MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aalioulem3 Structured version   Unicode version

Theorem aalioulem3 22480
Description: Lemma for aaliou 22484. (Contributed by Stefan O'Rear, 15-Nov-2014.)
Hypotheses
Ref Expression
aalioulem2.a  |-  N  =  (deg `  F )
aalioulem2.b  |-  ( ph  ->  F  e.  (Poly `  ZZ ) )
aalioulem2.c  |-  ( ph  ->  N  e.  NN )
aalioulem2.d  |-  ( ph  ->  A  e.  RR )
aalioulem3.e  |-  ( ph  ->  ( F `  A
)  =  0 )
Assertion
Ref Expression
aalioulem3  |-  ( ph  ->  E. x  e.  RR+  A. r  e.  RR  (
( abs `  ( A  -  r )
)  <_  1  ->  ( x  x.  ( abs `  ( F `  r
) ) )  <_ 
( abs `  ( A  -  r )
) ) )
Distinct variable groups:    ph, x, r   
x, A, r    x, F, r
Allowed substitution hints:    N( x, r)

Proof of Theorem aalioulem3
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aalioulem2.d . . . . 5  |-  ( ph  ->  A  e.  RR )
2 1re 9594 . . . . 5  |-  1  e.  RR
3 resubcl 9882 . . . . 5  |-  ( ( A  e.  RR  /\  1  e.  RR )  ->  ( A  -  1 )  e.  RR )
41, 2, 3sylancl 662 . . . 4  |-  ( ph  ->  ( A  -  1 )  e.  RR )
5 peano2re 9751 . . . . 5  |-  ( A  e.  RR  ->  ( A  +  1 )  e.  RR )
61, 5syl 16 . . . 4  |-  ( ph  ->  ( A  +  1 )  e.  RR )
7 reelprrecn 9583 . . . . 5  |-  RR  e.  { RR ,  CC }
8 ssid 3523 . . . . . . . . 9  |-  CC  C_  CC
9 fncpn 22087 . . . . . . . . 9  |-  ( CC  C_  CC  ->  ( C^n `  CC )  Fn 
NN0 )
108, 9ax-mp 5 . . . . . . . 8  |-  ( C^n `  CC )  Fn  NN0
11 1nn0 10810 . . . . . . . 8  |-  1  e.  NN0
12 fnfvelrn 6017 . . . . . . . 8  |-  ( ( ( C^n `  CC )  Fn  NN0  /\  1  e.  NN0 )  -> 
( ( C^n `
 CC ) ` 
1 )  e.  ran  ( C^n `  CC ) )
1310, 11, 12mp2an 672 . . . . . . 7  |-  ( ( C^n `  CC ) `  1 )  e.  ran  ( C^n `
 CC )
14 intss1 4297 . . . . . . 7  |-  ( ( ( C^n `  CC ) `  1 )  e.  ran  ( C^n `  CC )  ->  |^| ran  ( C^n `  CC ) 
C_  ( ( C^n `  CC ) `
 1 ) )
1513, 14ax-mp 5 . . . . . 6  |-  |^| ran  ( C^n `  CC )  C_  ( ( C^n `  CC ) `  1 )
16 aalioulem2.b . . . . . . 7  |-  ( ph  ->  F  e.  (Poly `  ZZ ) )
17 plycpn 22435 . . . . . . 7  |-  ( F  e.  (Poly `  ZZ )  ->  F  e.  |^| ran  ( C^n `  CC ) )
1816, 17syl 16 . . . . . 6  |-  ( ph  ->  F  e.  |^| ran  ( C^n `  CC ) )
1915, 18sseldi 3502 . . . . 5  |-  ( ph  ->  F  e.  ( ( C^n `  CC ) `  1 )
)
20 cpnres 22091 . . . . 5  |-  ( ( RR  e.  { RR ,  CC }  /\  F  e.  ( ( C^n `
 CC ) ` 
1 ) )  -> 
( F  |`  RR )  e.  ( ( C^n `  RR ) `
 1 ) )
217, 19, 20sylancr 663 . . . 4  |-  ( ph  ->  ( F  |`  RR )  e.  ( ( C^n `  RR ) `
 1 ) )
22 df-ima 5012 . . . . 5  |-  ( F
" RR )  =  ran  ( F  |`  RR )
23 zssre 10870 . . . . . . . . 9  |-  ZZ  C_  RR
24 ax-resscn 9548 . . . . . . . . 9  |-  RR  C_  CC
25 plyss 22347 . . . . . . . . 9  |-  ( ( ZZ  C_  RR  /\  RR  C_  CC )  ->  (Poly `  ZZ )  C_  (Poly `  RR ) )
2623, 24, 25mp2an 672 . . . . . . . 8  |-  (Poly `  ZZ )  C_  (Poly `  RR )
2726, 16sseldi 3502 . . . . . . 7  |-  ( ph  ->  F  e.  (Poly `  RR ) )
28 plyreres 22429 . . . . . . 7  |-  ( F  e.  (Poly `  RR )  ->  ( F  |`  RR ) : RR --> RR )
2927, 28syl 16 . . . . . 6  |-  ( ph  ->  ( F  |`  RR ) : RR --> RR )
30 frn 5736 . . . . . 6  |-  ( ( F  |`  RR ) : RR --> RR  ->  ran  ( F  |`  RR ) 
C_  RR )
3129, 30syl 16 . . . . 5  |-  ( ph  ->  ran  ( F  |`  RR )  C_  RR )
3222, 31syl5eqss 3548 . . . 4  |-  ( ph  ->  ( F " RR )  C_  RR )
33 iccssre 11605 . . . . . . 7  |-  ( ( ( A  -  1 )  e.  RR  /\  ( A  +  1
)  e.  RR )  ->  ( ( A  -  1 ) [,] ( A  +  1 ) )  C_  RR )
344, 6, 33syl2anc 661 . . . . . 6  |-  ( ph  ->  ( ( A  - 
1 ) [,] ( A  +  1 ) )  C_  RR )
3534, 24syl6ss 3516 . . . . 5  |-  ( ph  ->  ( ( A  - 
1 ) [,] ( A  +  1 ) )  C_  CC )
36 plyf 22346 . . . . . . 7  |-  ( F  e.  (Poly `  ZZ )  ->  F : CC --> CC )
3716, 36syl 16 . . . . . 6  |-  ( ph  ->  F : CC --> CC )
38 fdm 5734 . . . . . 6  |-  ( F : CC --> CC  ->  dom 
F  =  CC )
3937, 38syl 16 . . . . 5  |-  ( ph  ->  dom  F  =  CC )
4035, 39sseqtr4d 3541 . . . 4  |-  ( ph  ->  ( ( A  - 
