MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aalioulem5 Structured version   Unicode version

Theorem aalioulem5 22459
Description: Lemma for aaliou 22461. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aalioulem2.a  |-  N  =  (deg `  F )
aalioulem2.b  |-  ( ph  ->  F  e.  (Poly `  ZZ ) )
aalioulem2.c  |-  ( ph  ->  N  e.  NN )
aalioulem2.d  |-  ( ph  ->  A  e.  RR )
aalioulem3.e  |-  ( ph  ->  ( F `  A
)  =  0 )
Assertion
Ref Expression
aalioulem5  |-  ( ph  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =/=  0  -> 
( A  =  ( p  /  q )  \/  ( x  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
Distinct variable groups:    ph, x, p, q    x, A, p, q    x, F, p, q    x, N
Allowed substitution hints:    N( q, p)

Proof of Theorem aalioulem5
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 aalioulem2.a . . 3  |-  N  =  (deg `  F )
2 aalioulem2.b . . 3  |-  ( ph  ->  F  e.  (Poly `  ZZ ) )
3 aalioulem2.c . . 3  |-  ( ph  ->  N  e.  NN )
4 aalioulem2.d . . 3  |-  ( ph  ->  A  e.  RR )
5 aalioulem3.e . . 3  |-  ( ph  ->  ( F `  A
)  =  0 )
61, 2, 3, 4, 5aalioulem4 22458 . 2  |-  ( ph  ->  E. a  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  (
( ( F `  ( p  /  q
) )  =/=  0  /\  ( abs `  ( A  -  ( p  /  q ) ) )  <_  1 )  ->  ( A  =  ( p  /  q
)  \/  ( a  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
7 simpr 461 . . . . 5  |-  ( (
ph  /\  a  e.  RR+ )  ->  a  e.  RR+ )
8 1rp 11213 . . . . 5  |-  1  e.  RR+
9 ifcl 3974 . . . . 5  |-  ( ( a  e.  RR+  /\  1  e.  RR+ )  ->  if ( a  <_  1 ,  a ,  1 )  e.  RR+ )
107, 8, 9sylancl 662 . . . 4  |-  ( (
ph  /\  a  e.  RR+ )  ->  if (
a  <_  1 , 
a ,  1 )  e.  RR+ )
1110adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  if (
a  <_  1 , 
a ,  1 )  e.  RR+ )
12 simprr 756 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  q  e.  NN )
1312nnrpd 11244 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  q  e.  RR+ )
143ad2antrr 725 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  N  e.  NN )
1514nnzd 10954 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  N  e.  ZZ )
1613, 15rpexpcld 12288 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( q ^ N )  e.  RR+ )
1711, 16rpdivcld 11262 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  e.  RR+ )
1817rpred 11245 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  e.  RR )
19 1re 9584 . . . . . . . . . . . . . . 15  |-  1  e.  RR
2019a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  1  e.  RR )
214ad2antrr 725 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  A  e.  RR )
22 znq 11175 . . . . . . . . . . . . . . . . . . 19  |-  ( ( p  e.  ZZ  /\  q  e.  NN )  ->  ( p  /  q
)  e.  QQ )
23 qre 11176 . . . . . . . . . . . . . . . . . . 19  |-  ( ( p  /  q )  e.  QQ  ->  (
p  /  q )  e.  RR )
2422, 23syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( p  e.  ZZ  /\  q  e.  NN )  ->  ( p  /  q
)  e.  RR )
2524adantl 466 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( p  /  q )  e.  RR )
2621, 25resubcld 9976 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( A  -  ( p  / 
q ) )  e.  RR )
2726recnd 9611 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( A  -  ( p  / 
q ) )  e.  CC )
2827abscld 13216 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( abs `  ( A  -  (
p  /  q ) ) )  e.  RR )
2918, 20, 283jca 1171 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  e.  RR  /\  1  e.  RR  /\  ( abs `  ( A  -  (
p  /  q ) ) )  e.  RR ) )
3029adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  1  < 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  (
( if ( a  <_  1 ,  a ,  1 )  / 
( q ^ N
