MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aalioulem5 Structured version   Unicode version

Theorem aalioulem5 21777
Description: Lemma for aaliou 21779. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aalioulem2.a  |-  N  =  (deg `  F )
aalioulem2.b  |-  ( ph  ->  F  e.  (Poly `  ZZ ) )
aalioulem2.c  |-  ( ph  ->  N  e.  NN )
aalioulem2.d  |-  ( ph  ->  A  e.  RR )
aalioulem3.e  |-  ( ph  ->  ( F `  A
)  =  0 )
Assertion
Ref Expression
aalioulem5  |-  ( ph  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =/=  0  -> 
( A  =  ( p  /  q )  \/  ( x  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
Distinct variable groups:    ph, x, p, q    x, A, p, q    x, F, p, q    x, N
Allowed substitution hints:    N( q, p)

Proof of Theorem aalioulem5
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 aalioulem2.a . . 3  |-  N  =  (deg `  F )
2 aalioulem2.b . . 3  |-  ( ph  ->  F  e.  (Poly `  ZZ ) )
3 aalioulem2.c . . 3  |-  ( ph  ->  N  e.  NN )
4 aalioulem2.d . . 3  |-  ( ph  ->  A  e.  RR )
5 aalioulem3.e . . 3  |-  ( ph  ->  ( F `  A
)  =  0 )
61, 2, 3, 4, 5aalioulem4 21776 . 2  |-  ( ph  ->  E. a  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  (
( ( F `  ( p  /  q
) )  =/=  0  /\  ( abs `  ( A  -  ( p  /  q ) ) )  <_  1 )  ->  ( A  =  ( p  /  q
)  \/  ( a  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
7 simpr 461 . . . . 5  |-  ( (
ph  /\  a  e.  RR+ )  ->  a  e.  RR+ )
8 1rp 10987 . . . . 5  |-  1  e.  RR+
9 ifcl 3826 . . . . 5  |-  ( ( a  e.  RR+  /\  1  e.  RR+ )  ->  if ( a  <_  1 ,  a ,  1 )  e.  RR+ )
107, 8, 9sylancl 662 . . . 4  |-  ( (
ph  /\  a  e.  RR+ )  ->  if (
a  <_  1 , 
a ,  1 )  e.  RR+ )
1110adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  if (
a  <_  1 , 
a ,  1 )  e.  RR+ )
12 simprr 756 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  q  e.  NN )
1312nnrpd 11018 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  q  e.  RR+ )
143ad2antrr 725 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  N  e.  NN )
1514nnzd 10738 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  N  e.  ZZ )
1613, 15rpexpcld 12023 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( q ^ N )  e.  RR+ )
1711, 16rpdivcld 11036 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  e.  RR+ )
1817rpred 11019 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  e.  RR )
19 1re 9377 . . . . . . . . . . . . . . 15  |-  1  e.  RR
2019a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  1  e.  RR )
214ad2antrr 725 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  A  e.  RR )
22 znq 10949 . . . . . . . . . . . . . . . . . . 19  |-  ( ( p  e.  ZZ  /\  q  e.  NN )  ->  ( p  /  q
)  e.  QQ )
23 qre 10950 . . . . . . . . . . . . . . . . . . 19  |-  ( ( p  /  q )  e.  QQ  ->  (
p  /  q )  e.  RR )
2422, 23syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( p  e.  ZZ  /\  q  e.  NN )  ->  ( p  /  q
)  e.  RR )
2524adantl 466 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( p  /  q )  e.  RR )
2621, 25resubcld 9768 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( A  -  ( p  / 
q ) )  e.  RR )
2726recnd 9404 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( A  -  ( p  / 
q ) )  e.  CC )
2827abscld 12914 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( abs `  ( A  -  (
p  /  q ) ) )  e.  RR )
2918, 20, 283jca 1168 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  e.  RR  /\  1  e.  RR  /\  ( abs `  ( A  -  (
p  /  q ) ) )  e.  RR ) )
3029adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  1  < 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  (
( if ( a  <_  1 ,  a ,  1 )  / 
