MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aalioulem2 Structured version   Unicode version

Theorem aalioulem2 21758
Description: Lemma for aaliou 21763. (Contributed by Stefan O'Rear, 15-Nov-2014.)
Hypotheses
Ref Expression
aalioulem2.a  |-  N  =  (deg `  F )
aalioulem2.b  |-  ( ph  ->  F  e.  (Poly `  ZZ ) )
aalioulem2.c  |-  ( ph  ->  N  e.  NN )
aalioulem2.d  |-  ( ph  ->  A  e.  RR )
Assertion
Ref Expression
aalioulem2  |-  ( ph  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =  0  -> 
( A  =  ( p  /  q )  \/  ( x  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
Distinct variable groups:    ph, x, p, q    x, A, p, q    x, F, p, q
Allowed substitution hints:    N( x, q, p)

Proof of Theorem aalioulem2
Dummy variables  r 
a  b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1rp 10991 . . . . . . 7  |-  1  e.  RR+
2 snssi 4014 . . . . . . 7  |-  ( 1  e.  RR+  ->  { 1 }  C_  RR+ )
31, 2ax-mp 5 . . . . . 6  |-  { 1 }  C_  RR+
4 ssrab2 3434 . . . . . 6  |-  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) }  C_  RR+
53, 4unssi 3528 . . . . 5  |-  ( { 1 }  u.  {
a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  C_  RR+
6 gtso 9452 . . . . . . 7  |-  `'  <  Or  RR
76a1i 11 . . . . . 6  |-  ( ph  ->  `'  <  Or  RR )
8 snfi 7386 . . . . . . 7  |-  { 1 }  e.  Fin
9 aalioulem2.b . . . . . . . . . . 11  |-  ( ph  ->  F  e.  (Poly `  ZZ ) )
10 aalioulem2.c . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  NN )
1110nnne0d 10362 . . . . . . . . . . . . 13  |-  ( ph  ->  N  =/=  0 )
12 aalioulem2.a . . . . . . . . . . . . . 14  |-  N  =  (deg `  F )
1312eqcomi 2445 . . . . . . . . . . . . 13  |-  (deg `  F )  =  N
14 dgr0 21688 . . . . . . . . . . . . 13  |-  (deg ` 
0p )  =  0
1511, 13, 143netr4g 2635 . . . . . . . . . . . 12  |-  ( ph  ->  (deg `  F )  =/=  (deg `  0p
) )
16 fveq2 5688 . . . . . . . . . . . . 13  |-  ( F  =  0p  -> 
(deg `  F )  =  (deg `  0p
) )
1716necon3i 2648 . . . . . . . . . . . 12  |-  ( (deg
`  F )  =/=  (deg `  0p
)  ->  F  =/=  0p )
1815, 17syl 16 . . . . . . . . . . 11  |-  ( ph  ->  F  =/=  0p )
19 eqid 2441 . . . . . . . . . . . 12  |-  ( `' F " { 0 } )  =  ( `' F " { 0 } )
2019fta1 21733 . . . . . . . . . . 11  |-  ( ( F  e.  (Poly `  ZZ )  /\  F  =/=  0p )  -> 
( ( `' F " { 0 } )  e.  Fin  /\  ( # `
 ( `' F " { 0 } ) )  <_  (deg `  F
) ) )
219, 18, 20syl2anc 656 . . . . . . . . . 10  |-  ( ph  ->  ( ( `' F " { 0 } )  e.  Fin  /\  ( # `
 ( `' F " { 0 } ) )  <_  (deg `  F
) ) )
2221simpld 456 . . . . . . . . 9  |-  ( ph  ->  ( `' F " { 0 } )  e.  Fin )
23 abrexfi 7607 . . . . . . . . 9  |-  ( ( `' F " { 0 } )  e.  Fin  ->  { a  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) }  e.  Fin )
2422, 23syl 16 . . . . . . . 8  |-  ( ph  ->  { a  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) }  e.  Fin )
25 rabssab 3436 . . . . . . . 8  |-  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) }  C_  { a  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b )
) }
26 ssfi 7529 . . . . . . . 8  |-  ( ( { a  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) }  e.  Fin  /\  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) }  C_  { a  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b )
) } )  ->  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b )
) }  e.  Fin )
2724, 25, 26sylancl 657 . . . . . . 7  |-  ( ph  ->  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b )
) }  e.  Fin )
28 unfi 7575 . . . . . . 7  |-  ( ( { 1 }  e.  Fin  /\  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) }  e.  Fin )  ->  ( { 1 }  u.  {
a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  e.  Fin )