1 ) [,] ( A  +  1 ) )  C_  dom  F )
414, 6, 21, 32, 40c1lip3 22151 . . 3  |-  ( ph  ->  E. a  e.  RR  A. b  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) ) A. c  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) ) ( abs `  ( ( F `  c )  -  ( F `  b ) ) )  <_  ( a  x.  ( abs `  (
c  -  b ) ) ) )
42 simp2 997 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  r  e.  RR )
4342recnd 9621 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  r  e.  CC )
441adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  a  e.  RR )  ->  A  e.  RR )
45443ad2ant1 1017 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  A  e.  RR )
4645recnd 9621 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  A  e.  CC )
4743, 46abssubd 13246 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( abs `  ( r  -  A
) )  =  ( abs `  ( A  -  r ) ) )
48 simp3 998 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( abs `  ( A  -  r
) )  <_  1
)
4947, 48eqbrtrd 4467 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( abs `  ( r  -  A
) )  <_  1
)
50 1red 9610 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  1  e.  RR )
51 elicc4abs 13114 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  1  e.  RR  /\  r  e.  RR )  ->  (
r  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) )  <->  ( abs `  ( r  -  A
) )  <_  1
) )
5245, 50, 42, 51syl3anc 1228 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( r  e.  ( ( A  - 
1 ) [,] ( A  +  1 ) )  <->  ( abs `  (
r  -  A ) )  <_  1 ) )
5349, 52mpbird 232 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  r  e.  ( ( A  - 
1 ) [,] ( A  +  1 ) ) )
541recnd 9621 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A  e.  CC )
5554subidd 9917 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  -  A
)  =  0 )
5655fveq2d 5869 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( abs `  ( A  -  A )
)  =  ( abs `  0 ) )
57 abs0 13080 . . . . . . . . . . . . . . 15  |-  ( abs `  0 )  =  0
58 0le1 10075 . . . . . . . . . . . . . . 15  |-  0  <_  1
5957, 58eqbrtri 4466 . . . . . . . . . . . . . 14  |-  ( abs `  0 )  <_ 
1
6056, 59syl6eqbr 4484 . . . . . . . . . . . . 13  |-  ( ph  ->  ( abs `  ( A  -  A )
)  <_  1 )
61 1red 9610 . . . . . . . . . . . . . 14  |-  ( ph  ->  1  e.  RR )
62 elicc4abs 13114 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  1  e.  RR  /\  A  e.  RR )  ->  ( A  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) )  <->  ( abs `  ( A  -  A
) )  <_  1
) )
631, 61, 1, 62syl3anc 1228 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  e.  ( ( A  -  1 ) [,] ( A  +  1 ) )  <-> 
( abs `  ( A  -  A )
)  <_  1 ) )
6460, 63mpbird 232 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) ) )
6564adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  RR )  ->  A  e.  ( ( A  - 
1 ) [,] ( A  +  1 ) ) )
66653ad2ant1 1017 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  A  e.  ( ( A  - 
1 ) [,] ( A  +  1 ) ) )
67 fveq2 5865 . . . . . . . . . . . . . 14  |-  ( b  =  r  ->  ( F `  b )  =  ( F `  r ) )
6867oveq2d 6299 . . . . . . . . . . . . 13  |-  ( b  =  r  ->  (
( F `  c
)  -  ( F `
 b ) )  =  ( ( F `
 c )  -  ( F `  r ) ) )
6968fveq2d 5869 . . . . . . . . . . . 12  |-  ( b  =  r  ->  ( abs `  ( ( F `
 c )  -  ( F `  b ) ) )  =  ( abs `  ( ( F `  c )  -  ( F `  r ) ) ) )
70 oveq2 6291 . . . . . . . . . . . . . 14  |-  ( b  =  r  ->  (
c  -  b )  =  ( c  -  r ) )
7170fveq2d 5869 . . . . . . . . . . . . 13  |-  ( b  =  r  ->  ( abs `  ( c  -  b ) )  =  ( abs `  (
c  -  r ) ) )
7271oveq2d 6299 . . . . . . . . . . . 12  |-  ( b  =  r  ->  (
a  x.  ( abs `  ( c  -  b
) ) )  =  ( a  x.  ( abs `  ( c  -  r ) ) ) )
7369, 72breq12d 4460 . . . . . . . . . . 11  |-  ( b  =  r  ->  (
( abs `  (
( F `  c
)  -  ( F `
 b ) ) )  <_  ( a  x.  ( abs `  (
c  -  b ) ) )  <->  ( abs `  ( ( F `  c )  -  ( F `  r )
) )  <_  (