) )  e.  RR  /\  1  e.  RR  /\  ( abs `  ( A  -  ( p  / 
q ) ) )  e.  RR ) )
3116rprecred 11256 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( 1  /  ( q ^ N ) )  e.  RR )
3211rpred 11245 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  if (
a  <_  1 , 
a ,  1 )  e.  RR )
33 simplr 754 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  a  e.  RR+ )
3433rpred 11245 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  a  e.  RR )
35 min2 11379 . . . . . . . . . . . . . . . . 17  |-  ( ( a  e.  RR  /\  1  e.  RR )  ->  if ( a  <_ 
1 ,  a ,  1 )  <_  1
)
3634, 19, 35sylancl 662 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  if (
a  <_  1 , 
a ,  1 )  <_  1 )
3732, 20, 16, 36lediv1dd 11299 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  ( 1  / 
( q ^ N
) ) )
3814nnnn0d 10841 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  N  e.  NN0 )
3912, 38nnexpcld 12286 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( q ^ N )  e.  NN )
40 1nn 10536 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  NN
4140a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  1  e.  NN )
4239, 41nnmulcld 10572 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( (
q ^ N )  x.  1 )  e.  NN )
4342nnge1d 10567 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  1  <_  ( ( q ^ N
)  x.  1 ) )
4420, 20, 16ledivmuld 11294 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( (
1  /  ( q ^ N ) )  <_  1  <->  1  <_  ( ( q ^ N
)  x.  1 ) ) )
4543, 44mpbird 232 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( 1  /  ( q ^ N ) )  <_ 
1 )
4618, 31, 20, 37, 45letrd 9727 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  1 )
4746adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  1  < 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  1 )
48 ltle 9662 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  RR  /\  ( abs `  ( A  -  ( p  / 
q ) ) )  e.  RR )  -> 
( 1  <  ( abs `  ( A  -  ( p  /  q
) ) )  -> 
1  <_  ( abs `  ( A  -  (
p  /  q ) ) ) ) )
4919, 28, 48sylancr 663 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( 1  <  ( abs `  ( A  -  ( p  /  q ) ) )  ->  1  <_  ( abs `  ( A  -  ( p  / 
q ) ) ) ) )
5049imp 429 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  1  < 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  1  <_  ( abs `  ( A  -  ( p  /  q ) ) ) )
5147, 50jca 532 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  1  < 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  (
( if ( a  <_  1 ,  a ,  1 )  / 
( q ^ N
) )  <_  1  /\  1  <_  ( abs `  ( A  -  (
p  /  q ) ) ) ) )
52 letr 9667 . . . . . . . . . . . 12  |-  ( ( ( if ( a  <_  1 ,  a ,  1 )  / 
( q ^ N
) )  e.  RR  /\  1  e.  RR  /\  ( abs `  ( A  -  ( p  / 
q ) ) )  e.  RR )  -> 
( ( ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  1  /\  1  <_  ( abs `  ( A  -  ( p  /  q ) ) ) )  ->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) )
5330, 51, 52sylc 60 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  1  < 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) )
5453olcd 393 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  1  < 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  ( A  =  ( p  /  q )  \/  ( if ( a  <_  1 ,  a ,  1 )  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) )
5554a1d 25 . . . . . . . . 9  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  1  < 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  (
( F `  (
p  /  q ) )  =/=  0  -> 
( A  =  ( p  /  q )  \/  ( if ( a  <_  1 , 
a ,  1 )  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
5655a1d 25 . . . . . . . 8  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  1  < 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  (
