MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aalioulem3 Structured version   Unicode version

Theorem aalioulem3 23288
Description: Lemma for aaliou 23292. (Contributed by Stefan O'Rear, 15-Nov-2014.)
Hypotheses
Ref Expression
aalioulem2.a  |-  N  =  (deg `  F )
aalioulem2.b  |-  ( ph  ->  F  e.  (Poly `  ZZ ) )
aalioulem2.c  |-  ( ph  ->  N  e.  NN )
aalioulem2.d  |-  ( ph  ->  A  e.  RR )
aalioulem3.e  |-  ( ph  ->  ( F `  A
)  =  0 )
Assertion
Ref Expression
aalioulem3  |-  ( ph  ->  E. x  e.  RR+  A. r  e.  RR  (
( abs `  ( A  -  r )
)  <_  1  ->  ( x  x.  ( abs `  ( F `  r
) ) )  <_ 
( abs `  ( A  -  r )
) ) )
Distinct variable groups:    ph, x, r   
x, A, r    x, F, r
Allowed substitution hints:    N( x, r)

Proof of Theorem aalioulem3
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aalioulem2.d . . . . 5  |-  ( ph  ->  A  e.  RR )
2 1re 9649 . . . . 5  |-  1  e.  RR
3 resubcl 9945 . . . . 5  |-  ( ( A  e.  RR  /\  1  e.  RR )  ->  ( A  -  1 )  e.  RR )
41, 2, 3sylancl 666 . . . 4  |-  ( ph  ->  ( A  -  1 )  e.  RR )
5 peano2re 9813 . . . . 5  |-  ( A  e.  RR  ->  ( A  +  1 )  e.  RR )
61, 5syl 17 . . . 4  |-  ( ph  ->  ( A  +  1 )  e.  RR )
7 reelprrecn 9638 . . . . 5  |-  RR  e.  { RR ,  CC }
8 ssid 3483 . . . . . . . . 9  |-  CC  C_  CC
9 fncpn 22885 . . . . . . . . 9  |-  ( CC  C_  CC  ->  ( C^n `  CC )  Fn 
NN0 )
108, 9ax-mp 5 . . . . . . . 8  |-  ( C^n `  CC )  Fn  NN0
11 1nn0 10892 . . . . . . . 8  |-  1  e.  NN0
12 fnfvelrn 6034 . . . . . . . 8  |-  ( ( ( C^n `  CC )  Fn  NN0  /\  1  e.  NN0 )  -> 
( ( C^n `
 CC ) ` 
1 )  e.  ran  ( C^n `  CC ) )
1310, 11, 12mp2an 676 . . . . . . 7  |-  ( ( C^n `  CC ) `  1 )  e.  ran  ( C^n `
 CC )
14 intss1 4270 . . . . . . 7  |-  ( ( ( C^n `  CC ) `  1 )  e.  ran  ( C^n `  CC )  ->  |^| ran  ( C^n `  CC ) 
C_  ( ( C^n `  CC ) `
 1 ) )
1513, 14ax-mp 5 . . . . . 6  |-  |^| ran  ( C^n `  CC )  C_  ( ( C^n `  CC ) `  1 )
16 aalioulem2.b . . . . . . 7  |-  ( ph  ->  F  e.  (Poly `  ZZ ) )
17 plycpn 23240 . . . . . . 7  |-  ( F  e.  (Poly `  ZZ )  ->  F  e.  |^| ran  ( C^n `  CC ) )
1816, 17syl 17 . . . . . 6  |-  ( ph  ->  F  e.  |^| ran  ( C^n `  CC ) )
1915, 18sseldi 3462 . . . . 5  |-  ( ph  ->  F  e.  ( ( C^n `  CC ) `  1 )
)
20 cpnres 22889 . . . . 5  |-  ( ( RR  e.  { RR ,  CC }  /\  F  e.  ( ( C^n `
 CC ) ` 
1 ) )  -> 
( F  |`  RR )  e.  ( ( C^n `  RR ) `
 1 ) )
217, 19, 20sylancr 667 . . . 4  |-  ( ph  ->  ( F  |`  RR )  e.  ( ( C^n `  RR ) `
 1 ) )
22 df-ima 4866 . . . . 5  |-  ( F
" RR )  =  ran  ( F  |`  RR )
23 zssre 10951 . . . . . . . . 9  |-  ZZ  C_  RR
24 ax-resscn 9603 . . . . . . . . 9  |-  RR  C_  CC
25 plyss 23151 . . . . . . . . 9  |-  ( ( ZZ  C_  RR  /\  RR  C_  CC )  ->  (Poly `  ZZ )  C_  (Poly `  RR ) )
2623, 24, 25mp2an 676 . . . . . . . 8  |-  (Poly `  ZZ )  C_  (Poly `  RR )
2726, 16sseldi 3462 . . . . . . 7  |-  ( ph  ->  F  e.  (Poly `  RR ) )
28 plyreres 23234 . . . . . . 7  |-  ( F  e.  (Poly `  RR )  ->  ( F  |`  RR ) : RR --> RR )
2927, 28syl 17 . . . . . 6  |-  ( ph  ->  ( F  |`  RR ) : RR --> RR )
30 frn 5752 . . . . . 6  |-  ( ( F  |`  RR ) : RR --> RR  ->  ran  ( F  |`  RR ) 
C_  RR )
3129, 30syl 17 . . . . 5  |-  ( ph  ->  ran  ( F  |`  RR )  C_  RR )
3222, 31syl5eqss 3508 . . . 4  |-  ( ph  ->  ( F " RR )  C_  RR )
33 iccssre 11723 . . . . . . 7  |-  ( ( ( A  -  1 )  e.  RR  /\  ( A  +  1
)  e.  RR )  ->  ( ( A  -  1 ) [,] ( A  +  1 ) )  C_  RR )
344, 6, 33syl2anc 665 . . . . . 6  |-  ( ph  ->  ( ( A  - 
1 ) [,] ( A  +  1 ) )  C_  RR )
3534, 24syl6ss 3476 . . . . 5  |-  ( ph  ->  ( ( A  - 
1 ) [,] ( A  +  1 ) )  C_  CC )
36 plyf 23150 . . . . . . 7  |-  ( F  e.  (Poly `  ZZ )  ->  F : CC --> CC )
3716, 36syl 17 . . . . . 6  |-  ( ph  ->  F : CC --> CC )
38 fdm 5750 . . . . . 6  |-  ( F : CC --> CC  ->  dom 
F  =  CC )
3937, 38syl 17 . . . . 5  |-  ( ph  ->  dom  F  =  CC )
4035, 39sseqtr4d 3501 . . . 4  |-  ( ph  ->  ( ( A  - 
1 ) [,] ( A  +  1 ) )  C_  dom  F )