a  x.  ( abs `  ( c  -  r
) ) ) ) )
74 fveq2 5865 . . . . . . . . . . . . . 14  |-  ( c  =  A  ->  ( F `  c )  =  ( F `  A ) )
7574oveq1d 6298 . . . . . . . . . . . . 13  |-  ( c  =  A  ->  (
( F `  c
)  -  ( F `
 r ) )  =  ( ( F `
 A )  -  ( F `  r ) ) )
7675fveq2d 5869 . . . . . . . . . . . 12  |-  ( c  =  A  ->  ( abs `  ( ( F `
 c )  -  ( F `  r ) ) )  =  ( abs `  ( ( F `  A )  -  ( F `  r ) ) ) )
77 oveq1 6290 . . . . . . . . . . . . . 14  |-  ( c  =  A  ->  (
c  -  r )  =  ( A  -  r ) )
7877fveq2d 5869 . . . . . . . . . . . . 13  |-  ( c  =  A  ->  ( abs `  ( c  -  r ) )  =  ( abs `  ( A  -  r )
) )
7978oveq2d 6299 . . . . . . . . . . . 12  |-  ( c  =  A  ->  (
a  x.  ( abs `  ( c  -  r
) ) )  =  ( a  x.  ( abs `  ( A  -  r ) ) ) )
8076, 79breq12d 4460 . . . . . . . . . . 11  |-  ( c  =  A  ->  (
( abs `  (
( F `  c
)  -  ( F `
 r ) ) )  <_  ( a  x.  ( abs `  (
c  -  r ) ) )  <->  ( abs `  ( ( F `  A )  -  ( F `  r )
) )  <_  (
a  x.  ( abs `  ( A  -  r
) ) ) ) )
8173, 80rspc2v 3223 . . . . . . . . . 10  |-  ( ( r  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) )  /\  A  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) ) )  ->  ( A. b  e.  ( ( A  - 
1 ) [,] ( A  +  1 ) ) A. c  e.  ( ( A  - 
1 ) [,] ( A  +  1 ) ) ( abs `  (
( F `  c
)  -  ( F `
 b ) ) )  <_  ( a  x.  ( abs `  (
c  -  b ) ) )  ->  ( abs `  ( ( F `
 A )  -  ( F `  r ) ) )  <_  (
a  x.  ( abs `  ( A  -  r
) ) ) ) )
8253, 66, 81syl2anc 661 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( A. b  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) ) A. c  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) ) ( abs `  ( ( F `  c )  -  ( F `  b ) ) )  <_  ( a  x.  ( abs `  (
c  -  b ) ) )  ->  ( abs `  ( ( F `
 A )  -  ( F `  r ) ) )  <_  (
a  x.  ( abs `  ( A  -  r
) ) ) ) )
83 simp1l 1020 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ph )
84 aalioulem3.e . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F `  A
)  =  0 )
8583, 84syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( F `  A )  =  0 )
86 0cn 9587 . . . . . . . . . . . . 13  |-  0  e.  CC
8785, 86syl6eqel 2563 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( F `  A )  e.  CC )
8837adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  a  e.  RR )  ->  F : CC
--> CC )
89883ad2ant1 1017 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  F : CC
--> CC )
9089, 43ffvelrnd 6021 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( F `  r )  e.  CC )
9187, 90abssubd 13246 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( abs `  ( ( F `  A )  -  ( F `  r )
) )  =  ( abs `  ( ( F `  r )  -  ( F `  A ) ) ) )
9285oveq2d 6299 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( ( F `  r )  -  ( F `  A ) )  =  ( ( F `  r )  -  0 ) )
9390subid1d 9918 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( ( F `  r )  -  0 )  =  ( F `  r
) )
9492, 93eqtrd 2508 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( ( F `  r )  -  ( F `  A ) )  =  ( F `  r
) )
9594fveq2d 5869 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( abs `  ( ( F `  r )  -  ( F `  A )
) )  =  ( abs `  ( F `
 r ) ) )
9691, 95eqtrd 2508 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( abs `  ( ( F `  A )  -  ( F `  r )
) )  =  ( abs `  ( F `
 r ) ) )
9796breq1d 4457 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( ( abs `  ( ( F `
 A )  -  ( F `  r ) ) )  <_  (
a  x.  ( abs `  ( A  -  r
) ) )  <->  ( abs `  ( F `  r
) )  <_  (
a  x.  ( abs `  ( A  -  r
) ) ) ) )
9882, 97sylibd 214 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( A. b  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) ) A. c  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) ) ( abs `  ( ( F `  c )  -  ( F `  b ) ) )  <_  ( a  x.  ( abs `  (
c  -  b ) ) )  ->  ( abs `  ( F `  r ) )  <_ 
( a  x.  ( abs `  ( A  -  r ) ) ) ) )
99983exp 1195 . . . . . . 7  |-  ( (
