MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aalioulem5 Structured version   Unicode version

Theorem aalioulem5 22597
Description: Lemma for aaliou 22599. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aalioulem2.a  |-  N  =  (deg `  F )
aalioulem2.b  |-  ( ph  ->  F  e.  (Poly `  ZZ ) )
aalioulem2.c  |-  ( ph  ->  N  e.  NN )
aalioulem2.d  |-  ( ph  ->  A  e.  RR )
aalioulem3.e  |-  ( ph  ->  ( F `  A
)  =  0 )
Assertion
Ref Expression
aalioulem5  |-  ( ph  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =/=  0  -> 
( A  =  ( p  /  q )  \/  ( x  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
Distinct variable groups:    ph, x, p, q    x, A, p, q    x, F, p, q    x, N
Allowed substitution hints:    N( q, p)

Proof of Theorem aalioulem5
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 aalioulem2.a . . 3  |-  N  =  (deg `  F )
2 aalioulem2.b . . 3  |-  ( ph  ->  F  e.  (Poly `  ZZ ) )
3 aalioulem2.c . . 3  |-  ( ph  ->  N  e.  NN )
4 aalioulem2.d . . 3  |-  ( ph  ->  A  e.  RR )
5 aalioulem3.e . . 3  |-  ( ph  ->  ( F `  A
)  =  0 )
61, 2, 3, 4, 5aalioulem4 22596 . 2  |-  ( ph  ->  E. a  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  (
( ( F `  ( p  /  q
) )  =/=  0  /\  ( abs `  ( A  -  ( p  /  q ) ) )  <_  1 )  ->  ( A  =  ( p  /  q
)  \/  ( a  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
7 simpr 461 . . . . 5  |-  ( (
ph  /\  a  e.  RR+ )  ->  a  e.  RR+ )
8 1rp 11228 . . . . 5  |-  1  e.  RR+
9 ifcl 3964 . . . . 5  |-  ( ( a  e.  RR+  /\  1  e.  RR+ )  ->  if ( a  <_  1 ,  a ,  1 )  e.  RR+ )
107, 8, 9sylancl 662 . . . 4  |-  ( (
ph  /\  a  e.  RR+ )  ->  if (
a  <_  1 , 
a ,  1 )  e.  RR+ )
1110adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  if (
a  <_  1 , 
a ,  1 )  e.  RR+ )
12 simprr 756 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  q  e.  NN )
1312nnrpd 11259 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  q  e.  RR+ )
143ad2antrr 725 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  N  e.  NN )
1514nnzd 10968 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  N  e.  ZZ )
1613, 15rpexpcld 12307 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( q ^ N )  e.  RR+ )
1711, 16rpdivcld 11277 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  e.  RR+ )
1817rpred 11260 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  e.  RR )
19 1re 9593 . . . . . . . . . . . . 13  |-  1  e.  RR
2019a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  1  e.  RR )
214ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  A  e.  RR )
22 znq 11190 . . . . . . . . . . . . . . . . 17  |-  ( ( p  e.  ZZ  /\  q  e.  NN )  ->  ( p  /  q
)  e.  QQ )
23 qre 11191 . . . . . . . . . . . . . . . . 17  |-  ( ( p  /  q )  e.  QQ  ->  (
p  /  q )  e.  RR )
2422, 23syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( p  e.  ZZ  /\  q  e.  NN )  ->  ( p  /  q
)  e.  RR )
2524adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( p  /  q )  e.  RR )
2621, 25resubcld 9988 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( A  -  ( p  / 
q ) )  e.  RR )
2726recnd 9620 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( A  -  ( p  / 
q ) )  e.  CC )
2827abscld 13241 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( abs `  ( A  -  (
p  /  q ) ) )  e.  RR )
2918, 20, 283jca 1175 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  e.  RR  /\  1  e.  RR  /\  ( abs `  ( A  -  (
p  /  q ) ) )  e.  RR ) )
3029adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  1  < 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  (