( ( ( F `
 ( p  / 
q ) )  =/=  0  /\  ( abs `  ( A  -  (
p  /  q ) ) )  <_  1
)  ->  ( A  =  ( p  / 
q )  \/  (
a  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) )  -> 
( ( F `  ( p  /  q
) )  =/=  0  ->  ( A  =  ( p  /  q )  \/  ( if ( a  <_  1 , 
a ,  1 )  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
57 pm3.21 448 . . . . . . . . . 10  |-  ( ( abs `  ( A  -  ( p  / 
q ) ) )  <_  1  ->  (
( F `  (
p  /  q ) )  =/=  0  -> 
( ( F `  ( p  /  q
) )  =/=  0  /\  ( abs `  ( A  -  ( p  /  q ) ) )  <_  1 ) ) )
5857adantl 466 . . . . . . . . 9  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  ( abs `  ( A  -  (
p  /  q ) ) )  <_  1
)  ->  ( ( F `  ( p  /  q ) )  =/=  0  ->  (
( F `  (
p  /  q ) )  =/=  0  /\  ( abs `  ( A  -  ( p  /  q ) ) )  <_  1 ) ) )
5933, 16rpdivcld 11262 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( a  /  ( q ^ N ) )  e.  RR+ )
6059rpred 11245 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( a  /  ( q ^ N ) )  e.  RR )
6118, 60, 283jca 1171 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  e.  RR  /\  (
a  /  ( q ^ N ) )  e.  RR  /\  ( abs `  ( A  -  ( p  /  q
) ) )  e.  RR ) )
6261adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  ( a  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  (
( if ( a  <_  1 ,  a ,  1 )  / 
( q ^ N
) )  e.  RR  /\  ( a  /  (
q ^ N ) )  e.  RR  /\  ( abs `  ( A  -  ( p  / 
q ) ) )  e.  RR ) )
63 min1 11378 . . . . . . . . . . . . . . . 16  |-  ( ( a  e.  RR  /\  1  e.  RR )  ->  if ( a  <_ 
1 ,  a ,  1 )  <_  a
)
6434, 19, 63sylancl 662 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  if (
a  <_  1 , 
a ,  1 )  <_  a )
6532, 34, 16, 64lediv1dd 11299 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  ( a  / 
( q ^ N
) ) )
6665anim1i 568 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  ( a  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  (
( if ( a  <_  1 ,  a ,  1 )  / 
( q ^ N
) )  <_  (
a  /  ( q ^ N ) )  /\  ( a  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) )
67 letr 9667 . . . . . . . . . . . . 13  |-  ( ( ( if ( a  <_  1 ,  a ,  1 )  / 
( q ^ N
) )  e.  RR  /\  ( a  /  (
q ^ N ) )  e.  RR  /\  ( abs `  ( A  -  ( p  / 
q ) ) )  e.  RR )  -> 
( ( ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  ( a  / 
( q ^ N
) )  /\  (
a  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) )  ->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) )
6862, 66, 67sylc 60 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  ( a  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) )
6968ex 434 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( (
a  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) )  ->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) )
7069adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  ( abs `  ( A  -  (
p  /  q ) ) )  <_  1
)  ->  ( (
a  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) )  ->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) )
7170orim2d 837 . . . . . . . . 9  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  ( abs `  ( A  -  (
p  /  q ) ) )  <_  1
)  ->  ( ( A  =  ( p  /  q )  \/  ( a  /  (
q ^ N ) )  <_  ( abs `  ( A  -  (
p  /  q ) ) ) )  -> 
( A  =  ( p  /  q )  \/  ( if ( a  <_  1 , 
a ,  1 )  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
7258, 71imim12d 74 . . . . . . . 8  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  ( abs `  ( A  -  (
p  /  q ) ) )  <_  1
)  ->  ( (
( ( F `  ( p  /  q
) )  =/=  0  /\  ( abs `  ( A  -  ( p  /  q ) ) )  <_  1 )  ->  ( A  =  ( p  /  q
)  \/  ( a  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) )  -> 