414, 6, 21, 32, 40c1lip3 22949 . . 3  |-  ( ph  ->  E. a  e.  RR  A. b  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) ) A. c  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) ) ( abs `  ( ( F `  c )  -  ( F `  b ) ) )  <_  ( a  x.  ( abs `  (
c  -  b ) ) ) )
42 simp2 1006 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  r  e.  RR )
4342recnd 9676 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  r  e.  CC )
441adantr 466 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  a  e.  RR )  ->  A  e.  RR )
45443ad2ant1 1026 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  A  e.  RR )
4645recnd 9676 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  A  e.  CC )
4743, 46abssubd 13514 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( abs `  ( r  -  A
) )  =  ( abs `  ( A  -  r ) ) )
48 simp3 1007 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( abs `  ( A  -  r
) )  <_  1
)
4947, 48eqbrtrd 4444 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( abs `  ( r  -  A
) )  <_  1
)
50 1red 9665 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  1  e.  RR )
51 elicc4abs 13382 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  1  e.  RR  /\  r  e.  RR )  ->  (
r  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) )  <->  ( abs `  ( r  -  A
) )  <_  1
) )
5245, 50, 42, 51syl3anc 1264 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( r  e.  ( ( A  - 
1 ) [,] ( A  +  1 ) )  <->  ( abs `  (
r  -  A ) )  <_  1 ) )
5349, 52mpbird 235 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  r  e.  ( ( A  - 
1 ) [,] ( A  +  1 ) ) )
541recnd 9676 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A  e.  CC )
5554subidd 9981 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  -  A
)  =  0 )
5655fveq2d 5885 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( abs `  ( A  -  A )
)  =  ( abs `  0 ) )
57 abs0 13348 . . . . . . . . . . . . . . 15  |-  ( abs `  0 )  =  0
58 0le1 10144 . . . . . . . . . . . . . . 15  |-  0  <_  1
5957, 58eqbrtri 4443 . . . . . . . . . . . . . 14  |-  ( abs `  0 )  <_ 
1
6056, 59syl6eqbr 4461 . . . . . . . . . . . . 13  |-  ( ph  ->  ( abs `  ( A  -  A )
)  <_  1 )
61 1red 9665 . . . . . . . . . . . . . 14  |-  ( ph  ->  1  e.  RR )
62 elicc4abs 13382 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  1  e.  RR  /\  A  e.  RR )  ->  ( A  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) )  <->  ( abs `  ( A  -  A
) )  <_  1
) )
631, 61, 1, 62syl3anc 1264 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  e.  ( ( A  -  1 ) [,] ( A  +  1 ) )  <-> 
( abs `  ( A  -  A )
)  <_  1 ) )
6460, 63mpbird 235 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) ) )
6564adantr 466 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  RR )  ->  A  e.  ( ( A  - 
1 ) [,] ( A  +  1 ) ) )
66653ad2ant1 1026 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  A  e.  ( ( A  - 
1 ) [,] ( A  +  1 ) ) )
67 fveq2 5881 . . . . . . . . . . . . . 14  |-  ( b  =  r  ->  ( F `  b )  =  ( F `  r ) )
6867oveq2d 6321 . . . . . . . . . . . . 13  |-  ( b  =  r  ->  (
( F `  c
)  -  ( F `
 b ) )  =  ( ( F `
 c )  -  ( F `  r ) ) )
6968fveq2d 5885 . . . . . . . . . . . 12  |-  ( b  =  r  ->  ( abs `  ( ( F `
 c )  -  ( F `  b ) ) )  =  ( abs `  ( ( F `  c )  -  ( F `  r ) ) ) )
70 oveq2 6313 . . . . . . . . . . . . . 14  |-  ( b  =  r  ->  (
c  -  b )  =  ( c  -  r ) )
7170fveq2d 5885 . . . . . . . . . . . . 13  |-  ( b  =  r  ->  ( abs `  ( c  -  b ) )  =  ( abs `  (
c  -  r ) ) )
7271oveq2d 6321 . . . . . . . . . . . 12  |-  ( b  =  r  ->  (
a  x.  ( abs `  ( c  -  b
) ) )  =  ( a  x.  ( abs `  ( c  -  r ) ) ) )
7369, 72breq12d 4436 . . . . . . . . . . 11  |-  ( b  =  r  ->  (
( abs `  (
( F `  c
)  -  ( F `
 b ) ) )  <_  ( a  x.  ( abs `  (
c  -  b ) ) )  <->  ( abs `  ( ( F `  c )  -  ( F `  r )
) )  <_  (
a  x.  ( abs `  ( c  -  r
) ) ) ) )
74 fveq2 5881 . . . . . . . . . . . . . 14  |-  ( c  =  A  ->  ( F `  c )  =  ( F `  A ) )
