MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aalioulem3 Structured version   Unicode version

Theorem aalioulem3 21812
Description: Lemma for aaliou 21816. (Contributed by Stefan O'Rear, 15-Nov-2014.)
Hypotheses
Ref Expression
aalioulem2.a  |-  N  =  (deg `  F )
aalioulem2.b  |-  ( ph  ->  F  e.  (Poly `  ZZ ) )
aalioulem2.c  |-  ( ph  ->  N  e.  NN )
aalioulem2.d  |-  ( ph  ->  A  e.  RR )
aalioulem3.e  |-  ( ph  ->  ( F `  A
)  =  0 )
Assertion
Ref Expression
aalioulem3  |-  ( ph  ->  E. x  e.  RR+  A. r  e.  RR  (
( abs `  ( A  -  r )
)  <_  1  ->  ( x  x.  ( abs `  ( F `  r
) ) )  <_ 
( abs `  ( A  -  r )
) ) )
Distinct variable groups:    ph, x, r   
x, A, r    x, F, r
Allowed substitution hints:    N( x, r)

Proof of Theorem aalioulem3
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aalioulem2.d . . . . 5  |-  ( ph  ->  A  e.  RR )
2 1re 9397 . . . . 5  |-  1  e.  RR
3 resubcl 9685 . . . . 5  |-  ( ( A  e.  RR  /\  1  e.  RR )  ->  ( A  -  1 )  e.  RR )
41, 2, 3sylancl 662 . . . 4  |-  ( ph  ->  ( A  -  1 )  e.  RR )
5 peano2re 9554 . . . . 5  |-  ( A  e.  RR  ->  ( A  +  1 )  e.  RR )
61, 5syl 16 . . . 4  |-  ( ph  ->  ( A  +  1 )  e.  RR )
7 reelprrecn 9386 . . . . 5  |-  RR  e.  { RR ,  CC }
8 ssid 3387 . . . . . . . . 9  |-  CC  C_  CC
9 fncpn 21419 . . . . . . . . 9  |-  ( CC  C_  CC  ->  ( C^n `  CC )  Fn 
NN0 )
108, 9ax-mp 5 . . . . . . . 8  |-  ( C^n `  CC )  Fn  NN0
11 1nn0 10607 . . . . . . . 8  |-  1  e.  NN0
12 fnfvelrn 5852 . . . . . . . 8  |-  ( ( ( C^n `  CC )  Fn  NN0  /\  1  e.  NN0 )  -> 
( ( C^n `
 CC ) ` 
1 )  e.  ran  ( C^n `  CC ) )
1310, 11, 12mp2an 672 . . . . . . 7  |-  ( ( C^n `  CC ) `  1 )  e.  ran  ( C^n `
 CC )
14 intss1 4155 . . . . . . 7  |-  ( ( ( C^n `  CC ) `  1 )  e.  ran  ( C^n `  CC )  ->  |^| ran  ( C^n `  CC ) 
C_  ( ( C^n `  CC ) `
 1 ) )
1513, 14ax-mp 5 . . . . . 6  |-  |^| ran  ( C^n `  CC )  C_  ( ( C^n `  CC ) `  1 )
16 aalioulem2.b . . . . . . 7  |-  ( ph  ->  F  e.  (Poly `  ZZ ) )
17 plycpn 21767 . . . . . . 7  |-  ( F  e.  (Poly `  ZZ )  ->  F  e.  |^| ran  ( C^n `  CC ) )
1816, 17syl 16 . . . . . 6  |-  ( ph  ->  F  e.  |^| ran  ( C^n `  CC ) )
1915, 18sseldi 3366 . . . . 5  |-  ( ph  ->  F  e.  ( ( C^n `  CC ) `  1 )
)
20 cpnres 21423 . . . . 5  |-  ( ( RR  e.  { RR ,  CC }  /\  F  e.  ( ( C^n `
 CC ) ` 
1 ) )  -> 
( F  |`  RR )  e.  ( ( C^n `  RR ) `
 1 ) )
217, 19, 20sylancr 663 . . . 4  |-  ( ph  ->  ( F  |`  RR )  e.  ( ( C^n `  RR ) `
 1 ) )
22 df-ima 4865 . . . . 5  |-  ( F
" RR )  =  ran  ( F  |`  RR )
23 zssre 10665 . . . . . . . . 9  |-  ZZ  C_  RR
24 ax-resscn 9351 . . . . . . . . 9  |-  RR  C_  CC
25 plyss 21679 . . . . . . . . 9  |-  ( ( ZZ  C_  RR  /\  RR  C_  CC )  ->  (Poly `  ZZ )  C_  (Poly `  RR ) )
2623, 24, 25mp2an 672 . . . . . . . 8  |-  (Poly `  ZZ )  C_  (Poly `  RR )
2726, 16sseldi 3366 . . . . . . 7  |-  ( ph  ->  F  e.  (Poly `  RR ) )
28 plyreres 21761 . . . . . . 7  |-  ( F  e.  (Poly `  RR )  ->  ( F  |`  RR ) : RR --> RR )
2927, 28syl 16 . . . . . 6  |-  ( ph  ->  ( F  |`  RR ) : RR --> RR )
30 frn 5577 . . . . . 6  |-  ( ( F  |`  RR ) : RR --> RR  ->  ran  ( F  |`  RR ) 
C_  RR )
3129, 30syl 16 . . . . 5  |-  ( ph  ->  ran  ( F  |`  RR )  C_  RR )
3222, 31syl5eqss 3412 . . . 4  |-  ( ph  ->  ( F " RR )  C_  RR )
33 iccssre 11389 . . . . . . 7  |-  ( ( ( A  -  1 )  e.  RR  /\  ( A  +  1
)  e.  RR )  ->  ( ( A  -  1 ) [,] ( A  +  1 ) )  C_  RR )
344, 6, 33syl2anc 661 . . . . . 6  |-  ( ph  ->  ( ( A  - 
1 ) [,] ( A  +  1 ) )  C_  RR )
3534, 24syl6ss 3380 . . . . 5  |-  ( ph  ->  ( ( A  - 
1 ) [,] ( A  +  1 ) )  C_  CC )
36 plyf 21678 . . . . . . 7  |-  ( F  e.  (Poly `  ZZ )  ->  F : CC --> CC )
3716, 36syl 16 . . . . . 6  |-  ( ph  ->  F : CC --> CC )
38 fdm 5575 . . . . . 6  |-  ( F : CC --> CC  ->  dom 
F  =  CC )
3937, 38syl 16 . . . . 5  |-  ( ph  ->  dom  F  =  CC )
4035, 39sseqtr4d 3405 . . . 4  |-  ( ph  ->  ( ( A  - 
1 ) [,] ( A  +  1 ) )  C_  dom  F )