( q ^ N
) )  e.  RR  /\  1  e.  RR  /\  ( abs `  ( A  -  ( p  / 
q ) ) )  e.  RR ) )
3116rprecred 11030 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( 1  /  ( q ^ N ) )  e.  RR )
3211rpred 11019 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  if (
a  <_  1 , 
a ,  1 )  e.  RR )
33 simplr 754 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  a  e.  RR+ )
3433rpred 11019 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  a  e.  RR )
35 min2 11153 . . . . . . . . . . . . . . . . 17  |-  ( ( a  e.  RR  /\  1  e.  RR )  ->  if ( a  <_ 
1 ,  a ,  1 )  <_  1
)
3634, 19, 35sylancl 662 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  if (
a  <_  1 , 
a ,  1 )  <_  1 )
3732, 20, 16, 36lediv1dd 11073 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  ( 1  / 
( q ^ N
) ) )
3814nnnn0d 10628 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  N  e.  NN0 )
3912, 38nnexpcld 12021 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( q ^ N )  e.  NN )
40 1nn 10325 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  NN
4140a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  1  e.  NN )
4239, 41nnmulcld 10361 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( (
q ^ N )  x.  1 )  e.  NN )
4342nnge1d 10356 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  1  <_  ( ( q ^ N
)  x.  1 ) )
4420, 20, 16ledivmuld 11068 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( (
1  /  ( q ^ N ) )  <_  1  <->  1  <_  ( ( q ^ N
)  x.  1 ) ) )
4543, 44mpbird 232 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( 1  /  ( q ^ N ) )  <_ 
1 )
4618, 31, 20, 37, 45letrd 9520 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  1 )
4746adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  1  < 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  1 )
48 ltle 9455 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  RR  /\  ( abs `  ( A  -  ( p  / 
q ) ) )  e.  RR )  -> 
( 1  <  ( abs `  ( A  -  ( p  /  q
) ) )  -> 
1  <_  ( abs `  ( A  -  (
p  /  q ) ) ) ) )
4919, 28, 48sylancr 663 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( 1  <  ( abs `  ( A  -  ( p  /  q ) ) )  ->  1  <_  ( abs `  ( A  -  ( p  / 
q ) ) ) ) )
5049imp 429 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  1  < 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  1  <_  ( abs `  ( A  -  ( p  /  q ) ) ) )
5147, 50jca 532 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  1  < 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  (
( if ( a  <_  1 ,  a ,  1 )  / 
( q ^ N
) )  <_  1  /\  1  <_  ( abs `  ( A  -  (
p  /  q ) ) ) ) )
52 letr 9460 . . . . . . . . . . . 12  |-  ( ( ( if ( a  <_  1 ,  a ,  1 )  / 
( q ^ N
) )  e.  RR  /\  1  e.  RR  /\  ( abs `  ( A  -  ( p  / 
q ) ) )  e.  RR )  -> 
( ( ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  1  /\  1  <_  ( abs `  ( A  -  ( p  /  q ) ) ) )  ->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) )
5330, 51, 52sylc 60 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  1  < 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) )
5453olcd 393 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  1  < 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  ( A  =  ( p  /  q )  \/  ( if ( a  <_  1 ,  a ,  1 )  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) )
5554a1d 25 . . . . . . . . 9  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  1  < 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  (
( F `  (
p  /  q ) )  =/=  0  -> 
( A  =  ( p  /  q )  \/  ( if ( a  <_  1 , 
a ,  1 )  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