( if ( a  <_  1 ,  a ,  1 )  / 
( q ^ N
) )  e.  RR  /\  1  e.  RR  /\  ( abs `  ( A  -  ( p  / 
q ) ) )  e.  RR ) )
3116rprecred 11271 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( 1  /  ( q ^ N ) )  e.  RR )
3211rpred 11260 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  if (
a  <_  1 , 
a ,  1 )  e.  RR )
33 simplr 754 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  a  e.  RR+ )
3433rpred 11260 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  a  e.  RR )
35 min2 11394 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  RR  /\  1  e.  RR )  ->  if ( a  <_ 
1 ,  a ,  1 )  <_  1
)
3634, 19, 35sylancl 662 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  if (
a  <_  1 , 
a ,  1 )  <_  1 )
3732, 20, 16, 36lediv1dd 11314 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  ( 1  / 
( q ^ N
) ) )
3814nnnn0d 10853 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  N  e.  NN0 )
3912, 38nnexpcld 12305 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( q ^ N )  e.  NN )
40 1nn 10548 . . . . . . . . . . . . . . . . 17  |-  1  e.  NN
4140a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  1  e.  NN )
4239, 41nnmulcld 10584 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( (
q ^ N )  x.  1 )  e.  NN )
4342nnge1d 10579 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  1  <_  ( ( q ^ N
)  x.  1 ) )
4420, 20, 16ledivmuld 11309 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( (
1  /  ( q ^ N ) )  <_  1  <->  1  <_  ( ( q ^ N
)  x.  1 ) ) )
4543, 44mpbird 232 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( 1  /  ( q ^ N ) )  <_ 
1 )
4618, 31, 20, 37, 45letrd 9737 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  1 )
4746adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  1  < 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  1 )
48 ltle 9671 . . . . . . . . . . . . 13  |-  ( ( 1  e.  RR  /\  ( abs `  ( A  -  ( p  / 
q ) ) )  e.  RR )  -> 
( 1  <  ( abs `  ( A  -  ( p  /  q
) ) )  -> 
1  <_  ( abs `  ( A  -  (
p  /  q ) ) ) ) )
4919, 28, 48sylancr 663 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( 1  <  ( abs `  ( A  -  ( p  /  q ) ) )  ->  1  <_  ( abs `  ( A  -  ( p  / 
q ) ) ) ) )
5049imp 429 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  1  < 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  1  <_  ( abs `  ( A  -  ( p  /  q ) ) ) )
5147, 50jca 532 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  1  < 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  (
( if ( a  <_  1 ,  a ,  1 )  / 
( q ^ N
) )  <_  1  /\  1  <_  ( abs `  ( A  -  (
p  /  q ) ) ) ) )
52 letr 9676 . . . . . . . . . 10  |-  ( ( ( if ( a  <_  1 ,  a ,  1 )  / 
( q ^ N
) )  e.  RR  /\  1  e.  RR  /\  ( abs `  ( A  -  ( p  / 
q ) ) )  e.  RR )  -> 
( ( ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  1  /\  1  <_  ( abs `  ( A  -  ( p  /  q ) ) ) )  ->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) )
5330, 51, 52sylc 60 . . . . . . . . 9  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  1  < 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) )
5453olcd 393 . . . . . . . 8  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  1  < 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  ( A  =  ( p  /  q )  \/  ( if ( a  <_  1 ,  a ,  1 )  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) )
5554a1d 25 . . . . . . 7  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  1  < 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  (
( F `  (
p  /  q ) )  =/=  0  -> 
( A  =  ( p  /  q )  \/  ( if ( a  <_  1 , 