7574oveq1d 6320 . . . . . . . . . . . . 13  |-  ( c  =  A  ->  (
( F `  c
)  -  ( F `
 r ) )  =  ( ( F `
 A )  -  ( F `  r ) ) )
7675fveq2d 5885 . . . . . . . . . . . 12  |-  ( c  =  A  ->  ( abs `  ( ( F `
 c )  -  ( F `  r ) ) )  =  ( abs `  ( ( F `  A )  -  ( F `  r ) ) ) )
77 oveq1 6312 . . . . . . . . . . . . . 14  |-  ( c  =  A  ->  (
c  -  r )  =  ( A  -  r ) )
7877fveq2d 5885 . . . . . . . . . . . . 13  |-  ( c  =  A  ->  ( abs `  ( c  -  r ) )  =  ( abs `  ( A  -  r )
) )
7978oveq2d 6321 . . . . . . . . . . . 12  |-  ( c  =  A  ->  (
a  x.  ( abs `  ( c  -  r
) ) )  =  ( a  x.  ( abs `  ( A  -  r ) ) ) )
8076, 79breq12d 4436 . . . . . . . . . . 11  |-  ( c  =  A  ->  (
( abs `  (
( F `  c
)  -  ( F `
 r ) ) )  <_  ( a  x.  ( abs `  (
c  -  r ) ) )  <->  ( abs `  ( ( F `  A )  -  ( F `  r )
) )  <_  (
a  x.  ( abs `  ( A  -  r
) ) ) ) )
8173, 80rspc2v 3191 . . . . . . . . . 10  |-  ( ( r  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) )  /\  A  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) ) )  ->  ( A. b  e.  ( ( A  - 
1 ) [,] ( A  +  1 ) ) A. c  e.  ( ( A  - 
1 ) [,] ( A  +  1 ) ) ( abs `  (
( F `  c
)  -  ( F `
 b ) ) )  <_  ( a  x.  ( abs `  (
c  -  b ) ) )  ->  ( abs `  ( ( F `
 A )  -  ( F `  r ) ) )  <_  (
a  x.  ( abs `  ( A  -  r
) ) ) ) )
8253, 66, 81syl2anc 665 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( A. b  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) ) A. c  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) ) ( abs `  ( ( F `  c )  -  ( F `  b ) ) )  <_  ( a  x.  ( abs `  (
c  -  b ) ) )  ->  ( abs `  ( ( F `
 A )  -  ( F `  r ) ) )  <_  (
a  x.  ( abs `  ( A  -  r
) ) ) ) )
83 simp1l 1029 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ph )
84 aalioulem3.e . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F `  A
)  =  0 )
8583, 84syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( F `  A )  =  0 )
86 0cn 9642 . . . . . . . . . . . . 13  |-  0  e.  CC
8785, 86syl6eqel 2515 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( F `  A )  e.  CC )
8837adantr 466 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  a  e.  RR )  ->  F : CC
--> CC )
89883ad2ant1 1026 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  F : CC
--> CC )
9089, 43ffvelrnd 6038 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( F `  r )  e.  CC )
9187, 90abssubd 13514 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( abs `  ( ( F `  A )  -  ( F `  r )
) )  =  ( abs `  ( ( F `  r )  -  ( F `  A ) ) ) )
9285oveq2d 6321 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( ( F `  r )  -  ( F `  A ) )  =  ( ( F `  r )  -  0 ) )
9390subid1d 9982 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( ( F `  r )  -  0 )  =  ( F `  r
) )
9492, 93eqtrd 2463 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( ( F `  r )  -  ( F `  A ) )  =  ( F `  r
) )
9594fveq2d 5885 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( abs `  ( ( F `  r )  -  ( F `  A )
) )  =  ( abs `  ( F `
 r ) ) )
9691, 95eqtrd 2463 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( abs `  ( ( F `  A )  -  ( F `  r )
) )  =  ( abs `  ( F `
 r ) ) )
9796breq1d 4433 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( ( abs `  ( ( F `
 A )  -  ( F `  r ) ) )  <_  (
a  x.  ( abs `  ( A  -  r
) ) )  <->  ( abs `  ( F `  r
) )  <_  (
a  x.  ( abs `  ( A  -  r
) ) ) ) )
9882, 97sylibd 217 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( A. b  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) ) A. c  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) ) ( abs `  ( ( F `  c )  -  ( F `  b ) ) )  <_  ( a  x.  ( abs `  (
c  -  b ) ) )  ->  ( abs `  ( F `  r ) )  <_ 
( a  x.  ( abs `  ( A  -  r ) ) ) ) )
99983exp 1204 . . . . . . 7  |-  ( (
ph  /\  a  e.  RR )  ->  ( r  e.  RR  ->  (
( abs `  ( A  -  r )
)  <_  1  ->  ( A. b  e.  ( ( A  -  1 ) [,] ( A  +  1 ) ) A. c  e.  ( ( A  -  1 ) [,] ( A  +  1 ) ) ( abs `  (