5655a1d 25 . . . . . . . 8  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  1  < 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  (
( ( ( F `
 ( p  / 
q ) )  =/=  0  /\  ( abs `  ( A  -  (
p  /  q ) ) )  <_  1
)  ->  ( A  =  ( p  / 
q )  \/  (
a  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) )  -> 
( ( F `  ( p  /  q
) )  =/=  0  ->  ( A  =  ( p  /  q )  \/  ( if ( a  <_  1 , 
a ,  1 )  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
57 pm3.21 448 . . . . . . . . . 10  |-  ( ( abs `  ( A  -  ( p  / 
q ) ) )  <_  1  ->  (
( F `  (
p  /  q ) )  =/=  0  -> 
( ( F `  ( p  /  q
) )  =/=  0  /\  ( abs `  ( A  -  ( p  /  q ) ) )  <_  1 ) ) )
5857adantl 466 . . . . . . . . 9  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  ( abs `  ( A  -  (
p  /  q ) ) )  <_  1
)  ->  ( ( F `  ( p  /  q ) )  =/=  0  ->  (
( F `  (
p  /  q ) )  =/=  0  /\  ( abs `  ( A  -  ( p  /  q ) ) )  <_  1 ) ) )
5933, 16rpdivcld 11036 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( a  /  ( q ^ N ) )  e.  RR+ )
6059rpred 11019 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( a  /  ( q ^ N ) )  e.  RR )
6118, 60, 283jca 1168 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  e.  RR  /\  (
a  /  ( q ^ N ) )  e.  RR  /\  ( abs `  ( A  -  ( p  /  q
) ) )  e.  RR ) )
6261adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  ( a  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  (
( if ( a  <_  1 ,  a ,  1 )  / 
( q ^ N
) )  e.  RR  /\  ( a  /  (
q ^ N ) )  e.  RR  /\  ( abs `  ( A  -  ( p  / 
q ) ) )  e.  RR ) )
63 min1 11152 . . . . . . . . . . . . . . . 16  |-  ( ( a  e.  RR  /\  1  e.  RR )  ->  if ( a  <_ 
1 ,  a ,  1 )  <_  a
)
6434, 19, 63sylancl 662 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  if (
a  <_  1 , 
a ,  1 )  <_  a )
6532, 34, 16, 64lediv1dd 11073 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  ( a  / 
( q ^ N
) ) )
6665anim1i 568 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  ( a  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  (
( if ( a  <_  1 ,  a ,  1 )  / 
( q ^ N
) )  <_  (
a  /  ( q ^ N ) )  /\  ( a  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) )
67 letr 9460 . . . . . . . . . . . . 13  |-  ( ( ( if ( a  <_  1 ,  a ,  1 )  / 
( q ^ N
) )  e.  RR  /\  ( a  /  (
q ^ N ) )  e.  RR  /\  ( abs `  ( A  -  ( p  / 
q ) ) )  e.  RR )  -> 
( ( ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  ( a  / 
( q ^ N
) )  /\  (
a  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) )  ->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) )
6862, 66, 67sylc 60 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  ( a  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) )
6968ex 434 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( (
a  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) )  ->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) )
7069adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  ( abs `  ( A  -  (
p  /  q ) ) )  <_  1
)  ->  ( (
a  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) )  ->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) )
7170orim2d 836 . . . . . . . . 9  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  ( abs `  ( A  -  (
p  /  q ) ) )  <_  1
)  ->  ( ( A  =  ( p  /  q )  \/  ( a  /  (
q ^ N ) )  <_  ( abs `  ( A  -  (
p  /  q ) ) ) )  -> 
( A  =  ( p  /  q )  \/  ( if ( a  <_  1 , 
a ,  1 )  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
7258, 71imim12d 74 . . . . . . . 8  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  ( abs `  ( A  -  (
p  /  q ) ) )  <_  1
)  ->  ( (
( ( F `  ( p  /  q
) )  =/=  0  /\  ( abs `  ( A  -  ( p  /  q ) ) )  <_  1 )  ->  ( A  =  ( p  /  q