ph  /\  a  e.  RR )  ->  ( r  e.  RR  ->  (
( abs `  ( A  -  r )
)  <_  1  ->  ( A. b  e.  ( ( A  -  1 ) [,] ( A  +  1 ) ) A. c  e.  ( ( A  -  1 ) [,] ( A  +  1 ) ) ( abs `  (
( F `  c
)  -  ( F `
 b ) ) )  <_  ( a  x.  ( abs `  (
c  -  b ) ) )  ->  ( abs `  ( F `  r ) )  <_ 
( a  x.  ( abs `  ( A  -  r ) ) ) ) ) ) )
10099com34 83 . . . . . 6  |-  ( (
ph  /\  a  e.  RR )  ->  ( r  e.  RR  ->  ( A. b  e.  (
( A  -  1 ) [,] ( A  +  1 ) ) A. c  e.  ( ( A  -  1 ) [,] ( A  +  1 ) ) ( abs `  (
( F `  c
)  -  ( F `
 b ) ) )  <_  ( a  x.  ( abs `  (
c  -  b ) ) )  ->  (
( abs `  ( A  -  r )
)  <_  1  ->  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) ) ) )
101100com23 78 . . . . 5  |-  ( (
ph  /\  a  e.  RR )  ->  ( A. b  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) ) A. c  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) ) ( abs `  ( ( F `  c )  -  ( F `  b ) ) )  <_  ( a  x.  ( abs `  (
c  -  b ) ) )  ->  (
r  e.  RR  ->  ( ( abs `  ( A  -  r )
)  <_  1  ->  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) ) ) )
102101ralrimdv 2880 . . . 4  |-  ( (
ph  /\  a  e.  RR )  ->  ( A. b  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) ) A. c  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) ) ( abs `  ( ( F `  c )  -  ( F `  b ) ) )  <_  ( a  x.  ( abs `  (
c  -  b ) ) )  ->  A. r  e.  RR  ( ( abs `  ( A  -  r
) )  <_  1  ->  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) ) )
103102reximdva 2938 . . 3  |-  ( ph  ->  ( E. a  e.  RR  A. b  e.  ( ( A  - 
1 ) [,] ( A  +  1 ) ) A. c  e.  ( ( A  - 
1 ) [,] ( A  +  1 ) ) ( abs `  (
( F `  c
)  -  ( F `
 b ) ) )  <_  ( a  x.  ( abs `  (
c  -  b ) ) )  ->  E. a  e.  RR  A. r  e.  RR  ( ( abs `  ( A  -  r
) )  <_  1  ->  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) ) )
10441, 103mpd 15 . 2  |-  ( ph  ->  E. a  e.  RR  A. r  e.  RR  (
( abs `  ( A  -  r )
)  <_  1  ->  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )
105 1rp 11223 . . . . . 6  |-  1  e.  RR+
106105a1i 11 . . . . 5  |-  ( ( ( ph  /\  a  e.  RR )  /\  a  =  0 )  -> 
1  e.  RR+ )
107 recn 9581 . . . . . . . 8  |-  ( a  e.  RR  ->  a  e.  CC )
108107adantl 466 . . . . . . 7  |-  ( (
ph  /\  a  e.  RR )  ->  a  e.  CC )
109 df-ne 2664 . . . . . . . 8  |-  ( a  =/=  0  <->  -.  a  =  0 )
110109biimpri 206 . . . . . . 7  |-  ( -.  a  =  0  -> 
a  =/=  0 )
111 absrpcl 13083 . . . . . . 7  |-  ( ( a  e.  CC  /\  a  =/=  0 )  -> 
( abs `  a
)  e.  RR+ )
112108, 110, 111syl2an 477 . . . . . 6  |-  ( ( ( ph  /\  a  e.  RR )  /\  -.  a  =  0 )  ->  ( abs `  a
)  e.  RR+ )
113112rpreccld 11265 . . . . 5  |-  ( ( ( ph  /\  a  e.  RR )  /\  -.  a  =  0 )  ->  ( 1  / 
( abs `  a
) )  e.  RR+ )
114106, 113ifclda 3971 . . . 4  |-  ( (
ph  /\  a  e.  RR )  ->  if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a
) ) )  e.  RR+ )
115 eqid 2467 . . . . . . . . 9  |-  if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a
) ) )  =  if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )
116 eqif 3977 . . . . . . . . 9  |-  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  if ( a  =  0 ,  1 ,  ( 1  / 
( abs `  a
) ) )  <->  ( (
a  =  0  /\  if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  1 )  \/  ( -.  a  =  0  /\  if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  ( 1  / 
( abs `  a
) ) ) ) )
117115, 116mpbi 208 . . . . . . . 8  |-  ( ( a  =  0  /\  if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  1 )  \/  ( -.  a  =  0  /\  if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  ( 1  / 
( abs `  a
) ) ) )
118 simplrr 760 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( abs `  ( F `  r
) )  <_  (
a  x.  ( abs `  ( A  -  r
) ) ) )
119 oveq1 6290 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  0  ->  (
a  x.  ( abs `  ( A  -  r
) ) )  =  ( 0  x.  ( abs `  ( A  -  r ) ) ) )
120119adantl 466 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( a  x.  ( abs `  ( A  -  r )