( ( F `  ( p  /  q
) )  =/=  0  ->  ( A  =  ( p  /  q )  \/  ( if ( a  <_  1 , 
a ,  1 )  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
7356, 72, 20, 28ltlecasei 9681 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( (
( ( F `  ( p  /  q
) )  =/=  0  /\  ( abs `  ( A  -  ( p  /  q ) ) )  <_  1 )  ->  ( A  =  ( p  /  q
)  \/  ( a  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) )  -> 
( ( F `  ( p  /  q
) )  =/=  0  ->  ( A  =  ( p  /  q )  \/  ( if ( a  <_  1 , 
a ,  1 )  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
7473anassrs 648 . . . . . 6  |-  ( ( ( ( ph  /\  a  e.  RR+ )  /\  p  e.  ZZ )  /\  q  e.  NN )  ->  ( ( ( ( F `  (
p  /  q ) )  =/=  0  /\  ( abs `  ( A  -  ( p  /  q ) ) )  <_  1 )  ->  ( A  =  ( p  /  q
)  \/  ( a  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) )  -> 
( ( F `  ( p  /  q
) )  =/=  0  ->  ( A  =  ( p  /  q )  \/  ( if ( a  <_  1 , 
a ,  1 )  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
7574ralimdva 2865 . . . . 5  |-  ( ( ( ph  /\  a  e.  RR+ )  /\  p  e.  ZZ )  ->  ( A. q  e.  NN  ( ( ( F `
 ( p  / 
q ) )  =/=  0  /\  ( abs `  ( A  -  (
p  /  q ) ) )  <_  1
)  ->  ( A  =  ( p  / 
q )  \/  (
a  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) )  ->  A. q  e.  NN  ( ( F `  ( p  /  q
) )  =/=  0  ->  ( A  =  ( p  /  q )  \/  ( if ( a  <_  1 , 
a ,  1 )  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
7675ralimdva 2865 . . . 4  |-  ( (
ph  /\  a  e.  RR+ )  ->  ( A. p  e.  ZZ  A. q  e.  NN  ( ( ( F `  ( p  /  q ) )  =/=  0  /\  ( abs `  ( A  -  ( p  /  q
) ) )  <_ 
1 )  ->  ( A  =  ( p  /  q )  \/  ( a  /  (
q ^ N ) )  <_  ( abs `  ( A  -  (
p  /  q ) ) ) ) )  ->  A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =/=  0  -> 
( A  =  ( p  /  q )  \/  ( if ( a  <_  1 , 
a ,  1 )  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
77 oveq1 6282 . . . . . . . . 9  |-  ( x  =  if ( a  <_  1 ,  a ,  1 )  -> 
( x  /  (
q ^ N ) )  =  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) ) )
7877breq1d 4450 . . . . . . . 8  |-  ( x  =  if ( a  <_  1 ,  a ,  1 )  -> 
( ( x  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) )  <->  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) )
7978orbi2d 701 . . . . . . 7  |-  ( x  =  if ( a  <_  1 ,  a ,  1 )  -> 
( ( A  =  ( p  /  q
)  \/  ( x  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  <->  ( A  =  ( p  / 
q )  \/  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
8079imbi2d 316 . . . . . 6  |-  ( x  =  if ( a  <_  1 ,  a ,  1 )  -> 
( ( ( F `
 ( p  / 
q ) )  =/=  0  ->  ( A  =  ( p  / 
q )  \/  (
x  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) )  <->  ( ( F `  ( p  /  q ) )  =/=  0  ->  ( A  =  ( p  /  q )  \/  ( if ( a  <_  1 ,  a ,  1 )  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) ) )
81802ralbidv 2901 . . . . 5  |-  ( x  =  if ( a  <_  1 ,  a ,  1 )  -> 
( A. p  e.  ZZ  A. q  e.  NN  ( ( F `
 ( p  / 
q ) )  =/=  0  ->  ( A  =  ( p  / 
q )  \/  (
x  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) )  <->  A. p  e.  ZZ  A. q  e.  NN  ( ( F `
 ( p  / 
q ) )  =/=  0  ->  ( A  =  ( p  / 
q )  \/  ( if ( a  <_  1 ,  a ,  1 )  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
8281rspcev 3207 . . . 4  |-  ( ( if ( a  <_ 
1 ,  a ,  1 )  e.  RR+  /\ 
A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =/=  0  -> 
( A  =  ( p  /  q )  \/  ( if ( a  <_  1 , 
a ,  1 )  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) )  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =/=  0  -> 
( A  =  ( p  /  q )  \/  ( x  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
8310, 76, 82syl6an 545 . . 3  |-  ( (