414, 6, 21, 32, 40c1lip3 21483 . . 3  |-  ( ph  ->  E. a  e.  RR  A. b  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) ) A. c  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) ) ( abs `  ( ( F `  c )  -  ( F `  b ) ) )  <_  ( a  x.  ( abs `  (
c  -  b ) ) ) )
42 simp2 989 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  r  e.  RR )
4342recnd 9424 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  r  e.  CC )
441adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  a  e.  RR )  ->  A  e.  RR )
45443ad2ant1 1009 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  A  e.  RR )
4645recnd 9424 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  A  e.  CC )
4743, 46abssubd 12951 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( abs `  ( r  -  A
) )  =  ( abs `  ( A  -  r ) ) )
48 simp3 990 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( abs `  ( A  -  r
) )  <_  1
)
4947, 48eqbrtrd 4324 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( abs `  ( r  -  A
) )  <_  1
)
50 1red 9413 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  1  e.  RR )
51 elicc4abs 12819 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  1  e.  RR  /\  r  e.  RR )  ->  (
r  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) )  <->  ( abs `  ( r  -  A
) )  <_  1
) )
5245, 50, 42, 51syl3anc 1218 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( r  e.  ( ( A  - 
1 ) [,] ( A  +  1 ) )  <->  ( abs `  (
r  -  A ) )  <_  1 ) )
5349, 52mpbird 232 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  r  e.  ( ( A  - 
1 ) [,] ( A  +  1 ) ) )
541recnd 9424 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A  e.  CC )
5554subidd 9719 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  -  A
)  =  0 )
5655fveq2d 5707 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( abs `  ( A  -  A )
)  =  ( abs `  0 ) )
57 abs0 12786 . . . . . . . . . . . . . . 15  |-  ( abs `  0 )  =  0
58 0le1 9875 . . . . . . . . . . . . . . 15  |-  0  <_  1
5957, 58eqbrtri 4323 . . . . . . . . . . . . . 14  |-  ( abs `  0 )  <_ 
1
6056, 59syl6eqbr 4341 . . . . . . . . . . . . 13  |-  ( ph  ->  ( abs `  ( A  -  A )
)  <_  1 )
61 1red 9413 . . . . . . . . . . . . . 14  |-  ( ph  ->  1  e.  RR )
62 elicc4abs 12819 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  1  e.  RR  /\  A  e.  RR )  ->  ( A  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) )  <->  ( abs `  ( A  -  A
) )  <_  1
) )
631, 61, 1, 62syl3anc 1218 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A  e.  ( ( A  -  1 ) [,] ( A  +  1 ) )  <-> 
( abs `  ( A  -  A )
)  <_  1 ) )
6460, 63mpbird 232 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) ) )
6564adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  RR )  ->  A  e.  ( ( A  - 
1 ) [,] ( A  +  1 ) ) )
66653ad2ant1 1009 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  A  e.  ( ( A  - 
1 ) [,] ( A  +  1 ) ) )
67 fveq2 5703 . . . . . . . . . . . . . 14  |-  ( b  =  r  ->  ( F `  b )  =  ( F `  r ) )
6867oveq2d 6119 . . . . . . . . . . . . 13  |-  ( b  =  r  ->  (
( F `  c
)  -  ( F `
 b ) )  =  ( ( F `
 c )  -  ( F `  r ) ) )
6968fveq2d 5707 . . . . . . . . . . . 12  |-  ( b  =  r  ->  ( abs `  ( ( F `
 c )  -  ( F `  b ) ) )  =  ( abs `  ( ( F `  c )  -  ( F `  r ) ) ) )
70 oveq2 6111 . . . . . . . . . . . . . 14  |-  ( b  =  r  ->  (
c  -  b )  =  ( c  -  r ) )
7170fveq2d 5707 . . . . . . . . . . . . 13  |-  ( b  =  r  ->  ( abs `  ( c  -  b ) )  =  ( abs `  (
c  -  r ) ) )
7271oveq2d 6119 . . . . . . . . . . . 12  |-  ( b  =  r  ->  (
a  x.  ( abs `  ( c  -  b
) ) )  =  ( a  x.  ( abs `  ( c  -  r ) ) ) )
7369, 72breq12d 4317 . . . . . . . . . . 11  |-  ( b  =  r  ->  (
( abs `  (
( F `  c
)  -  ( F `
 b ) ) )  <_  ( a  x.  ( abs `  (
c  -  b ) ) )  <->  ( abs `  ( ( F `  c )  -  ( F `  r )
) )  <_  (
a  x.  ( abs `  ( c  -  r
) ) ) ) )
74 fveq2 5703 . . . . . . . . . . . . . 14  |-  ( c  =  A  ->  ( F `  c )  =  ( F `  A ) )