( F `  c
)  -  ( F `
 b ) ) )  <_  ( a  x.  ( abs `  (
c  -  b ) ) )  ->  ( abs `  ( F `  r ) )  <_ 
( a  x.  ( abs `  ( A  -  r ) ) ) ) ) ) )
10099com34 86 . . . . . 6  |-  ( (
ph  /\  a  e.  RR )  ->  ( r  e.  RR  ->  ( A. b  e.  (
( A  -  1 ) [,] ( A  +  1 ) ) A. c  e.  ( ( A  -  1 ) [,] ( A  +  1 ) ) ( abs `  (
( F `  c
)  -  ( F `
 b ) ) )  <_  ( a  x.  ( abs `  (
c  -  b ) ) )  ->  (
( abs `  ( A  -  r )
)  <_  1  ->  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) ) ) )
101100com23 81 . . . . 5  |-  ( (
ph  /\  a  e.  RR )  ->  ( A. b  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) ) A. c  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) ) ( abs `  ( ( F `  c )  -  ( F `  b ) ) )  <_  ( a  x.  ( abs `  (
c  -  b ) ) )  ->  (
r  e.  RR  ->  ( ( abs `  ( A  -  r )
)  <_  1  ->  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) ) ) )
102101ralrimdv 2838 . . . 4  |-  ( (
ph  /\  a  e.  RR )  ->  ( A. b  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) ) A. c  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) ) ( abs `  ( ( F `  c )  -  ( F `  b ) ) )  <_  ( a  x.  ( abs `  (
c  -  b ) ) )  ->  A. r  e.  RR  ( ( abs `  ( A  -  r
) )  <_  1  ->  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) ) )
103102reximdva 2897 . . 3  |-  ( ph  ->  ( E. a  e.  RR  A. b  e.  ( ( A  - 
1 ) [,] ( A  +  1 ) ) A. c  e.  ( ( A  - 
1 ) [,] ( A  +  1 ) ) ( abs `  (
( F `  c
)  -  ( F `
 b ) ) )  <_  ( a  x.  ( abs `  (
c  -  b ) ) )  ->  E. a  e.  RR  A. r  e.  RR  ( ( abs `  ( A  -  r
) )  <_  1  ->  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) ) )
10441, 103mpd 15 . 2  |-  ( ph  ->  E. a  e.  RR  A. r  e.  RR  (
( abs `  ( A  -  r )
)  <_  1  ->  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )
105 1rp 11313 . . . . . 6  |-  1  e.  RR+
106105a1i 11 . . . . 5  |-  ( ( ( ph  /\  a  e.  RR )  /\  a  =  0 )  -> 
1  e.  RR+ )
107 recn 9636 . . . . . . . 8  |-  ( a  e.  RR  ->  a  e.  CC )
108107adantl 467 . . . . . . 7  |-  ( (
ph  /\  a  e.  RR )  ->  a  e.  CC )
109 df-ne 2616 . . . . . . . 8  |-  ( a  =/=  0  <->  -.  a  =  0 )
110109biimpri 209 . . . . . . 7  |-  ( -.  a  =  0  -> 
a  =/=  0 )
111 absrpcl 13351 . . . . . . 7  |-  ( ( a  e.  CC  /\  a  =/=  0 )  -> 
( abs `  a
)  e.  RR+ )
112108, 110, 111syl2an 479 . . . . . 6  |-  ( ( ( ph  /\  a  e.  RR )  /\  -.  a  =  0 )  ->  ( abs `  a
)  e.  RR+ )
113112rpreccld 11358 . . . . 5  |-  ( ( ( ph  /\  a  e.  RR )  /\  -.  a  =  0 )  ->  ( 1  / 
( abs `  a
) )  e.  RR+ )
114106, 113ifclda 3943 . . . 4  |-  ( (
ph  /\  a  e.  RR )  ->  if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a
) ) )  e.  RR+ )
115 eqid 2422 . . . . . . . . 9  |-  if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a
) ) )  =  if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )
116 eqif 3949 . . . . . . . . 9  |-  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  if ( a  =  0 ,  1 ,  ( 1  / 
( abs `  a
) ) )  <->  ( (
a  =  0  /\  if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  1 )  \/  ( -.  a  =  0  /\  if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  ( 1  / 
( abs `  a
) ) ) ) )
117115, 116mpbi 211 . . . . . . . 8  |-  ( ( a  =  0  /\  if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  1 )  \/  ( -.  a  =  0  /\  if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  ( 1  / 
( abs `  a
) ) ) )
118 simplrr 769 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( abs `  ( F `  r
) )  <_  (
a  x.  ( abs `  ( A  -  r
) ) ) )
119 oveq1 6312 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  0  ->  (
a  x.  ( abs `  ( A  -  r
) ) )  =  ( 0  x.  ( abs `  ( A  -  r ) ) ) )
120119adantl 467 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( a  x.  ( abs `  ( A  -  r )
) )  =  ( 0  x.  ( abs `  ( A  -  r
) ) ) )
1211ad2antrr 730 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  A  e.  RR )