) )  =  ( 0  x.  ( abs `  ( A  -  r
) ) ) )
1211ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  A  e.  RR )
122 simprl 755 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  r  e.  RR )
123121, 122resubcld 9986 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( A  -  r )  e.  RR )
124123recnd 9621 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( A  -  r )  e.  CC )
125124abscld 13229 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( abs `  ( A  -  r )
)  e.  RR )
126125recnd 9621 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( abs `  ( A  -  r )
)  e.  CC )
127126adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( abs `  ( A  -  r
) )  e.  CC )
128127mul02d 9776 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( 0  x.  ( abs `  ( A  -  r )
) )  =  0 )
129120, 128eqtrd 2508 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( a  x.  ( abs `  ( A  -  r )
) )  =  0 )
130118, 129breqtrd 4471 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( abs `  ( F `  r
) )  <_  0
)
13137ad2antrr 725 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  F : CC --> CC )
132122recnd 9621 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  r  e.  CC )
133131, 132ffvelrnd 6021 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( F `  r )  e.  CC )
134133adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( F `  r )  e.  CC )
135134absge0d 13237 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  0  <_  ( abs `  ( F `
 r ) ) )
136133abscld 13229 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( abs `  ( F `  r )
)  e.  RR )
137136adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( abs `  ( F `  r
) )  e.  RR )
138 0re 9595 . . . . . . . . . . . . . . . 16  |-  0  e.  RR
139 letri3 9669 . . . . . . . . . . . . . . . 16  |-  ( ( ( abs `  ( F `  r )
)  e.  RR  /\  0  e.  RR )  ->  ( ( abs `  ( F `  r )
)  =  0  <->  (
( abs `  ( F `  r )
)  <_  0  /\  0  <_  ( abs `  ( F `  r )
) ) ) )
140137, 138, 139sylancl 662 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( ( abs `  ( F `  r ) )  =  0  <->  ( ( abs `  ( F `  r
) )  <_  0  /\  0  <_  ( abs `  ( F `  r
) ) ) ) )
141130, 135, 140mpbir2and 920 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( abs `  ( F `  r
) )  =  0 )
142141oveq2d 6299 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( 1  x.  ( abs `  ( F `  r )
) )  =  ( 1  x.  0 ) )
143 ax-1cn 9549 . . . . . . . . . . . . . 14  |-  1  e.  CC
144143mul01i 9768 . . . . . . . . . . . . 13  |-  ( 1  x.  0 )  =  0
145142, 144syl6eq 2524 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( 1  x.  ( abs `  ( F `  r )
) )  =  0 )
146124adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( A  -  r )  e.  CC )
147146absge0d 13237 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  0  <_  ( abs `  ( A  -  r ) ) )
148145, 147eqbrtrd 4467 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( 1  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) )
149 oveq1 6290 . . . . . . . . . . . 12  |-  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  1  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  x.  ( abs `  ( F `  r )
) )  =  ( 1  x.  ( abs `  ( F `  r
) ) ) )
150149breq1d 4457 . . . . . . . . . . 11  |-  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  1  ->  (
( if ( a  =  0 ,  1 ,  ( 1  / 
( abs `  a
) ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) )  <->  ( 1  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) ) )
151148, 150syl5ibrcom 222 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  1  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) ) )
152151expimpd 603 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( ( a  =  0  /\  if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  1 )  -> 
( if ( a  =  0 ,  1 ,  ( 1  / 
( abs `  a
) ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) ) )
153136adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =/=  0
)  ->  ( abs `  ( F `  r
) )  e.  RR )
154153recnd 9621 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =/=  0
)  ->  ( abs `  ( F `  r
) )  e.  CC )
155 simpllr 758 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =/=  0
)  ->  a  e.  RR )
156155recnd 9621 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =/=  0
)  ->  a  e.  CC )
157156, 111sylancom 667 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =/=  0
)  ->  ( abs `  a )  e.  RR+ )
158157rpcnne0d 11264 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =/=  0
)  ->  ( ( abs `  a )  e.  CC  /\  ( abs `  a )  =/=  0
) )
159 divrec2 10223 . . . . . . . . . . . . . . 15  |-  ( ( ( abs `  ( F `  r )
)  e.  CC  /\  ( abs `  a )  e.  CC  /\  ( abs `  a )  =/=  0 )  ->  (
( abs `  ( F `  r )
)  /  ( abs `  a ) )  =  ( ( 1  / 
( abs `  a
) )  x.  ( abs `  ( F `  r ) ) ) )
1601593expb 1197 . . . . . . . . . . . . . 14  |-  ( ( ( abs `  ( F `  r )
)  e.  CC  /\  ( ( abs `  a
)  e.  CC  /\  ( abs `  a )  =/=  0 ) )  ->  ( ( abs `  ( F `  r
) )  /  ( abs `  a ) )  =  ( ( 1  /  ( abs `  a
) )  x.  ( abs `  ( F `  r ) ) ) )
161154, 158, 160syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =/=  0
)  ->  ( ( abs `  ( F `  r ) )  / 
( abs `  a
) )  =  ( ( 1  /  ( abs `  a ) )  x.  ( abs `  ( F `  r )
) ) )
162 simplr 754 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  a  e.  RR )
163162, 125remulcld 9623 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( a  x.  ( abs `  ( A  -  r )
) )  e.  RR )
164162recnd 9621 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  a  e.  CC )
165164abscld 13229 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( abs `  a
)  e.  RR )
166165, 125remulcld 9623 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( ( abs `  a )  x.  ( abs `  ( A  -  r ) ) )  e.  RR )
167 simprr 756 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) )
168124absge0d 13237 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  0  <_  ( abs `  ( A  -  r ) ) )
169 leabs 13094 . . . . . . . . . . . . . . . . . 18  |-  ( a  e.  RR  ->  a  <_  ( abs `  a
) )
170169ad2antlr 726 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  a  <_  ( abs `  a ) )
171162, 165, 125, 168, 170lemul1ad 10484 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( a  x.  ( abs `  ( A  -  r )
) )  <_  (
( abs `  a
)  x.  ( abs `  ( A  -  r
) ) ) )
172136, 163, 166, 167, 171letrd 9737 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( abs `  ( F `  r )
)  <_  ( ( abs `  a )  x.  ( abs `  ( A  -  r )
) ) )
173172adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =/=  0
)  ->  ( abs `  ( F `  r
) )  <_  (
( abs `  a
)  x.  ( abs `  ( A  -  r
) ) ) )
174125adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =/=  0
)  ->  ( abs `  ( A  -  r
) )  e.  RR )
175153, 174, 157ledivmuld 11304 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =/=  0
)  ->  ( (
( abs `  ( F `  r )
)  /  ( abs `  a ) )  <_ 
( abs `  ( A  -  r )
)  <->  ( abs `  ( F `  r )
)  <_  ( ( abs `  a )  x.  ( abs `  ( A  -  r )
) ) ) )
176173, 175mpbird 232 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =/=  0
)  ->  ( ( abs `  ( F `  r ) )  / 
( abs `  a
) )  <_  ( abs `  ( A  -  r ) ) )
177161, 176eqbrtrrd 4469 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =/=  0
)  ->  ( (
1  /  ( abs `  a ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) )
178109, 177sylan2br 476 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  -.  a  =  0 )  ->  (
( 1  /  ( abs `  a ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) )
179 oveq1 6290 . . . . . . . . . . . 12  |-  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  ( 1  / 
( abs `  a
) )  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  x.  ( abs `  ( F `  r )