7574oveq1d 6118 . . . . . . . . . . . . 13  |-  ( c  =  A  ->  (
( F `  c
)  -  ( F `
 r ) )  =  ( ( F `
 A )  -  ( F `  r ) ) )
7675fveq2d 5707 . . . . . . . . . . . 12  |-  ( c  =  A  ->  ( abs `  ( ( F `
 c )  -  ( F `  r ) ) )  =  ( abs `  ( ( F `  A )  -  ( F `  r ) ) ) )
77 oveq1 6110 . . . . . . . . . . . . . 14  |-  ( c  =  A  ->  (
c  -  r )  =  ( A  -  r ) )
7877fveq2d 5707 . . . . . . . . . . . . 13  |-  ( c  =  A  ->  ( abs `  ( c  -  r ) )  =  ( abs `  ( A  -  r )
) )
7978oveq2d 6119 . . . . . . . . . . . 12  |-  ( c  =  A  ->  (
a  x.  ( abs `  ( c  -  r
) ) )  =  ( a  x.  ( abs `  ( A  -  r ) ) ) )
8076, 79breq12d 4317 . . . . . . . . . . 11  |-  ( c  =  A  ->  (
( abs `  (
( F `  c
)  -  ( F `
 r ) ) )  <_  ( a  x.  ( abs `  (
c  -  r ) ) )  <->  ( abs `  ( ( F `  A )  -  ( F `  r )
) )  <_  (
a  x.  ( abs `  ( A  -  r
) ) ) ) )
8173, 80rspc2v 3091 . . . . . . . . . 10  |-  ( ( r  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) )  /\  A  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) ) )  ->  ( A. b  e.  ( ( A  - 
1 ) [,] ( A  +  1 ) ) A. c  e.  ( ( A  - 
1 ) [,] ( A  +  1 ) ) ( abs `  (
( F `  c
)  -  ( F `
 b ) ) )  <_  ( a  x.  ( abs `  (
c  -  b ) ) )  ->  ( abs `  ( ( F `
 A )  -  ( F `  r ) ) )  <_  (
a  x.  ( abs `  ( A  -  r
) ) ) ) )
8253, 66, 81syl2anc 661 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( A. b  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) ) A. c  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) ) ( abs `  ( ( F `  c )  -  ( F `  b ) ) )  <_  ( a  x.  ( abs `  (
c  -  b ) ) )  ->  ( abs `  ( ( F `
 A )  -  ( F `  r ) ) )  <_  (
a  x.  ( abs `  ( A  -  r
) ) ) ) )
83 simp1l 1012 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ph )
84 aalioulem3.e . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F `  A
)  =  0 )
8583, 84syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( F `  A )  =  0 )
86 0cn 9390 . . . . . . . . . . . . 13  |-  0  e.  CC
8785, 86syl6eqel 2531 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( F `  A )  e.  CC )
8837adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  a  e.  RR )  ->  F : CC
--> CC )
89883ad2ant1 1009 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  F : CC
--> CC )
9089, 43ffvelrnd 5856 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( F `  r )  e.  CC )
9187, 90abssubd 12951 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( abs `  ( ( F `  A )  -  ( F `  r )
) )  =  ( abs `  ( ( F `  r )  -  ( F `  A ) ) ) )
9285oveq2d 6119 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( ( F `  r )  -  ( F `  A ) )  =  ( ( F `  r )  -  0 ) )
9390subid1d 9720 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( ( F `  r )  -  0 )  =  ( F `  r
) )
9492, 93eqtrd 2475 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( ( F `  r )  -  ( F `  A ) )  =  ( F `  r
) )
9594fveq2d 5707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( abs `  ( ( F `  r )  -  ( F `  A )
) )  =  ( abs `  ( F `
 r ) ) )
9691, 95eqtrd 2475 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( abs `  ( ( F `  A )  -  ( F `  r )
) )  =  ( abs `  ( F `
 r ) ) )
9796breq1d 4314 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( ( abs `  ( ( F `
 A )  -  ( F `  r ) ) )  <_  (
a  x.  ( abs `  ( A  -  r
) ) )  <->  ( abs `  ( F `  r
) )  <_  (
a  x.  ( abs `  ( A  -  r
) ) ) ) )
9882, 97sylibd 214 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR  /\  ( abs `  ( A  -  r
) )  <_  1
)  ->  ( A. b  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) ) A. c  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) ) ( abs `  ( ( F `  c )  -  ( F `  b ) ) )  <_  ( a  x.  ( abs `  (
c  -  b ) ) )  ->  ( abs `  ( F `  r ) )  <_ 
( a  x.  ( abs `  ( A  -  r ) ) ) ) )
99983exp 1186 . . . . . . 7  |-  ( (
ph  /\  a  e.  RR )  ->  ( r  e.  RR  ->  (
( abs `  ( A  -  r )