122 simprl 762 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  r  e.  RR )
123121, 122resubcld 10054 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( A  -  r )  e.  RR )
124123recnd 9676 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( A  -  r )  e.  CC )
125124abscld 13497 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( abs `  ( A  -  r )
)  e.  RR )
126125recnd 9676 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( abs `  ( A  -  r )
)  e.  CC )
127126adantr 466 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( abs `  ( A  -  r
) )  e.  CC )
128127mul02d 9838 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( 0  x.  ( abs `  ( A  -  r )
) )  =  0 )
129120, 128eqtrd 2463 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( a  x.  ( abs `  ( A  -  r )
) )  =  0 )
130118, 129breqtrd 4448 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( abs `  ( F `  r
) )  <_  0
)
13137ad2antrr 730 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  F : CC --> CC )
132122recnd 9676 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  r  e.  CC )
133131, 132ffvelrnd 6038 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( F `  r )  e.  CC )
134133adantr 466 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( F `  r )  e.  CC )
135134absge0d 13505 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  0  <_  ( abs `  ( F `
 r ) ) )
136133abscld 13497 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( abs `  ( F `  r )
)  e.  RR )
137136adantr 466 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( abs `  ( F `  r
) )  e.  RR )
138 0re 9650 . . . . . . . . . . . . . . . 16  |-  0  e.  RR
139 letri3 9726 . . . . . . . . . . . . . . . 16  |-  ( ( ( abs `  ( F `  r )
)  e.  RR  /\  0  e.  RR )  ->  ( ( abs `  ( F `  r )
)  =  0  <->  (
( abs `  ( F `  r )
)  <_  0  /\  0  <_  ( abs `  ( F `  r )
) ) ) )
140137, 138, 139sylancl 666 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( ( abs `  ( F `  r ) )  =  0  <->  ( ( abs `  ( F `  r
) )  <_  0  /\  0  <_  ( abs `  ( F `  r
) ) ) ) )
141130, 135, 140mpbir2and 930 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( abs `  ( F `  r
) )  =  0 )
142141oveq2d 6321 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( 1  x.  ( abs `  ( F `  r )
) )  =  ( 1  x.  0 ) )
143 ax-1cn 9604 . . . . . . . . . . . . . 14  |-  1  e.  CC
144143mul01i 9830 . . . . . . . . . . . . 13  |-  ( 1  x.  0 )  =  0
145142, 144syl6eq 2479 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( 1  x.  ( abs `  ( F `  r )
) )  =  0 )
146124adantr 466 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( A  -  r )  e.  CC )
147146absge0d 13505 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  0  <_  ( abs `  ( A  -  r ) ) )
148145, 147eqbrtrd 4444 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( 1  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) )
149 oveq1 6312 . . . . . . . . . . . 12  |-  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  1  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  x.  ( abs `  ( F `  r )
) )  =  ( 1  x.  ( abs `  ( F `  r
) ) ) )
150149breq1d 4433 . . . . . . . . . . 11  |-  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  1  ->  (
( if ( a  =  0 ,  1 ,  ( 1  / 
( abs `  a
) ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) )  <->  ( 1  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) ) )
151148, 150syl5ibrcom 225 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  1  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) ) )
152151expimpd 606 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( ( a  =  0  /\  if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  1 )  -> 
( if ( a  =  0 ,  1 ,  ( 1  / 
( abs `  a
) ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) ) )
153136adantr 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =/=  0
)  ->  ( abs `  ( F `  r
) )  e.  RR )
154153recnd 9676 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =/=  0