298, 27, 28sylancr 658 . . . . . 6  |-  ( ph  ->  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } )  e.  Fin )
30 1ex 9377 . . . . . . . . 9  |-  1  e.  _V
3130snid 3902 . . . . . . . 8  |-  1  e.  { 1 }
32 elun1 3520 . . . . . . . 8  |-  ( 1  e.  { 1 }  ->  1  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) )
33 ne0i 3640 . . . . . . . 8  |-  ( 1  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  ->  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  =/=  (/) )
3431, 32, 33mp2b 10 . . . . . . 7  |-  ( { 1 }  u.  {
a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  =/=  (/)
3534a1i 11 . . . . . 6  |-  ( ph  ->  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } )  =/=  (/) )
36 rpssre 10997 . . . . . . . 8  |-  RR+  C_  RR
375, 36sstri 3362 . . . . . . 7  |-  ( { 1 }  u.  {
a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  C_  RR
3837a1i 11 . . . . . 6  |-  ( ph  ->  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) 
C_  RR )
39 fisupcl 7713 . . . . . 6  |-  ( ( `'  <  Or  RR  /\  ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  e.  Fin  /\  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } )  =/=  (/)  /\  ( { 1 }  u.  {
a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  C_  RR ) )  ->  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) )
407, 29, 35, 38, 39syl13anc 1215 . . . . 5  |-  ( ph  ->  sup ( ( { 1 }  u.  {
a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) )
415, 40sseldi 3351 . . . 4  |-  ( ph  ->  sup ( ( { 1 }  u.  {
a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  e.  RR+ )
4237a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  C_  RR )
43 0re 9382 . . . . . . . . . . . 12  |-  0  e.  RR
44 rpge0 10999 . . . . . . . . . . . . 13  |-  ( d  e.  RR+  ->  0  <_ 
d )
4544rgen 2779 . . . . . . . . . . . 12  |-  A. d  e.  RR+  0  <_  d
46 breq1 4292 . . . . . . . . . . . . . 14  |-  ( c  =  0  ->  (
c  <_  d  <->  0  <_  d ) )
4746ralbidv 2733 . . . . . . . . . . . . 13  |-  ( c  =  0  ->  ( A. d  e.  RR+  c  <_  d  <->  A. d  e.  RR+  0  <_  d ) )
4847rspcev 3070 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  A. d  e.  RR+  0  <_  d )  ->  E. c  e.  RR  A. d  e.  RR+  c  <_  d )
4943, 45, 48mp2an 667 . . . . . . . . . . 11  |-  E. c  e.  RR  A. d  e.  RR+  c  <_  d
50 ssralv 3413 . . . . . . . . . . . . 13  |-  ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  C_  RR+  ->  ( A. d  e.  RR+  c  <_  d  ->  A. d  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) c  <_  d )
)
515, 50ax-mp 5 . . . . . . . . . . . 12  |-  ( A. d  e.  RR+  c  <_ 
d  ->  A. d  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) c  <_  d )
5251reximi 2821 . . . . . . . . . . 11  |-  ( E. c  e.  RR  A. d  e.  RR+  c  <_ 
d  ->  E. c  e.  RR  A. d  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) c  <_  d )
5349, 52ax-mp 5 . . . . . . . . . 10  |-  E. c  e.  RR  A. d  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) c  <_  d
5453a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  E. c  e.  RR  A. d  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) c  <_  d )
55 aalioulem2.d . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  RR )
5655ad2antrr 720 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  A  e.  RR )
57 simplr 749 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  r  e.  RR )
5856, 57resubcld 9772 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  ( A  -  r )  e.  RR )
5958recnd 9408 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  ( A  -  r )  e.  CC )
6055ad2antrr 720 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  r  e.  RR )  /\  ( F `  r )  =  0 )  ->  A  e.  RR )