)  <_  1  ->  ( A. b  e.  ( ( A  -  1 ) [,] ( A  +  1 ) ) A. c  e.  ( ( A  -  1 ) [,] ( A  +  1 ) ) ( abs `  (
( F `  c
)  -  ( F `
 b ) ) )  <_  ( a  x.  ( abs `  (
c  -  b ) ) )  ->  ( abs `  ( F `  r ) )  <_ 
( a  x.  ( abs `  ( A  -  r ) ) ) ) ) ) )
10099com34 83 . . . . . 6  |-  ( (
ph  /\  a  e.  RR )  ->  ( r  e.  RR  ->  ( A. b  e.  (
( A  -  1 ) [,] ( A  +  1 ) ) A. c  e.  ( ( A  -  1 ) [,] ( A  +  1 ) ) ( abs `  (
( F `  c
)  -  ( F `
 b ) ) )  <_  ( a  x.  ( abs `  (
c  -  b ) ) )  ->  (
( abs `  ( A  -  r )
)  <_  1  ->  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) ) ) )
101100com23 78 . . . . 5  |-  ( (
ph  /\  a  e.  RR )  ->  ( A. b  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) ) A. c  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) ) ( abs `  ( ( F `  c )  -  ( F `  b ) ) )  <_  ( a  x.  ( abs `  (
c  -  b ) ) )  ->  (
r  e.  RR  ->  ( ( abs `  ( A  -  r )
)  <_  1  ->  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) ) ) )
102101ralrimdv 2817 . . . 4  |-  ( (
ph  /\  a  e.  RR )  ->  ( A. b  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) ) A. c  e.  ( ( A  -  1 ) [,] ( A  + 
1 ) ) ( abs `  ( ( F `  c )  -  ( F `  b ) ) )  <_  ( a  x.  ( abs `  (
c  -  b ) ) )  ->  A. r  e.  RR  ( ( abs `  ( A  -  r
) )  <_  1  ->  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) ) )
103102reximdva 2840 . . 3  |-  ( ph  ->  ( E. a  e.  RR  A. b  e.  ( ( A  - 
1 ) [,] ( A  +  1 ) ) A. c  e.  ( ( A  - 
1 ) [,] ( A  +  1 ) ) ( abs `  (
( F `  c
)  -  ( F `
 b ) ) )  <_  ( a  x.  ( abs `  (
c  -  b ) ) )  ->  E. a  e.  RR  A. r  e.  RR  ( ( abs `  ( A  -  r
) )  <_  1  ->  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) ) )
10441, 103mpd 15 . 2  |-  ( ph  ->  E. a  e.  RR  A. r  e.  RR  (
( abs `  ( A  -  r )
)  <_  1  ->  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )
105 1rp 11007 . . . . . 6  |-  1  e.  RR+
106105a1i 11 . . . . 5  |-  ( ( ( ph  /\  a  e.  RR )  /\  a  =  0 )  -> 
1  e.  RR+ )
107 recn 9384 . . . . . . . 8  |-  ( a  e.  RR  ->  a  e.  CC )
108107adantl 466 . . . . . . 7  |-  ( (
ph  /\  a  e.  RR )  ->  a  e.  CC )
109 df-ne 2620 . . . . . . . 8  |-  ( a  =/=  0  <->  -.  a  =  0 )
110109biimpri 206 . . . . . . 7  |-  ( -.  a  =  0  -> 
a  =/=  0 )
111 absrpcl 12789 . . . . . . 7  |-  ( ( a  e.  CC  /\  a  =/=  0 )  -> 
( abs `  a
)  e.  RR+ )
112108, 110, 111syl2an 477 . . . . . 6  |-  ( ( ( ph  /\  a  e.  RR )  /\  -.  a  =  0 )  ->  ( abs `  a
)  e.  RR+ )
113112rpreccld 11049 . . . . 5  |-  ( ( ( ph  /\  a  e.  RR )  /\  -.  a  =  0 )  ->  ( 1  / 
( abs `  a
) )  e.  RR+ )
114106, 113ifclda 3833 . . . 4  |-  ( (
ph  /\  a  e.  RR )  ->  if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a
) ) )  e.  RR+ )
115 eqid 2443 . . . . . . . . 9  |-  if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a
) ) )  =  if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )
116 eqif 3839 . . . . . . . . 9  |-  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  if ( a  =  0 ,  1 ,  ( 1  / 
( abs `  a
) ) )  <->  ( (
a  =  0  /\  if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  1 )  \/  ( -.  a  =  0  /\  if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  ( 1  / 
( abs `  a
) ) ) ) )
117115, 116mpbi 208 . . . . . . . 8  |-  ( ( a  =  0  /\  if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  1 )  \/  ( -.  a  =  0  /\  if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  ( 1  / 
( abs `  a
) ) ) )
118 simplrr 760 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( abs `  ( F `  r
) )  <_  (
a  x.  ( abs `  ( A  -  r
) ) ) )
119 oveq1 6110 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  0  ->  (
a  x.  ( abs `  ( A  -  r
) ) )  =  ( 0  x.  ( abs `  ( A  -  r ) ) ) )
120119adantl 466 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( a  x.  ( abs `  ( A  -  r )
) )  =  ( 0  x.  ( abs `  ( A  -  r
) ) ) )
1211ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  A  e.  RR )