)  ->  ( abs `  ( F `  r
) )  e.  CC )
155 simpllr 767 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =/=  0
)  ->  a  e.  RR )
156155recnd 9676 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =/=  0
)  ->  a  e.  CC )
157156, 111sylancom 671 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =/=  0
)  ->  ( abs `  a )  e.  RR+ )
158157rpcnne0d 11357 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =/=  0
)  ->  ( ( abs `  a )  e.  CC  /\  ( abs `  a )  =/=  0
) )
159 divrec2 10294 . . . . . . . . . . . . . . 15  |-  ( ( ( abs `  ( F `  r )
)  e.  CC  /\  ( abs `  a )  e.  CC  /\  ( abs `  a )  =/=  0 )  ->  (
( abs `  ( F `  r )
)  /  ( abs `  a ) )  =  ( ( 1  / 
( abs `  a
) )  x.  ( abs `  ( F `  r ) ) ) )
1601593expb 1206 . . . . . . . . . . . . . 14  |-  ( ( ( abs `  ( F `  r )
)  e.  CC  /\  ( ( abs `  a
)  e.  CC  /\  ( abs `  a )  =/=  0 ) )  ->  ( ( abs `  ( F `  r
) )  /  ( abs `  a ) )  =  ( ( 1  /  ( abs `  a
) )  x.  ( abs `  ( F `  r ) ) ) )
161154, 158, 160syl2anc 665 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =/=  0
)  ->  ( ( abs `  ( F `  r ) )  / 
( abs `  a
) )  =  ( ( 1  /  ( abs `  a ) )  x.  ( abs `  ( F `  r )
) ) )
162 simplr 760 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  a  e.  RR )
163162, 125remulcld 9678 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( a  x.  ( abs `  ( A  -  r )
) )  e.  RR )
164162recnd 9676 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  a  e.  CC )
165164abscld 13497 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( abs `  a
)  e.  RR )
166165, 125remulcld 9678 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( ( abs `  a )  x.  ( abs `  ( A  -  r ) ) )  e.  RR )
167 simprr 764 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) )
168124absge0d 13505 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  0  <_  ( abs `  ( A  -  r ) ) )
169 leabs 13362 . . . . . . . . . . . . . . . . . 18  |-  ( a  e.  RR  ->  a  <_  ( abs `  a
) )
170169ad2antlr 731 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  a  <_  ( abs `  a ) )
171162, 165, 125, 168, 170lemul1ad 10553 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( a  x.  ( abs `  ( A  -  r )
) )  <_  (
( abs `  a
)  x.  ( abs `  ( A  -  r
) ) ) )
172136, 163, 166, 167, 171letrd 9799 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( abs `  ( F `  r )
)  <_  ( ( abs `  a )  x.  ( abs `  ( A  -  r )
) ) )
173172adantr 466 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =/=  0
)  ->  ( abs `  ( F `  r
) )  <_  (
( abs `  a
)  x.  ( abs `  ( A  -  r
) ) ) )
174125adantr 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =/=  0
)  ->  ( abs `  ( A  -  r
) )  e.  RR )
175153, 174, 157ledivmuld 11398 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =/=  0
)  ->  ( (
( abs `  ( F `  r )
)  /  ( abs `  a ) )  <_ 
( abs `  ( A  -  r )
)  <->  ( abs `  ( F `  r )
)  <_  ( ( abs `  a )  x.  ( abs `  ( A  -  r )
) ) ) )
176173, 175mpbird 235 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =/=  0
)  ->  ( ( abs `  ( F `  r ) )  / 
( abs `  a
) )  <_  ( abs `  ( A  -  r ) ) )
177161, 176eqbrtrrd 4446 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =/=  0
)  ->  ( (
1  /  ( abs `  a ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) )
178109, 177sylan2br 478 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  -.  a  =  0 )  ->  (
( 1  /  ( abs `  a ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) )
179 oveq1 6312 . . . . . . . . . . . 12  |-  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  ( 1  / 
( abs `  a
) )  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  x.  ( abs `  ( F `  r )
) )  =  ( ( 1  /  ( abs `  a ) )  x.  ( abs `  ( F `  r )
) ) )
180179breq1d 4433 . . . . . . . . . . 11  |-  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  ( 1  / 
( abs `  a
) )  ->  (
( if ( a  =  0 ,  1 ,  ( 1  / 
( abs `  a
) ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) )  <->  ( (