6160recnd 9408 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR )  /\  ( F `  r )  =  0 )  ->  A  e.  CC )
62 simplr 749 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  r  e.  RR )  /\  ( F `  r )  =  0 )  -> 
r  e.  RR )
6362recnd 9408 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR )  /\  ( F `  r )  =  0 )  -> 
r  e.  CC )
6461, 63subeq0ad 9725 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR )  /\  ( F `  r )  =  0 )  -> 
( ( A  -  r )  =  0  <-> 
A  =  r ) )
6564necon3abid 2639 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR )  /\  ( F `  r )  =  0 )  -> 
( ( A  -  r )  =/=  0  <->  -.  A  =  r ) )
6665biimprd 223 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR )  /\  ( F `  r )  =  0 )  -> 
( -.  A  =  r  ->  ( A  -  r )  =/=  0 ) )
6766impr 616 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  ( A  -  r )  =/=  0 )
6859, 67absrpcld 12930 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  ( abs `  ( A  -  r ) )  e.  RR+ )
6957recnd 9408 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  r  e.  CC )
70 simprl 750 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  ( F `  r )  =  0 )
71 plyf 21625 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  (Poly `  ZZ )  ->  F : CC --> CC )
729, 71syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F : CC --> CC )
73 ffn 5556 . . . . . . . . . . . . . . . 16  |-  ( F : CC --> CC  ->  F  Fn  CC )
7472, 73syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  F  Fn  CC )
7574ad2antrr 720 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  F  Fn  CC )
76 fniniseg 5821 . . . . . . . . . . . . . 14  |-  ( F  Fn  CC  ->  (
r  e.  ( `' F " { 0 } )  <->  ( r  e.  CC  /\  ( F `
 r )  =  0 ) ) )
7775, 76syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  (
r  e.  ( `' F " { 0 } )  <->  ( r  e.  CC  /\  ( F `
 r )  =  0 ) ) )
7869, 70, 77mpbir2and 908 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  r  e.  ( `' F " { 0 } ) )
79 eqid 2441 . . . . . . . . . . . 12  |-  ( abs `  ( A  -  r
) )  =  ( abs `  ( A  -  r ) )
80 oveq2 6098 . . . . . . . . . . . . . . 15  |-  ( b  =  r  ->  ( A  -  b )  =  ( A  -  r ) )
8180fveq2d 5692 . . . . . . . . . . . . . 14  |-  ( b  =  r  ->  ( abs `  ( A  -  b ) )  =  ( abs `  ( A  -  r )
) )
8281eqeq2d 2452 . . . . . . . . . . . . 13  |-  ( b  =  r  ->  (
( abs `  ( A  -  r )
)  =  ( abs `  ( A  -  b
) )  <->  ( abs `  ( A  -  r
) )  =  ( abs `  ( A  -  r ) ) ) )
8382rspcev 3070 . . . . . . . . . . . 12  |-  ( ( r  e.  ( `' F " { 0 } )  /\  ( abs `  ( A  -  r ) )  =  ( abs `  ( A  -  r )
) )  ->  E. b  e.  ( `' F " { 0 } ) ( abs `  ( A  -  r )
)  =  ( abs `  ( A  -  b
) ) )
8478, 79, 83sylancl 657 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  E. b  e.  ( `' F " { 0 } ) ( abs `  ( A  -  r )
)  =  ( abs `  ( A  -  b
) ) )
85 eqeq1 2447 . . . . . . . . . . . . 13  |-  ( a  =  ( abs `  ( A  -  r )
)  ->  ( a  =  ( abs `  ( A  -  b )
)  <->  ( abs `  ( A  -  r )
)  =  ( abs `  ( A  -  b
) ) ) )
8685rexbidv 2734 . . . . . . . . . . . 12  |-  ( a  =  ( abs `  ( A  -  r )
)  ->  ( E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) )  <->  E. b  e.  ( `' F " { 0 } ) ( abs `  ( A  -  r
) )  =  ( abs `  ( A  -  b ) ) ) )
8786elrab 3114 . . . . . . . . . . 11  |-  ( ( abs `  ( A  -  r ) )  e.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) }  <->  ( ( abs `  ( A  -  r ) )  e.  RR+  /\  E. b  e.  ( `' F " { 0 } ) ( abs `  ( A  -  r )
)  =  ( abs `  ( A  -  b
) ) ) )
8868, 84, 87sylanbrc 659 . . . . . . . . . 10  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  ( abs `  ( A  -  r ) )  e. 