)  \/  ( a  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) )  -> 
( ( F `  ( p  /  q
) )  =/=  0  ->  ( A  =  ( p  /  q )  \/  ( if ( a  <_  1 , 
a ,  1 )  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
7356, 72, 20, 28ltlecasei 9474 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( (
( ( F `  ( p  /  q
) )  =/=  0  /\  ( abs `  ( A  -  ( p  /  q ) ) )  <_  1 )  ->  ( A  =  ( p  /  q
)  \/  ( a  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) )  -> 
( ( F `  ( p  /  q
) )  =/=  0  ->  ( A  =  ( p  /  q )  \/  ( if ( a  <_  1 , 
a ,  1 )  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
7473anassrs 648 . . . . . 6  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  p  e.  ZZ )  /\  q  e.  NN )  ->  ( ( ( ( F `  (
p  /  q ) )  =/=  0  /\  ( abs `  ( A  -  ( p  /  q ) ) )  <_  1 )  ->  ( A  =  ( p  /  q
)  \/  ( a  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) )  -> 
( ( F `  ( p  /  q
) )  =/=  0  ->  ( A  =  ( p  /  q )  \/  ( if ( a  <_  1 , 
a ,  1 )  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
7574ralimdva 2789 . . . . 5  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  p  e.  ZZ )  ->  ( A. q  e.  NN  ( ( ( F `
 ( p  / 
q ) )  =/=  0  /\  ( abs `  ( A  -  (
p  /  q ) ) )  <_  1
)  ->  ( A  =  ( p  / 
q )  \/  (
a  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) )  ->  A. q  e.  NN  ( ( F `  ( p  /  q
) )  =/=  0  ->  ( A  =  ( p  /  q )  \/  ( if ( a  <_  1 , 
a ,  1 )  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
7675ralimdva 2789 . . . 4  |-  ( (
ph  /\  a  e.  RR+ )  ->  ( A. p  e.  ZZ  A. q  e.  NN  ( ( ( F `  ( p  /  q ) )  =/=  0  /\  ( abs `  ( A  -  ( p  /  q
) ) )  <_ 
1 )  ->  ( A  =  ( p  /  q )  \/  ( a  /  (
q ^ N ) )  <_  ( abs `  ( A  -  (
p  /  q ) ) ) ) )  ->  A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =/=  0  -> 
( A  =  ( p  /  q )  \/  ( if ( a  <_  1 , 
a ,  1 )  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
77 oveq1 6093 . . . . . . . . 9  |-  ( x  =  if ( a  <_  1 ,  a ,  1 )  -> 
( x  /  (
q ^ N ) )  =  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) ) )
7877breq1d 4297 . . . . . . . 8  |-  ( x  =  if ( a  <_  1 ,  a ,  1 )  -> 
( ( x  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) )  <->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) )
7978orbi2d 701 . . . . . . 7  |-  ( x  =  if ( a  <_  1 ,  a ,  1 )  -> 
( ( A  =  ( p  /  q
)  \/  ( x  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  <->  ( A  =  ( p  / 
q )  \/  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
8079imbi2d 316 . . . . . 6  |-  ( x  =  if ( a  <_  1 ,  a ,  1 )  -> 
( ( ( F `
 ( p  / 
q ) )  =/=  0  ->  ( A  =  ( p  / 
q )  \/  (
x  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) )  <->  ( ( F `  ( p  /  q ) )  =/=  0  ->  ( A  =  ( p  /  q )  \/  ( if ( a  <_  1 ,  a ,  1 )  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) ) )
81802ralbidv 2752 . . . . 5  |-  ( x  =  if ( a  <_  1 ,  a ,  1 )  -> 
( A. p  e.  ZZ  A. q  e.  NN  ( ( F `
 ( p  / 
q ) )  =/=  0  ->  ( A  =  ( p  / 
q )  \/  (
x  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) )  <->  A. p  e.  ZZ  A. q  e.  NN  ( ( F `
 ( p  / 
q ) )  =/=  0  ->  ( A  =  ( p  / 
q )  \/  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
8281rspcev 3068 . . . 4  |-  ( ( if ( a  <_ 
1 ,  a ,  1 )  e.  RR+  /\ 
A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =/=  0  -> 
( A  =  ( p  /  q )  \/  ( if ( a  <_  1 , 
a ,  1 )  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) )  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =/=  0  -> 