a ,  1 )  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
5655a1d 25 . . . . . 6  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  1  < 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  (
( ( ( F `
 ( p  / 
q ) )  =/=  0  /\  ( abs `  ( A  -  (
p  /  q ) ) )  <_  1
)  ->  ( A  =  ( p  / 
q )  \/  (
a  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) )  -> 
( ( F `  ( p  /  q
) )  =/=  0  ->  ( A  =  ( p  /  q )  \/  ( if ( a  <_  1 , 
a ,  1 )  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
57 pm3.21 448 . . . . . . . 8  |-  ( ( abs `  ( A  -  ( p  / 
q ) ) )  <_  1  ->  (
( F `  (
p  /  q ) )  =/=  0  -> 
( ( F `  ( p  /  q
) )  =/=  0  /\  ( abs `  ( A  -  ( p  /  q ) ) )  <_  1 ) ) )
5857adantl 466 . . . . . . 7  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  ( abs `  ( A  -  (
p  /  q ) ) )  <_  1
)  ->  ( ( F `  ( p  /  q ) )  =/=  0  ->  (
( F `  (
p  /  q ) )  =/=  0  /\  ( abs `  ( A  -  ( p  /  q ) ) )  <_  1 ) ) )
5933, 16rpdivcld 11277 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( a  /  ( q ^ N ) )  e.  RR+ )
6059rpred 11260 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( a  /  ( q ^ N ) )  e.  RR )
6118, 60, 283jca 1175 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  e.  RR  /\  (
a  /  ( q ^ N ) )  e.  RR  /\  ( abs `  ( A  -  ( p  /  q
) ) )  e.  RR ) )
6261adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  ( a  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  (
( if ( a  <_  1 ,  a ,  1 )  / 
( q ^ N
) )  e.  RR  /\  ( a  /  (
q ^ N ) )  e.  RR  /\  ( abs `  ( A  -  ( p  / 
q ) ) )  e.  RR ) )
63 min1 11393 . . . . . . . . . . . . . 14  |-  ( ( a  e.  RR  /\  1  e.  RR )  ->  if ( a  <_ 
1 ,  a ,  1 )  <_  a
)
6434, 19, 63sylancl 662 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  if (
a  <_  1 , 
a ,  1 )  <_  a )
6532, 34, 16, 64lediv1dd 11314 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  ( a  / 
( q ^ N
) ) )
6665anim1i 568 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  ( a  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  (
( if ( a  <_  1 ,  a ,  1 )  / 
( q ^ N
) )  <_  (
a  /  ( q ^ N ) )  /\  ( a  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) )
67 letr 9676 . . . . . . . . . . 11  |-  ( ( ( if ( a  <_  1 ,  a ,  1 )  / 
( q ^ N
) )  e.  RR  /\  ( a  /  (
q ^ N ) )  e.  RR  /\  ( abs `  ( A  -  ( p  / 
q ) ) )  e.  RR )  -> 
( ( ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  ( a  / 
( q ^ N
) )  /\  (
a  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) )  ->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) )
6862, 66, 67sylc 60 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  ( a  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) )
6968ex 434 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( (
a  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) )  ->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) )
7069adantr 465 . . . . . . . 8  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  ( abs `  ( A  -  (
p  /  q ) ) )  <_  1
)  ->  ( (
a  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) )  ->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) )
7170orim2d 838 . . . . . . 7  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  ( abs `  ( A  -  (
p  /  q ) ) )  <_  1
)  ->  ( ( A  =  ( p  /  q )  \/  ( a  /  (
q ^ N ) )  <_  ( abs `  ( A  -  (
p  /  q ) ) ) )  -> 
( A  =  ( p  /  q )  \/  ( if ( a  <_  1 , 
a ,  1 )  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
7258, 71imim12d 74 . . . . . 6  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  ( abs `  ( A  -  (