122 simprl 755 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  r  e.  RR )
123121, 122resubcld 9788 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( A  -  r )  e.  RR )
124123recnd 9424 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( A  -  r )  e.  CC )
125124abscld 12934 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( abs `  ( A  -  r )
)  e.  RR )
126125recnd 9424 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( abs `  ( A  -  r )
)  e.  CC )
127126adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( abs `  ( A  -  r
) )  e.  CC )
128127mul02d 9579 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( 0  x.  ( abs `  ( A  -  r )
) )  =  0 )
129120, 128eqtrd 2475 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( a  x.  ( abs `  ( A  -  r )
) )  =  0 )
130118, 129breqtrd 4328 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( abs `  ( F `  r
) )  <_  0
)
13137ad2antrr 725 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  F : CC --> CC )
132122recnd 9424 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  r  e.  CC )
133131, 132ffvelrnd 5856 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( F `  r )  e.  CC )
134133adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( F `  r )  e.  CC )
135134absge0d 12942 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  0  <_  ( abs `  ( F `
 r ) ) )
136133abscld 12934 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( abs `  ( F `  r )
)  e.  RR )
137136adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( abs `  ( F `  r
) )  e.  RR )
138 0re 9398 . . . . . . . . . . . . . . . 16  |-  0  e.  RR
139 letri3 9472 . . . . . . . . . . . . . . . 16  |-  ( ( ( abs `  ( F `  r )
)  e.  RR  /\  0  e.  RR )  ->  ( ( abs `  ( F `  r )
)  =  0  <->  (
( abs `  ( F `  r )
)  <_  0  /\  0  <_  ( abs `  ( F `  r )
) ) ) )
140137, 138, 139sylancl 662 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( ( abs `  ( F `  r ) )  =  0  <->  ( ( abs `  ( F `  r
) )  <_  0  /\  0  <_  ( abs `  ( F `  r
) ) ) ) )
141130, 135, 140mpbir2and 913 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( abs `  ( F `  r
) )  =  0 )
142141oveq2d 6119 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( 1  x.  ( abs `  ( F `  r )
) )  =  ( 1  x.  0 ) )
143 ax-1cn 9352 . . . . . . . . . . . . . 14  |-  1  e.  CC
144143mul01i 9571 . . . . . . . . . . . . 13  |-  ( 1  x.  0 )  =  0
145142, 144syl6eq 2491 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( 1  x.  ( abs `  ( F `  r )
) )  =  0 )
146124adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( A  -  r )  e.  CC )
147146absge0d 12942 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  0  <_  ( abs `  ( A  -  r ) ) )
148145, 147eqbrtrd 4324 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( 1  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) )
149 oveq1 6110 . . . . . . . . . . . 12  |-  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  1  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  x.  ( abs `  ( F `  r )
) )  =  ( 1  x.  ( abs `  ( F `  r
) ) ) )
150149breq1d 4314 . . . . . . . . . . 11  |-  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  1  ->  (
( if ( a  =  0 ,  1 ,  ( 1  / 
( abs `  a
) ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) )  <->  ( 1  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) ) )
151148, 150syl5ibrcom 222 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =  0 )  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  1  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) ) )
152151expimpd 603 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( ( a  =  0  /\  if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  1 )  -> 
( if ( a  =  0 ,  1 ,  ( 1  / 
( abs `  a
) ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) ) )
153136adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =/=  0