( A  =  ( p  /  q )  \/  ( x  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
8310, 76, 82syl6an 545 . . 3  |-  ( (
ph  /\  a  e.  RR+ )  ->  ( A. p  e.  ZZ  A. q  e.  NN  ( ( ( F `  ( p  /  q ) )  =/=  0  /\  ( abs `  ( A  -  ( p  /  q
) ) )  <_ 
1 )  ->  ( A  =  ( p  /  q )  \/  ( a  /  (
q ^ N ) )  <_  ( abs `  ( A  -  (
p  /  q ) ) ) ) )  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =/=  0  -> 
( A  =  ( p  /  q )  \/  ( x  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) ) )
8483rexlimdva 2836 . 2  |-  ( ph  ->  ( E. a  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  (
( ( F `  ( p  /  q
) )  =/=  0  /\  ( abs `  ( A  -  ( p  /  q ) ) )  <_  1 )  ->  ( A  =  ( p  /  q
)  \/  ( a  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) )  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( ( F `
 ( p  / 
q ) )  =/=  0  ->  ( A  =  ( p  / 
q )  \/  (
x  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
856, 84mpd 15 1  |-  ( ph  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =/=  0  -> 
( A  =  ( p  /  q )  \/  ( x  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2601   A.wral 2710   E.wrex 2711   ifcif 3786   class class class wbr 4287   ` cfv 5413  (class class class)co 6086   RRcr 9273   0cc0 9274   1c1 9275    x. cmul 9279    < clt 9410    <_ cle 9411    - cmin 9587    / cdiv 9985   NNcn 10314   ZZcz 10638   QQcq 10945   RR+crp 10983   ^cexp 11857   abscabs 12715  Polycply 21627  degcdgr 21630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-addf 9353  ax-mulf 9354
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-iin 4169  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-om 6472  df-1st 6572  df-2nd 6573  df-supp 6686  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-map 7208  df-pm 7209  df-ixp 7256  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fsupp 7613  df-fi 7653  df-sup 7683  df-oi 7716  df-card 8101  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-10 10380  df-n0 10572  df-z 10639  df-dec 10748  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-ioo 11296  df-ico 11298  df-icc 11299  df-fz 11430  df-fzo 11541  df-fl 11634  df-seq 11799  df-exp 11858  df-hash 12096  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-clim 12958  df-rlim 12959  df-sum 13156  df-struct 14168  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-ress 14173  df-plusg 14243  df-mulr 14244  df-starv 14245  df-sca 14246  df-vsca 14247  df-ip 14248  df-tset 14249  df-ple 14250  df-ds 14252  df-unif 14253  df-hom 14254  df-cco 14255  df-rest 14353  df-topn 14354  df-0g 14372  df-gsum 14373  df-topgen 14374  df-pt 14375  df-prds 14378  df-xrs 14432  df-qtop 14437  df-imas 14438  df-xps 14440  df-mre 14516  df-mrc 14517  df-acs 14519  df-mnd 15407  df-submnd 15457  df-grp 15536  df-minusg 15537  df-mulg 15539  df-subg 15669  df-cntz 15826  df-cmn 16270  df-mgp 16580  df-ur 16592  df-rng 16635  df-cring 16636  df-subrg 16841  df-psmet 17784  df-xmet 17785  df-met 17786  df-bl 17787  df-mopn 17788  df-fbas 17789  df-fg 17790  df-cnfld 17794  df-top 18478  df-bases 18480  df-topon 18481  df-topsp 18482  df-cld 18598  df-ntr 18599  df-cls 18600  df-nei 18677  df-lp 18715  df-perf 18716  df-cn 18806  df-cnp 18807  df-haus 18894  df-cmp 18965  df-tx 19110  df-hmeo 19303  df-fil 19394  df-fm 19486  df-flim 19487  df-flf 19488  df-xms 19870  df-ms 19871  df-tms 19872  df-cncf 20429  df-0p 21123  df-limc 21316  df-dv 21317  df-dvn 21318  df-cpn 21319  df-ply 21631  df-coe 21633  df-dgr 21634
This theorem is referenced by:  aalioulem6  21778
  Copyright terms: Public domain W3C validator