1  /  ( abs `  a ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) ) )
181178, 180syl5ibrcom 225 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  -.  a  =  0 )  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  ( 1  / 
( abs `  a
) )  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) ) )
182181expimpd 606 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( ( -.  a  =  0  /\  if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  ( 1  /  ( abs `  a
) ) )  -> 
( if ( a  =  0 ,  1 ,  ( 1  / 
( abs `  a
) ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) ) )
183152, 182jaod 381 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( ( ( a  =  0  /\  if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  1 )  \/  ( -.  a  =  0  /\  if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  ( 1  / 
( abs `  a
) ) ) )  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a
) ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) ) )
184117, 183mpi 20 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a
) ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) )
185184expr 618 . . . . . 6  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR )  ->  (
( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) )  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) ) )
186185imim2d 54 . . . . 5  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR )  ->  (
( ( abs `  ( A  -  r )
)  <_  1  ->  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) )  -> 
( ( abs `  ( A  -  r )
)  <_  1  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  x.  ( abs `  ( F `  r
) ) )  <_ 
( abs `  ( A  -  r )
) ) ) )
187186ralimdva 2830 . . . 4  |-  ( (
ph  /\  a  e.  RR )  ->  ( A. r  e.  RR  (
( abs `  ( A  -  r )
)  <_  1  ->  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) )  ->  A. r  e.  RR  ( ( abs `  ( A  -  r )
)  <_  1  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  x.  ( abs `  ( F `  r
) ) )  <_ 
( abs `  ( A  -  r )
) ) ) )
188 oveq1 6312 . . . . . . . 8  |-  ( x  =  if ( a  =  0 ,  1 ,  ( 1  / 
( abs `  a
) ) )  -> 
( x  x.  ( abs `  ( F `  r ) ) )  =  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a
) ) )  x.  ( abs `  ( F `  r )
) ) )
189188breq1d 4433 . . . . . . 7  |-  ( x  =  if ( a  =  0 ,  1 ,  ( 1  / 
( abs `  a
) ) )  -> 
( ( x  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) )  <->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) ) )
190189imbi2d 317 . . . . . 6  |-  ( x  =  if ( a  =  0 ,  1 ,  ( 1  / 
( abs `  a
) ) )  -> 
( ( ( abs `  ( A  -  r
) )  <_  1  ->  ( x  x.  ( abs `  ( F `  r ) ) )  <_  ( abs `  ( A  -  r )
) )  <->  ( ( abs `  ( A  -  r ) )  <_ 
1  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) ) ) )
191190ralbidv 2861 . . . . 5  |-  ( x  =  if ( a  =  0 ,  1 ,  ( 1  / 
( abs `  a
) ) )  -> 
( A. r  e.  RR  ( ( abs `  ( A  -  r
) )  <_  1  ->  ( x  x.  ( abs `  ( F `  r ) ) )  <_  ( abs `  ( A  -  r )
) )  <->  A. r  e.  RR  ( ( abs `  ( A  -  r
) )  <_  1  ->  ( if ( a  =  0 ,  1 ,  ( 1  / 
( abs `  a
) ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) ) ) )
192191rspcev 3182 . . . 4  |-  ( ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  e.  RR+  /\  A. r  e.  RR  (
( abs `  ( A  -  r )
)  <_  1  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  x.  ( abs `  ( F `  r
) ) )  <_ 
( abs `  ( A  -  r )
) ) )  ->  E. x  e.  RR+  A. r  e.  RR  ( ( abs `  ( A  -  r
) )  <_  1  ->  ( x  x.  ( abs `  ( F `  r ) ) )  <_  ( abs `  ( A  -  r )
) ) )
193114, 187, 192syl6an 547 . . 3  |-  ( (
ph  /\  a  e.  RR )  ->  ( A. r  e.  RR  (
( abs `  ( A  -  r )
)  <_  1  ->  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) )  ->  E. x  e.  RR+  A. r  e.  RR  ( ( abs `  ( A  -  r
) )  <_  1  ->  ( x  x.  ( abs `  ( F `  r ) ) )  <_  ( abs `  ( A  -  r )
) ) ) )
194193rexlimdva 2914 . 2  |-  ( ph  ->  ( E. a  e.  RR  A. r  e.  RR  ( ( abs `  ( A  -  r