p  /  q ) ) )  <_  1
)  ->  ( (
( ( F `  ( p  /  q
) )  =/=  0  /\  ( abs `  ( A  -  ( p  /  q ) ) )  <_  1 )  ->  ( A  =  ( p  /  q
)  \/  ( a  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) )  -> 
( ( F `  ( p  /  q
) )  =/=  0  ->  ( A  =  ( p  /  q )  \/  ( if ( a  <_  1 , 
a ,  1 )  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
7356, 72, 20, 28ltlecasei 9690 . . . . 5  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( (
( ( F `  ( p  /  q
) )  =/=  0  /\  ( abs `  ( A  -  ( p  /  q ) ) )  <_  1 )  ->  ( A  =  ( p  /  q
)  \/  ( a  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) )  -> 
( ( F `  ( p  /  q
) )  =/=  0  ->  ( A  =  ( p  /  q )  \/  ( if ( a  <_  1 , 
a ,  1 )  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
7473ralimdvva 2852 . . . 4  |-  ( (
ph  /\  a  e.  RR+ )  ->  ( A. p  e.  ZZ  A. q  e.  NN  ( ( ( F `  ( p  /  q ) )  =/=  0  /\  ( abs `  ( A  -  ( p  /  q
) ) )  <_ 
1 )  ->  ( A  =  ( p  /  q )  \/  ( a  /  (
q ^ N ) )  <_  ( abs `  ( A  -  (
p  /  q ) ) ) ) )  ->  A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =/=  0  -> 
( A  =  ( p  /  q )  \/  ( if ( a  <_  1 , 
a ,  1 )  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
75 oveq1 6284 . . . . . . . . 9  |-  ( x  =  if ( a  <_  1 ,  a ,  1 )  -> 
( x  /  (
q ^ N ) )  =  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) ) )
7675breq1d 4443 . . . . . . . 8  |-  ( x  =  if ( a  <_  1 ,  a ,  1 )  -> 
( ( x  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) )  <->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) )
7776orbi2d 701 . . . . . . 7  |-  ( x  =  if ( a  <_  1 ,  a ,  1 )  -> 
( ( A  =  ( p  /  q
)  \/  ( x  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  <->  ( A  =  ( p  / 
q )  \/  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
7877imbi2d 316 . . . . . 6  |-  ( x  =  if ( a  <_  1 ,  a ,  1 )  -> 
( ( ( F `
 ( p  / 
q ) )  =/=  0  ->  ( A  =  ( p  / 
q )  \/  (
x  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) )  <->  ( ( F `  ( p  /  q ) )  =/=  0  ->  ( A  =  ( p  /  q )  \/  ( if ( a  <_  1 ,  a ,  1 )  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) ) )
79782ralbidv 2885 . . . . 5  |-  ( x  =  if ( a  <_  1 ,  a ,  1 )  -> 
( A. p  e.  ZZ  A. q  e.  NN  ( ( F `
 ( p  / 
q ) )  =/=  0  ->  ( A  =  ( p  / 
q )  \/  (
x  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) )  <->  A. p  e.  ZZ  A. q  e.  NN  ( ( F `
 ( p  / 
q ) )  =/=  0  ->  ( A  =  ( p  / 
q )  \/  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
8079rspcev 3194 . . . 4  |-  ( ( if ( a  <_ 
1 ,  a ,  1 )  e.  RR+  /\ 
A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =/=  0  -> 
( A  =  ( p  /  q )  \/  ( if ( a  <_  1 , 
a ,  1 )  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) )  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =/=  0  -> 
( A  =  ( p  /  q )  \/  ( x  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
8110, 74, 80syl6an 545 . . 3  |-  ( (
ph  /\  a  e.  RR+ )  ->  ( A. p  e.  ZZ  A. q  e.  NN  ( ( ( F `  ( p  /  q ) )  =/=  0  /\  ( abs `  ( A  -  ( p  /  q
) ) )  <_ 
1 )  ->  ( A  =  ( p  /  q )  \/  ( a  /  (
q ^ N ) )  <_  ( abs `  ( A  -  (
p  /  q ) ) ) ) )  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =/=  0  -> 
( A  =  ( p  /  q )  \/  ( x  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) ) )
8281rexlimdva 2933 . 2  |-  ( ph  ->  ( E. a  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  (
( ( F `  ( p  /  q
) )  =/=  0  /\  ( abs `  ( A  -  ( p  /  q ) ) )  <_  1 )  ->  ( A  =  ( p  /  q