) )  =  ( ( 1  /  ( abs `  a ) )  x.  ( abs `  ( F `  r )
) ) )
180179breq1d 4457 . . . . . . . . . . 11  |-  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  ( 1  / 
( abs `  a
) )  ->  (
( if ( a  =  0 ,  1 ,  ( 1  / 
( abs `  a
) ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) )  <->  ( (
1  /  ( abs `  a ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) ) )
181178, 180syl5ibrcom 222 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  -.  a  =  0 )  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  ( 1  / 
( abs `  a
) )  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) ) )
182181expimpd 603 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( ( -.  a  =  0  /\  if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  ( 1  /  ( abs `  a
) ) )  -> 
( if ( a  =  0 ,  1 ,  ( 1  / 
( abs `  a
) ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) ) )
183152, 182jaod 380 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( ( ( a  =  0  /\  if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  1 )  \/  ( -.  a  =  0  /\  if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  ( 1  / 
( abs `  a
) ) ) )  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a
) ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) ) )
184117, 183mpi 17 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a
) ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) )
185184expr 615 . . . . . 6  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR )  ->  (
( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) )  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) ) )
186185imim2d 52 . . . . 5  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR )  ->  (
( ( abs `  ( A  -  r )
)  <_  1  ->  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) )  -> 
( ( abs `  ( A  -  r )
)  <_  1  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  x.  ( abs `  ( F `  r
) ) )  <_ 
( abs `  ( A  -  r )
) ) ) )
187186ralimdva 2872 . . . 4  |-  ( (
ph  /\  a  e.  RR )  ->  ( A. r  e.  RR  (
( abs `  ( A  -  r )
)  <_  1  ->  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) )  ->  A. r  e.  RR  ( ( abs `  ( A  -  r )
)  <_  1  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  x.  ( abs `  ( F `  r
) ) )  <_ 
( abs `  ( A  -  r )
) ) ) )
188 oveq1 6290 . . . . . . . 8  |-  ( x  =  if ( a  =  0 ,  1 ,  ( 1  / 
( abs `  a
) ) )  -> 
( x  x.  ( abs `  ( F `  r ) ) )  =  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a
) ) )  x.  ( abs `  ( F `  r )
) ) )
189188breq1d 4457 . . . . . . 7  |-  ( x  =  if ( a  =  0 ,  1 ,  ( 1  / 
( abs `  a
) ) )  -> 
( ( x  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) )  <->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) ) )
190189imbi2d 316 . . . . . 6  |-  ( x  =  if ( a  =  0 ,  1 ,  ( 1  / 
( abs `  a
) ) )  -> 
( ( ( abs `  ( A  -  r
) )  <_  1  ->  ( x  x.  ( abs `  ( F `  r ) ) )  <_  ( abs `  ( A  -  r )
) )  <->  ( ( abs `  ( A  -  r ) )  <_ 
1  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) ) ) )
191190ralbidv 2903 . . . . 5  |-  ( x  =  if ( a  =  0 ,  1 ,  ( 1  / 
( abs `  a
) ) )  -> 
( A. r  e.  RR  ( ( abs `  ( A  -  r
) )  <_  1  ->  ( x  x.  ( abs `  ( F `  r ) ) )  <_  ( abs `  ( A  -  r )
) )  <->  A. r  e.  RR  ( ( abs `  ( A  -  r
) )  <_  1  ->  ( if ( a  =  0 ,  1 ,  ( 1  / 
( abs `  a
) ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) ) ) )
192191rspcev 3214 . . . 4  |-  ( ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  e.  RR+  /\  A. r  e.  RR  (
( abs `  ( A  -  r )
)  <_  1  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  x.  ( abs `  ( F `  r
) ) )  <_ 
( abs `  ( A  -  r )
) ) )  ->  E. x  e.  RR+  A. r  e.  RR  ( ( abs `  ( A  -  r
) )  <_  1  ->  ( x  x.  ( abs `  ( F `  r ) ) )  <_  ( abs `  ( A  -  r )
) ) )
193114, 187, 192syl6an 545 . . 3  |-  ( (
ph  /\  a  e.  RR )  ->  ( A. r  e.  RR  (