) )  <_  1  ->  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) )  ->  E. x  e.  RR+  A. r  e.  RR  ( ( abs `  ( A  -  r
) )  <_  1  ->  ( x  x.  ( abs `  ( F `  r ) ) )  <_  ( abs `  ( A  -  r )
) ) ) )
195104, 194mpd 15 1  |-  ( ph  ->  E. x  e.  RR+  A. r  e.  RR  (
( abs `  ( A  -  r )
)  <_  1  ->  ( x  x.  ( abs `  ( F `  r
) ) )  <_ 
( abs `  ( A  -  r )
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872    =/= wne 2614   A.wral 2771   E.wrex 2772    C_ wss 3436   ifcif 3911   {cpr 4000   |^|cint 4255   class class class wbr 4423   dom cdm 4853   ran crn 4854    |` cres 4855   "cima 4856    Fn wfn 5596   -->wf 5597   ` cfv 5601  (class class class)co 6305   CCcc 9544   RRcr 9545   0cc0 9546   1c1 9547    + caddc 9549    x. cmul 9551    <_ cle 9683    - cmin 9867    / cdiv 10276   NNcn 10616   NN0cn0 10876   ZZcz 10944   RR+crp 11309   [,]cicc 11645   abscabs 13297   C^nccpn 22818  Polycply 23136  degcdgr 23139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597  ax-inf2 8155  ax-cnex 9602  ax-resscn 9603  ax-1cn 9604  ax-icn 9605  ax-addcl 9606  ax-addrcl 9607  ax-mulcl 9608  ax-mulrcl 9609  ax-mulcom 9610  ax-addass 9611  ax-mulass 9612  ax-distr 9613  ax-i2m1 9614  ax-1ne0 9615  ax-1rid 9616  ax-rnegex 9617  ax-rrecex 9618  ax-cnre 9619  ax-pre-lttri 9620  ax-pre-lttrn 9621  ax-pre-ltadd 9622  ax-pre-mulgt0 9623  ax-pre-sup 9624  ax-addf 9625  ax-mulf 9626
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-nel 2617  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-int 4256  df-iun 4301  df-iin 4302  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-se 4813  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-om 6707  df-1st 6807  df-2nd 6808  df-supp 6926  df-wrecs 7039  df-recs 7101  df-rdg 7139  df-1o 7193  df-2o 7194  df-oadd 7197  df-er 7374  df-map 7485  df-pm 7486  df-ixp 7534  df-en 7581  df-dom 7582  df-sdom 7583  df-fin 7584  df-fsupp 7893  df-fi 7934  df-sup 7965  df-inf 7966  df-oi 8034  df-card 8381  df-cda 8605  df-pnf 9684  df-mnf 9685  df-xr 9686  df-ltxr 9687  df-le 9688  df-sub 9869  df-neg 9870  df-div 10277  df-nn 10617  df-2 10675  df-3 10676  df-4 10677  df-5 10678  df-6 10679  df-7 10680  df-8 10681  df-9 10682  df-10 10683  df-n0 10877  df-z 10945  df-dec 11059  df-uz 11167  df-q 11272  df-rp 11310  df-xneg 11416  df-xadd 11417  df-xmul 11418  df-ioo 11646  df-ico 11648  df-icc 11649  df-fz 11792  df-fzo 11923  df-fl 12034  df-seq 12220  df-exp 12279  df-hash 12522  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-clim 13551  df-rlim 13552  df-sum 13752  df-struct 15122  df-ndx 15123  df-slot 15124  df-base 15125  df-sets 15126  df-ress 15127  df-plusg 15202  df-mulr 15203  df-starv 15204  df-sca 15205  df-vsca 15206  df-ip 15207  df-tset 15208  df-ple 15209  df-ds 15211  df-unif 15212  df-hom 15213  df-cco 15214  df-rest 15320  df-topn 15321  df-0g 15339  df-gsum 15340  df-topgen 15341  df-pt 15342  df-prds 15345  df-xrs 15399  df-qtop 15405  df-imas 15406  df-xps 15409  df-mre 15491  df-mrc 15492  df-acs 15494  df-mgm 16487  df-sgrp 16526  df-mnd 16536  df-submnd 16582  df-grp 16672  df-minusg 16673  df-mulg 16675  df-subg 16813  df-cntz 16970  df-cmn 17431  df-mgp 17723  df-ur 17735  df-ring 17781  df-cring 17782  df-subrg 18005  df-psmet 18961  df-xmet 18962  df-met 18963  df-bl 18964  df-mopn 18965  df-fbas 18966  df-fg 18967  df-cnfld 18970  df-top 19919  df-bases 19920  df-topon 19921  df-topsp 19922  df-cld 20032  df-ntr 20033  df-cls 20034  df-nei 20112  df-lp 20150  df-perf 20151  df-cn 20241  df-cnp 20242  df-haus 20329  df-cmp 20400  df-tx 20575  df-hmeo 20768  df-fil 20859  df-fm 20951  df-flim 20952  df-flf 20953  df-xms 21333  df-ms 21334  df-tms 21335  df-cncf 21908  df-0p 22626  df-limc 22819  df-dv 22820  df-dvn 22821  df-cpn 22822  df-ply 23140  df-coe 23142  df-dgr 23143
This theorem is referenced by:  aalioulem4  23289
  Copyright terms: Public domain W3C validator