ph  /\  a  e.  RR+ )  ->  ( A. p  e.  ZZ  A. q  e.  NN  ( ( ( F `  ( p  /  q ) )  =/=  0  /\  ( abs `  ( A  -  ( p  /  q
) ) )  <_ 
1 )  ->  ( A  =  ( p  /  q )  \/  ( a  /  (
q ^ N ) )  <_  ( abs `  ( A  -  (
p  /  q ) ) ) ) )  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =/=  0  -> 
( A  =  ( p  /  q )  \/  ( x  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) ) )
8483rexlimdva 2948 . 2  |-  ( ph  ->  ( E. a  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  (
( ( F `  ( p  /  q
) )  =/=  0  /\  ( abs `  ( A  -  ( p  /  q ) ) )  <_  1 )  ->  ( A  =  ( p  /  q
)  \/  ( a  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) )  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( ( F `
 ( p  / 
q ) )  =/=  0  ->  ( A  =  ( p  / 
q )  \/  (
x  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
856, 84mpd 15 1  |-  ( ph  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =/=  0  -> 
( A  =  ( p  /  q )  \/  ( x  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762    =/= wne 2655   A.wral 2807   E.wrex 2808   ifcif 3932   class class class wbr 4440   ` cfv 5579  (class class class)co 6275   RRcr 9480   0cc0 9481   1c1 9482    x. cmul 9486    < clt 9617    <_ cle 9618    - cmin 9794    / cdiv 10195   NNcn 10525   ZZcz 10853   QQcq 11171   RR+crp 11209   ^cexp 12122   abscabs 13017  Polycply 22309  degcdgr 22312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-inf2 8047  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-iin 4321  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-of 6515  df-om 6672  df-1st 6774  df-2nd 6775  df-supp 6892  df-recs 7032  df-rdg 7066  df-1o 7120  df-2o 7121  df-oadd 7124  df-er 7301  df-map 7412  df-pm 7413  df-ixp 7460  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-fsupp 7819  df-fi 7860  df-sup 7890  df-oi 7924  df-card 8309  df-cda 8537  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-4 10585  df-5 10586  df-6 10587  df-7 10588  df-8 10589  df-9 10590  df-10 10591  df-n0 10785  df-z 10854  df-dec 10966  df-uz 11072  df-q 11172  df-rp 11210  df-xneg 11307  df-xadd 11308  df-xmul 11309  df-ioo 11522  df-ico 11524  df-icc 11525  df-fz 11662  df-fzo 11782  df-fl 11886  df-seq 12064  df-exp 12123  df-hash 12361  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018  df-abs 13019  df-clim 13260  df-rlim 13261  df-sum 13458  df-struct 14481  df-ndx 14482  df-slot 14483  df-base 14484  df-sets 14485  df-ress 14486  df-plusg 14557  df-mulr 14558  df-starv 14559  df-sca 14560  df-vsca 14561  df-ip 14562  df-tset 14563  df-ple 14564  df-ds 14566  df-unif 14567  df-hom 14568  df-cco 14569  df-rest 14667  df-topn 14668  df-0g 14686  df-gsum 14687  df-topgen 14688  df-pt 14689  df-prds 14692  df-xrs 14746  df-qtop 14751  df-imas 14752  df-xps 14754  df-mre 14830  df-mrc 14831  df-acs 14833  df-mnd 15721  df-submnd 15771  df-grp 15851  df-minusg 15852  df-mulg 15854  df-subg 15986  df-cntz 16143  df-cmn 16589  df-mgp 16925  df-ur 16937  df-rng 16981  df-cring 16982  df-subrg 17203  df-psmet 18175  df-xmet 18176  df-met 18177  df-bl 18178  df-mopn 18179  df-fbas 18180  df-fg 18181  df-cnfld 18185  df-top 19159  df-bases 19161  df-topon 19162  df-topsp 19163  df-cld 19279  df-ntr 19280  df-cls 19281  df-nei 19358  df-lp 19396  df-perf 19397  df-cn 19487  df-cnp 19488  df-haus 19575  df-cmp 19646  df-tx 19791  df-hmeo 19984  df-fil 20075  df-fm 20167  df-flim 20168  df-flf 20169  df-xms 20551  df-ms 20552  df-tms 20553  df-cncf 21110  df-0p 21805  df-limc 21998  df-dv 21999  df-dvn 22000  df-cpn 22001  df-ply 22313  df-coe 22315  df-dgr 22316
This theorem is referenced by:  aalioulem6  22460
  Copyright terms: Public domain W3C validator