( abs `  ( A  -  r )
)  <_  1  ->  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) )  ->  E. x  e.  RR+  A. r  e.  RR  ( ( abs `  ( A  -  r
) )  <_  1  ->  ( x  x.  ( abs `  ( F `  r ) ) )  <_  ( abs `  ( A  -  r )
) ) ) )
194193rexlimdva 2955 . 2  |-  ( ph  ->  ( E. a  e.  RR  A. r  e.  RR  ( ( abs `  ( A  -  r
) )  <_  1  ->  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) )  ->  E. x  e.  RR+  A. r  e.  RR  ( ( abs `  ( A  -  r
) )  <_  1  ->  ( x  x.  ( abs `  ( F `  r ) ) )  <_  ( abs `  ( A  -  r )
) ) ) )
195104, 194mpd 15 1  |-  ( ph  ->  E. x  e.  RR+  A. r  e.  RR  (
( abs `  ( A  -  r )
)  <_  1  ->  ( x  x.  ( abs `  ( F `  r
) ) )  <_ 
( abs `  ( A  -  r )
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815    C_ wss 3476   ifcif 3939   {cpr 4029   |^|cint 4282   class class class wbr 4447   dom cdm 4999   ran crn 5000    |` cres 5001   "cima 5002    Fn wfn 5582   -->wf 5583   ` cfv 5587  (class class class)co 6283   CCcc 9489   RRcr 9490   0cc0 9491   1c1 9492    + caddc 9494    x. cmul 9496    <_ cle 9628    - cmin 9804    / cdiv 10205   NNcn 10535   NN0cn0 10794   ZZcz 10863   RR+crp 11219   [,]cicc 11531   abscabs 13029   C^nccpn 22020  Polycply 22332  degcdgr 22335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575  ax-inf2 8057  ax-cnex 9547  ax-resscn 9548  ax-1cn 9549  ax-icn 9550  ax-addcl 9551  ax-addrcl 9552  ax-mulcl 9553  ax-mulrcl 9554  ax-mulcom 9555  ax-addass 9556  ax-mulass 9557  ax-distr 9558  ax-i2m1 9559  ax-1ne0 9560  ax-1rid 9561  ax-rnegex 9562  ax-rrecex 9563  ax-cnre 9564  ax-pre-lttri 9565  ax-pre-lttrn 9566  ax-pre-ltadd 9567  ax-pre-mulgt0 9568  ax-pre-sup 9569  ax-addf 9570  ax-mulf 9571
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-isom 5596  df-riota 6244  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-of 6523  df-om 6680  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7829  df-fi 7870  df-sup 7900  df-oi 7934  df-card 8319  df-cda 8547  df-pnf 9629  df-mnf 9630  df-xr 9631  df-ltxr 9632  df-le 9633  df-sub 9806  df-neg 9807  df-div 10206  df-nn 10536  df-2 10593  df-3 10594  df-4 10595  df-5 10596  df-6 10597  df-7 10598  df-8 10599  df-9 10600  df-10 10601  df-n0 10795  df-z 10864  df-dec 10976  df-uz 11082  df-q 11182  df-rp 11220  df-xneg 11317  df-xadd 11318  df-xmul 11319  df-ioo 11532  df-ico 11534  df-icc 11535  df-fz 11672  df-fzo 11792  df-fl 11896  df-seq 12075  df-exp 12134  df-hash 12373  df-cj 12894  df-re 12895  df-im 12896  df-sqrt 13030  df-abs 13031  df-clim 13273  df-rlim 13274  df-sum 13471  df-struct 14491  df-ndx 14492  df-slot 14493  df-base 14494  df-sets 14495  df-ress 14496  df-plusg 14567  df-mulr 14568  df-starv 14569  df-sca 14570  df-vsca 14571  df-ip 14572  df-tset 14573  df-ple 14574  df-ds 14576  df-unif 14577  df-hom 14578  df-cco 14579  df-rest 14677  df-topn 14678  df-0g 14696  df-gsum 14697  df-topgen 14698  df-pt 14699  df-prds 14702  df-xrs 14756  df-qtop 14761  df-imas 14762  df-xps 14764  df-mre 14840  df-mrc 14841  df-acs 14843  df-mnd 15731  df-submnd 15784  df-grp 15864  df-minusg 15865  df-mulg 15867  df-subg 16000  df-cntz 16157  df-cmn 16603  df-mgp 16941  df-ur 16953  df-rng 16997  df-cring 16998  df-subrg 17222  df-psmet 18198  df-xmet 18199  df-met 18200  df-bl 18201  df-mopn 18202  df-fbas 18203  df-fg 18204  df-cnfld 18208  df-top 19182  df-bases 19184  df-topon 19185  df-topsp 19186  df-cld 19302  df-ntr 19303  df-cls 19304  df-nei 19381  df-lp 19419  df-perf 19420  df-cn 19510  df-cnp 19511  df-haus 19598  df-cmp 19669  df-tx 19814  df-hmeo 20007  df-fil 20098  df-fm 20190  df-flim 20191  df-flf 20192  df-xms 20574  df-ms 20575  df-tms 20576  df-cncf 21133  df-0p 21828  df-limc 22021  df-dv 22022  df-dvn 22023  df-cpn 22024  df-ply 22336  df-coe 22338  df-dgr 22339
This theorem is referenced by:  aalioulem4  22481
  Copyright terms: Public domain W3C validator