)  \/  ( a  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) )  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( ( F `
 ( p  / 
q ) )  =/=  0  ->  ( A  =  ( p  / 
q )  \/  (
x  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
836, 82mpd 15 1  |-  ( ph  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =/=  0  -> 
( A  =  ( p  /  q )  \/  ( x  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 972    = wceq 1381    e. wcel 1802    =/= wne 2636   A.wral 2791   E.wrex 2792   ifcif 3922   class class class wbr 4433   ` cfv 5574  (class class class)co 6277   RRcr 9489   0cc0 9490   1c1 9491    x. cmul 9495    < clt 9626    <_ cle 9627    - cmin 9805    / cdiv 10207   NNcn 10537   ZZcz 10865   QQcq 11186   RR+crp 11224   ^cexp 12140   abscabs 13041  Polycply 22447  degcdgr 22450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-inf2 8056  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567  ax-pre-sup 9568  ax-addf 9569  ax-mulf 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-fal 1387  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-int 4268  df-iun 4313  df-iin 4314  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-se 4825  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-isom 5583  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-of 6521  df-om 6682  df-1st 6781  df-2nd 6782  df-supp 6900  df-recs 7040  df-rdg 7074  df-1o 7128  df-2o 7129  df-oadd 7132  df-er 7309  df-map 7420  df-pm 7421  df-ixp 7468  df-en 7515  df-dom 7516  df-sdom 7517  df-fin 7518  df-fsupp 7828  df-fi 7869  df-sup 7899  df-oi 7933  df-card 8318  df-cda 8546  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9807  df-neg 9808  df-div 10208  df-nn 10538  df-2 10595  df-3 10596  df-4 10597  df-5 10598  df-6 10599  df-7 10600  df-8 10601  df-9 10602  df-10 10603  df-n0 10797  df-z 10866  df-dec 10980  df-uz 11086  df-q 11187  df-rp 11225  df-xneg 11322  df-xadd 11323  df-xmul 11324  df-ioo 11537  df-ico 11539  df-icc 11540  df-fz 11677  df-fzo 11799  df-fl 11903  df-seq 12082  df-exp 12141  df-hash 12380  df-cj 12906  df-re 12907  df-im 12908  df-sqrt 13042  df-abs 13043  df-clim 13285  df-rlim 13286  df-sum 13483  df-struct 14506  df-ndx 14507  df-slot 14508  df-base 14509  df-sets 14510  df-ress 14511  df-plusg 14582  df-mulr 14583  df-starv 14584  df-sca 14585  df-vsca 14586  df-ip 14587  df-tset 14588  df-ple 14589  df-ds 14591  df-unif 14592  df-hom 14593  df-cco 14594  df-rest 14692  df-topn 14693  df-0g 14711  df-gsum 14712  df-topgen 14713  df-pt 14714  df-prds 14717  df-xrs 14771  df-qtop 14776  df-imas 14777  df-xps 14779  df-mre 14855  df-mrc 14856  df-acs 14858  df-mgm 15741  df-sgrp 15780  df-mnd 15790  df-submnd 15836  df-grp 15926  df-minusg 15927  df-mulg 15929  df-subg 16067  df-cntz 16224  df-cmn 16669  df-mgp 17010  df-ur 17022  df-ring 17068  df-cring 17069  df-subrg 17295  df-psmet 18279  df-xmet 18280  df-met 18281  df-bl 18282  df-mopn 18283  df-fbas 18284  df-fg 18285  df-cnfld 18289  df-top 19266  df-bases 19268  df-topon 19269  df-topsp 19270  df-cld 19386  df-ntr 19387  df-cls 19388  df-nei 19465  df-lp 19503  df-perf 19504  df-cn 19594  df-cnp 19595  df-haus 19682  df-cmp 19753  df-tx 19929  df-hmeo 20122  df-fil 20213  df-fm 20305  df-flim 20306  df-flf 20307  df-xms 20689  df-ms 20690  df-tms 20691  df-cncf 21248  df-0p 21943  df-limc 22136  df-dv 22137  df-dvn 22138  df-cpn 22139  df-ply 22451  df-coe 22453  df-dgr 22454
This theorem is referenced by:  aalioulem6  22598
  Copyright terms: Public domain W3C validator