)  ->  ( abs `  ( F `  r
) )  e.  RR )
154153recnd 9424 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =/=  0
)  ->  ( abs `  ( F `  r
) )  e.  CC )
155 simpllr 758 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =/=  0
)  ->  a  e.  RR )
156155recnd 9424 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =/=  0
)  ->  a  e.  CC )
157156, 111sylancom 667 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =/=  0
)  ->  ( abs `  a )  e.  RR+ )
158157rpcnne0d 11048 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =/=  0
)  ->  ( ( abs `  a )  e.  CC  /\  ( abs `  a )  =/=  0
) )
159 divrec2 10023 . . . . . . . . . . . . . . 15  |-  ( ( ( abs `  ( F `  r )
)  e.  CC  /\  ( abs `  a )  e.  CC  /\  ( abs `  a )  =/=  0 )  ->  (
( abs `  ( F `  r )
)  /  ( abs `  a ) )  =  ( ( 1  / 
( abs `  a
) )  x.  ( abs `  ( F `  r ) ) ) )
1601593expb 1188 . . . . . . . . . . . . . 14  |-  ( ( ( abs `  ( F `  r )
)  e.  CC  /\  ( ( abs `  a
)  e.  CC  /\  ( abs `  a )  =/=  0 ) )  ->  ( ( abs `  ( F `  r
) )  /  ( abs `  a ) )  =  ( ( 1  /  ( abs `  a
) )  x.  ( abs `  ( F `  r ) ) ) )
161154, 158, 160syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =/=  0
)  ->  ( ( abs `  ( F `  r ) )  / 
( abs `  a
) )  =  ( ( 1  /  ( abs `  a ) )  x.  ( abs `  ( F `  r )
) ) )
162 simplr 754 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  a  e.  RR )
163162, 125remulcld 9426 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( a  x.  ( abs `  ( A  -  r )
) )  e.  RR )
164162recnd 9424 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  a  e.  CC )
165164abscld 12934 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( abs `  a
)  e.  RR )
166165, 125remulcld 9426 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( ( abs `  a )  x.  ( abs `  ( A  -  r ) ) )  e.  RR )
167 simprr 756 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) )
168124absge0d 12942 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  0  <_  ( abs `  ( A  -  r ) ) )
169 leabs 12800 . . . . . . . . . . . . . . . . . 18  |-  ( a  e.  RR  ->  a  <_  ( abs `  a
) )
170169ad2antlr 726 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  a  <_  ( abs `  a ) )
171162, 165, 125, 168, 170lemul1ad 10284 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( a  x.  ( abs `  ( A  -  r )
) )  <_  (
( abs `  a
)  x.  ( abs `  ( A  -  r
) ) ) )
172136, 163, 166, 167, 171letrd 9540 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( abs `  ( F `  r )
)  <_  ( ( abs `  a )  x.  ( abs `  ( A  -  r )
) ) )
173172adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =/=  0
)  ->  ( abs `  ( F `  r
) )  <_  (
( abs `  a
)  x.  ( abs `  ( A  -  r
) ) ) )
174125adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =/=  0
)  ->  ( abs `  ( A  -  r
) )  e.  RR )
175153, 174, 157ledivmuld 11088 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =/=  0
)  ->  ( (
( abs `  ( F `  r )
)  /  ( abs `  a ) )  <_ 
( abs `  ( A  -  r )
)  <->  ( abs `  ( F `  r )
)  <_  ( ( abs `  a )  x.  ( abs `  ( A  -  r )
) ) ) )
176173, 175mpbird 232 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =/=  0
)  ->  ( ( abs `  ( F `  r ) )  / 
( abs `  a
) )  <_  ( abs `  ( A  -  r ) ) )
177161, 176eqbrtrrd 4326 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  a  =/=  0
)  ->  ( (
1  /  ( abs `  a ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) )
178109, 177sylan2br 476 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  -.  a  =  0 )  ->  (
( 1  /  ( abs `  a ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) )
179 oveq1 6110 . . . . . . . . . . . 12  |-  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  ( 1  / 
( abs `  a
) )  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  x.  ( abs `  ( F `  r )
) )  =  ( ( 1  /  ( abs `  a ) )  x.  ( abs `  ( F `  r )
) ) )
180179breq1d 4314 . . . . . . . . . . 11  |-  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  ( 1  / 