{ a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b )
) } )
89 elun2 3521 . . . . . . . . . 10  |-  ( ( abs `  ( A  -  r ) )  e.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) }  ->  ( abs `  ( A  -  r ) )  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) )
9088, 89syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  ( abs `  ( A  -  r ) )  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) )
91 infmrlb 10307 . . . . . . . . 9  |-  ( ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) 
C_  RR  /\  E. c  e.  RR  A. d  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) c  <_  d  /\  ( abs `  ( A  -  r ) )  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) )  ->  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  <_ 
( abs `  ( A  -  r )
) )
9242, 54, 90, 91syl3anc 1213 . . . . . . . 8  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  <_ 
( abs `  ( A  -  r )
) )
9392expr 612 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  RR )  /\  ( F `  r )  =  0 )  -> 
( -.  A  =  r  ->  sup (
( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) ,  RR ,  `'  <  )  <_  ( abs `  ( A  -  r
) ) ) )
9493orrd 378 . . . . . 6  |-  ( ( ( ph  /\  r  e.  RR )  /\  ( F `  r )  =  0 )  -> 
( A  =  r  \/  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  <_ 
( abs `  ( A  -  r )
) ) )
9594ex 434 . . . . 5  |-  ( (
ph  /\  r  e.  RR )  ->  ( ( F `  r )  =  0  ->  ( A  =  r  \/  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  <_ 
( abs `  ( A  -  r )
) ) ) )
9695ralrimiva 2797 . . . 4  |-  ( ph  ->  A. r  e.  RR  ( ( F `  r )  =  0  ->  ( A  =  r  \/  sup (
( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) ,  RR ,  `'  <  )  <_  ( abs `  ( A  -  r
) ) ) ) )
97 breq1 4292 . . . . . . . 8  |-  ( x  =  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  -> 
( x  <_  ( abs `  ( A  -  r ) )  <->  sup (
( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) ,  RR ,  `'  <  )  <_  ( abs `  ( A  -  r
) ) ) )
9897orbi2d 696 . . . . . . 7  |-  ( x  =  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  -> 
( ( A  =  r  \/  x  <_ 
( abs `  ( A  -  r )
) )  <->  ( A  =  r  \/  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  <_ 
( abs `  ( A  -  r )
) ) ) )
9998imbi2d 316 . . . . . 6  |-  ( x  =  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  -> 
( ( ( F `
 r )  =  0  ->  ( A  =  r  \/  x  <_  ( abs `  ( A  -  r )
) ) )  <->  ( ( F `  r )  =  0  ->  ( A  =  r  \/  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  <_ 
( abs `  ( A  -  r )
) ) ) ) )
10099ralbidv 2733 . . . . 5  |-  ( x  =  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  -> 
( A. r  e.  RR  ( ( F `
 r )  =  0  ->  ( A  =  r  \/  x  <_  ( abs `  ( A  -  r )
) ) )  <->  A. r  e.  RR  ( ( F `
 r )  =  0  ->  ( A  =  r  \/  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  <_ 
( abs `  ( A  -  r )
) ) ) ) )
101100rspcev 3070 . . . 4  |-  ( ( sup ( ( { 1 }  u.  {
