142ssriv 3503 . . . . . . . . . . . 12  |-  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  C_  (
(Poly `  ZZ )  \  { 0p }
)
144 ssrexv 3561 . . . . . . . . . . . . 13  |-  ( { d  e.  (Poly `  ZZ )  |  (
d  =/=  0p  /\  (deg `  d
)  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  C_  (
(Poly `  ZZ )  \  { 0p }
)  ->  ( E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 g )  =  0  ->  E. c  e.  ( (Poly `  ZZ )  \  { 0p } ) ( c `
 g )  =  0 ) )
14583cbvrexv 3085 . . . . . . . . . . . . 13  |-  ( E. c  e.  ( (Poly `  ZZ )  \  {
0p } ) ( c `  g
)  =  0  <->  E. h  e.  ( (Poly `  ZZ )  \  {
0p } ) ( h `  g
)  =  0 )
146144, 145syl6ib 226 . . . . . . . . . . . 12  |-  ( { d  e.  (Poly `  ZZ )  |  (
d  =/=  0p  /\  (deg `  d
)  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  C_  (
(Poly `  ZZ )  \  { 0p }
)  ->  ( E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 g )  =  0  ->  E. h  e.  ( (Poly `  ZZ )  \  { 0p } ) ( h `
 g )  =  0 ) )
147143, 146ax-mp 5 . . . . . . . . . . 11  |-  ( E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 g )  =  0  ->  E. h  e.  ( (Poly `  ZZ )  \  { 0p } ) ( h `
 g )  =  0 )
148147anim2i 569 . . . . . . . . . 10  |-  ( ( g  e.  CC  /\  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 g )  =  0 )  ->  (
g  e.  CC  /\  E. h  e.  ( (Poly `  ZZ )  \  {
0p } ) ( h `  g
)  =  0 ) )
149133, 148sylbi 195 . . . . . . . . 9  |-  ( g  e.  { b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d
)  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 }  ->  (
g  e.  CC  /\  E. h  e.  ( (Poly `  ZZ )  \  {
0p } ) ( h `  g
)  =  0 ) )
150131, 149syl6bi 228 . . . . . . . 8  |-  ( f  =  { b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d
)  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 }  ->  (
g  e.  f  -> 
( g  e.  CC  /\ 
E. h  e.  ( (Poly `  ZZ )  \  { 0p }
) ( h `  g )  =  0 ) ) )
151150rexlimivw 2946 . . . . . . 7  |-  ( E. a  e.  NN0  f  =  { b  e.  CC  |  E. c  e.  {
d  e.  (Poly `  ZZ )  |  (
d  =/=  0p  /\  (deg `  d
)  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 }  ->  (
g  e.  f  -> 
( g  e.  CC  /\ 
E. h  e.  ( (Poly `  ZZ )  \  { 0p }
) ( h `  g )  =  0 ) ) )
152151impcom 430 . . . . . 6  |-  ( ( g  e.  f  /\  E. a  e.  NN0  f  =  { b  e.  CC  |  E. c  e.  {
d  e.  (Poly `  ZZ )  |  (
d  =/=  0p  /\  (deg `  d
)  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 } )  -> 
( g  e.  CC  /\ 
E. h  e.  ( (Poly `  ZZ )  \  { 0p }
) ( h `  g )  =  0 ) )
153152exlimiv 1723 . . . . 5  |-  ( E. f ( g  e.  f  /\  E. a  e.  NN0  f  =  {
b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 } )  -> 
( g  e.  CC  /\ 
E. h  e.  ( (Poly `  ZZ )  \  { 0p }
) ( h `  g )  =  0 ) )
154130, 153impbii 188 . . . 4  |-  ( ( g  e.  CC  /\  E. h  e.  ( (Poly `  ZZ )  \  {
0p } ) ( h `  g
)  =  0 )  <->  E. f ( g  e.  f  /\  E. a  e.  NN0  f  =  {
b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 } ) )
155 elaa 22838 . . . 4  |-  ( g  e.  AA  <->  ( g  e.  CC  /\  E. h  e.  ( (Poly `  ZZ )  \  { 0p } ) ( h `
 g )  =  0 ) )
156 eluniab 4262 . . . 4  |-  ( g  e.  U. { f  |  E. a  e. 
NN0  f  =  {
b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 } }  <->  E. f
( g  e.  f  /\  E. a  e. 
NN0  f  =  {
b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 } ) )
157154, 155, 1563bitr4i 277 . . 3  |-  ( g  e.  AA  <->  g  e.  U. { f  |  E. a  e.  NN0  f  =  { b  e.  CC  |  E. c  e.  {
d  e.  (Poly `  ZZ )  |  (
d  =/=  0p  /\  (deg `  d
)  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 } } )
158157eqriv 2453 . 2  |-  AA  =  U. { f  |  E. a  e.  NN0  f  =  { b  e.  CC  |  E. c  e.  {
d  e.  (Poly `  ZZ )  |  (
d  =/=  0p  /\  (deg `  d
)  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 } }
159 aannenlem.a . . . 4  |-  H  =  ( a  e.  NN0  |->  { b  e.  CC  |  E. c  e.  {
d  e.  (Poly `  ZZ )  |  (
d  =/=  0p  /\  (deg `  d
)  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 } )
160159rnmpt 5258 . . 3  |-  ran  H  =  { f  |  E. a  e.  NN0  f  =  { b  e.  CC  |  E. c  e.  {
d  e.  (Poly `  ZZ )  |  (
d  =/=  0p  /\  (deg `  d
)  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 } }
161160unieqi 4260 . 2  |-  U. ran  H  =  U. { f  |  E. a  e. 
NN0  f  =  {
b  e.  CC  |  E. c  e.  { d  e.  (Poly `  ZZ )  |  ( d  =/=  0p  /\  (deg `  d )  <_  a  /\  A. e  e.  NN0  ( abs `  ( (coeff `  d ) `  e
) )  <_  a
) }  ( c `
 b )  =  0 } }
162158, 161eqtr4i 2489 1  |-  AA  =  U. ran  H
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1395   E.wex 1613    e. wcel 1819   {cab 2442    =/= wne 2652   A.wral 2807   E.wrex 2808   {crab 2811    \ cdif 3468    u. cun 3469    C_ wss 3471   (/)c0 3793   {csn 4032   {cpr 4034   U.cuni 4251   class class class wbr 4456    |-> cmpt 4515    Or wor 4808   ran crn 5009   -->wf 5590   ` cfv 5594  (class class class)co 6296   Fincfn 7535   supcsup 7918   CCcc 9507   RRcr 9508   0cc0 9509   RR*cxr 9644    < clt 9645    <_ cle 9646   NN0cn0 10816   ZZcz 10885   ...cfz 11697   abscabs 13079   0pc0p 22202  Polycply 22707  coeffccoe 22709  degcdgr 22710   AAcaa 22836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587  ax-addf 9588
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6539  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-map 7440  df-pm 7441  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-sup 7919  df-oi 7953  df-card 8337  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-rp 11246  df-fz 11698  df-fzo 11822  df-fl 11932  df-seq 12111  df-exp 12170  df-hash 12409  df-cj 12944  df-re 12945  df-im 12946  df-sqrt 13080  df-abs 13081  df-clim 13323  df-rlim 13324  df-sum 13521  df-0p 22203  df-ply 22711  df-coe 22713  df-dgr 22714  df-aa 22837
This theorem is referenced by:  aannenlem3  22852
  Copyright terms: Public domain W3C validator