( abs `  a
) )  ->  (
( if ( a  =  0 ,  1 ,  ( 1  / 
( abs `  a
) ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) )  <->  ( (
1  /  ( abs `  a ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) ) )
181178, 180syl5ibrcom 222 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  a  e.  RR )  /\  ( r  e.  RR  /\  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  /\  -.  a  =  0 )  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  ( 1  / 
( abs `  a
) )  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) ) )
182181expimpd 603 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( ( -.  a  =  0  /\  if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  ( 1  /  ( abs `  a
) ) )  -> 
( if ( a  =  0 ,  1 ,  ( 1  / 
( abs `  a
) ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) ) )
183152, 182jaod 380 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( ( ( a  =  0  /\  if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  1 )  \/  ( -.  a  =  0  /\  if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  =  ( 1  / 
( abs `  a
) ) ) )  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a
) ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) ) )
184117, 183mpi 17 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  RR )  /\  (
r  e.  RR  /\  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) ) )  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a
) ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) )
185184expr 615 . . . . . 6  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR )  ->  (
( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) )  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) ) )
186185imim2d 52 . . . . 5  |-  ( ( ( ph  /\  a  e.  RR )  /\  r  e.  RR )  ->  (
( ( abs `  ( A  -  r )
)  <_  1  ->  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) )  -> 
( ( abs `  ( A  -  r )
)  <_  1  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  x.  ( abs `  ( F `  r
) ) )  <_ 
( abs `  ( A  -  r )
) ) ) )
187186ralimdva 2806 . . . 4  |-  ( (
ph  /\  a  e.  RR )  ->  ( A. r  e.  RR  (
( abs `  ( A  -  r )
)  <_  1  ->  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) )  ->  A. r  e.  RR  ( ( abs `  ( A  -  r )
)  <_  1  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  x.  ( abs `  ( F `  r
) ) )  <_ 
( abs `  ( A  -  r )
) ) ) )
188 oveq1 6110 . . . . . . . 8  |-  ( x  =  if ( a  =  0 ,  1 ,  ( 1  / 
( abs `  a
) ) )  -> 
( x  x.  ( abs `  ( F `  r ) ) )  =  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a
) ) )  x.  ( abs `  ( F `  r )
) ) )
189188breq1d 4314 . . . . . . 7  |-  ( x  =  if ( a  =  0 ,  1 ,  ( 1  / 
( abs `  a
) ) )  -> 
( ( x  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) )  <->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) ) )
190189imbi2d 316 . . . . . 6  |-  ( x  =  if ( a  =  0 ,  1 ,  ( 1  / 
( abs `  a
) ) )  -> 
( ( ( abs `  ( A  -  r
) )  <_  1  ->  ( x  x.  ( abs `  ( F `  r ) ) )  <_  ( abs `  ( A  -  r )
) )  <->  ( ( abs `  ( A  -  r ) )  <_ 
1  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) ) ) )
191190ralbidv 2747 . . . . 5  |-  ( x  =  if ( a  =  0 ,  1 ,  ( 1  / 
( abs `  a
) ) )  -> 
( A. r  e.  RR  ( ( abs `  ( A  -  r
) )  <_  1  ->  ( x  x.  ( abs `  ( F `  r ) ) )  <_  ( abs `  ( A  -  r )
) )  <->  A. r  e.  RR  ( ( abs `  ( A  -  r
) )  <_  1  ->  ( if ( a  =  0 ,  1 ,  ( 1  / 
( abs `  a
) ) )  x.  ( abs `  ( F `  r )
) )  <_  ( abs `  ( A  -  r ) ) ) ) )
192191rspcev 3085 . . . 4  |-  ( ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  e.  RR+  /\  A. r  e.  RR  (
( abs `  ( A  -  r )
)  <_  1  ->  ( if ( a  =  0 ,  1 ,  ( 1  /  ( abs `  a ) ) )  x.  ( abs `  ( F `  r
) ) )  <_ 
( abs `  ( A  -  r )
) ) )  ->  E. x  e.  RR+  A. r  e.  RR  ( ( abs `  ( A  -  r
) )  <_  1  ->  ( x  x.  ( abs `  ( F `  r ) ) )  <_  ( abs `  ( A  -  r )
) ) )
193114, 187, 192syl6an 545 . . 3  |-  ( (
ph  /\  a  e.  RR )  ->  ( A. r  e.  RR  (
( abs `  ( A  -  r )
)  <_  1  ->  ( abs `  ( F `
 r ) )  <_  ( a  x.  ( abs `  ( A  -  r )
) ) )  ->  E. x  e.  RR+  A. r  e.  RR  ( ( abs `  ( A  -  r
) )  <_  1  ->  ( x  x.  ( abs `  ( F `  r ) ) )  <_  ( abs `  ( A  -  r )
) ) ) )
194193rexlimdva 2853 . 2  |-  ( ph  ->  ( E. a  e.  RR  A. r  e.  RR  ( ( abs `  ( A  -  r
) )  <_  1  ->  ( abs `  ( F `  r )
)  <_  ( a  x.  ( abs `  ( A  -  r )
) ) )  ->  E. x  e.  RR+  A. r  e.  RR  ( ( abs `  ( A  -  r
) )  <_  1  ->  ( x  x.  ( abs `  ( F `  r ) ) )  <_  ( abs `  ( A  -  r )
) ) ) )
195104, 194mpd 15 1  |-  ( ph  ->  E. x  e.  RR+  A. r  e.  RR  (
( abs `  ( A  -  r )
)  <_  1  ->  ( x  x.  ( abs `  ( F `  r
) ) )  <_ 
( abs `  ( A  -  r )
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2618   A.wral 2727   E.wrex 2728    C_ wss 3340   ifcif 3803   {cpr 3891   |^|cint 4140   class class class wbr 4304   dom cdm 4852   ran crn 4853    |` cres 4854   "cima 4855    Fn wfn 5425   -->wf 5426   ` cfv 5430  (class class class)co 6103   CCcc 9292   RRcr 9293   0cc0 9294   1c1 9295    + caddc 9297    x. cmul 9299    <_ cle 9431    - cmin 9607    / cdiv 10005   NNcn 10334   NN0cn0 10591   ZZcz 10658   RR+crp 11003   [,]cicc 11315   abscabs 12735   C^nccpn 21352  Polycply 21664  degcdgr 21667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-inf2 7859  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371  ax-pre-sup 9372  ax-addf 9373  ax-mulf 9374
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-int 4141  df-iun 4185  df-iin 4186  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-se 4692  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-isom 5439  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-of 6332  df-om 6489  df-1st 6589  df-2nd 6590  df-supp 6703  df-recs 6844  df-rdg 6878  df-1o 6932  df-2o 6933  df-oadd 6936  df-er 7113  df-map 7228  df-pm 7229  df-ixp 7276  df-en 7323  df-dom 7324  df-sdom 7325  df-fin 7326  df-fsupp 7633  df-fi 7673  df-sup 7703  df-oi 7736  df-card 8121  df-cda 8349  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-div 10006  df-nn 10335  df-2 10392  df-3 10393  df-4 10394  df-5 10395  df-6 10396  df-7 10397  df-8 10398  df-9 10399  df-10 10400  df-n0 10592  df-z 10659  df-dec 10768  df-uz 10874  df-q 10966  df-rp 11004  df-xneg 11101  df-xadd 11102  df-xmul 11103  df-ioo 11316  df-ico 11318  df-icc 11319  df-fz 11450  df-fzo 11561  df-fl 11654  df-seq 11819  df-exp 11878  df-hash 12116  df-cj 12600  df-re 12601  df-im 12602  df-sqr 12736  df-abs 12737  df-clim 12978  df-rlim 12979  df-sum 13176  df-struct 14188  df-ndx 14189  df-slot 14190  df-base 14191  df-sets 14192  df-ress 14193  df-plusg 14263  df-mulr 14264  df-starv 14265  df-sca 14266  df-vsca 14267  df-ip 14268  df-tset 14269  df-ple 14270  df-ds 14272  df-unif 14273  df-hom 14274  df-cco 14275  df-rest 14373  df-topn 14374  df-0g 14392  df-gsum 14393  df-topgen 14394  df-pt 14395  df-prds 14398  df-xrs 14452  df-qtop 14457  df-imas 14458  df-xps 14460  df-mre 14536  df-mrc 14537  df-acs 14539  df-mnd 15427  df-submnd 15477  df-grp 15557  df-minusg 15558  df-mulg 15560  df-subg 15690  df-cntz 15847  df-cmn 16291  df-mgp 16604  df-ur 16616  df-rng 16659  df-cring 16660  df-subrg 16875  df-psmet 17821  df-xmet 17822  df-met 17823  df-bl 17824  df-mopn 17825  df-fbas 17826  df-fg 17827  df-cnfld 17831  df-top 18515  df-bases 18517  df-topon 18518  df-topsp 18519  df-cld 18635  df-ntr 18636  df-cls 18637  df-nei 18714  df-lp 18752  df-perf 18753  df-cn 18843  df-cnp 18844  df-haus 18931  df-cmp 19002  df-tx 19147  df-hmeo 19340  df-fil 19431  df-fm 19523  df-flim 19524  df-flf 19525  df-xms 19907  df-ms 19908  df-tms 19909  df-cncf 20466  df-0p 21160  df-limc 21353  df-dv 21354  df-dvn 21355  df-cpn 21356  df-ply 21668  df-coe 21670  df-dgr 21671
This theorem is referenced by:  aalioulem4  21813
  Copyright terms: Public domain W3C validator