a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  e.  RR+  /\  A. r  e.  RR  ( ( F `
 r )  =  0  ->  ( A  =  r  \/  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  <_ 
( abs `  ( A  -  r )
) ) ) )  ->  E. x  e.  RR+  A. r  e.  RR  (
( F `  r
)  =  0  -> 
( A  =  r  \/  x  <_  ( abs `  ( A  -  r ) ) ) ) )
10241, 96, 101syl2anc 656 . . 3  |-  ( ph  ->  E. x  e.  RR+  A. r  e.  RR  (
( F `  r
)  =  0  -> 
( A  =  r  \/  x  <_  ( abs `  ( A  -  r ) ) ) ) )
103 znq 10953 . . . . . . . 8  |-  ( ( p  e.  ZZ  /\  q  e.  NN )  ->  ( p  /  q
)  e.  QQ )
104 qre 10954 . . . . . . . 8  |-  ( ( p  /  q )  e.  QQ  ->  (
p  /  q )  e.  RR )
105103, 104syl 16 . . . . . . 7  |-  ( ( p  e.  ZZ  /\  q  e.  NN )  ->  ( p  /  q
)  e.  RR )
106 fveq2 5688 . . . . . . . . . 10  |-  ( r  =  ( p  / 
q )  ->  ( F `  r )  =  ( F `  ( p  /  q
) ) )
107106eqeq1d 2449 . . . . . . . . 9  |-  ( r  =  ( p  / 
q )  ->  (
( F `  r
)  =  0  <->  ( F `  ( p  /  q ) )  =  0 ) )
108 eqeq2 2450 . . . . . . . . . 10  |-  ( r  =  ( p  / 
q )  ->  ( A  =  r  <->  A  =  ( p  /  q
) ) )
109 oveq2 6098 . . . . . . . . . . . 12  |-  ( r  =  ( p  / 
q )  ->  ( A  -  r )  =  ( A  -  ( p  /  q
) ) )
110109fveq2d 5692 . . . . . . . . . . 11  |-  ( r  =  ( p  / 
q )  ->  ( abs `  ( A  -  r ) )  =  ( abs `  ( A  -  ( p  /  q ) ) ) )
111110breq2d 4301 . . . . . . . . . 10  |-  ( r  =  ( p  / 
q )  ->  (
x  <_  ( abs `  ( A  -  r
) )  <->  x  <_  ( abs `  ( A  -  ( p  / 
q ) ) ) ) )
112108, 111orbi12d 704 . . . . . . . . 9  |-  ( r  =  ( p  / 
q )  ->  (
( A  =  r  \/  x  <_  ( abs `  ( A  -  r ) ) )  <-> 
( A  =  ( p  /  q )  \/  x  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
113107, 112imbi12d 320 . . . . . . . 8  |-  ( r  =  ( p  / 
q )  ->  (
( ( F `  r )  =  0  ->  ( A  =  r  \/  x  <_ 
( abs `  ( A  -  r )
) ) )  <->  ( ( F `  ( p  /  q ) )  =  0  ->  ( A  =  ( p  /  q )  \/  x  <_  ( abs `  ( A  -  (
p  /  q ) ) ) ) ) ) )
114113rspcv 3066 . . . . . . 7  |-  ( ( p  /  q )  e.  RR  ->  ( A. r  e.  RR  ( ( F `  r )  =  0  ->  ( A  =  r  \/  x  <_ 
( abs `  ( A  -  r )
) ) )  -> 
( ( F `  ( p  /  q
) )  =  0  ->  ( A  =  ( p  /  q
)  \/  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
115105, 114syl 16 . . . . . 6  |-  ( ( p  e.  ZZ  /\  q  e.  NN )  ->  ( A. r  e.  RR  ( ( F `
 r )  =  0  ->  ( A  =  r  \/  x  <_  ( abs `  ( A  -  r )
) ) )  -> 
( ( F `  ( p  /  q
) )  =  0  ->  ( A  =  ( p  /  q
)  \/  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
116115com12 31 . . . . 5  |-  ( A. r  e.  RR  (
( F `  r
)  =  0  -> 
( A  =  r  \/  x  <_  ( abs `  ( A  -  r ) ) ) )  ->  ( (
p  e.  ZZ  /\  q  e.  NN )  ->  ( ( F `  ( p  /  q
) )  =  0  ->  ( A  =  ( p  /  q
)  \/  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
117116ralrimivv 2805 . . . 4  |-  ( A. r  e.  RR  (
( F `  r
)  =  0  -> 
( A  =  r  \/  x  <_  ( abs `  ( A  -  r ) ) ) )  ->  A. p  e.  ZZ  A. q  e.  NN  ( ( F `
 ( p  / 
q ) )  =  0  ->  ( A  =  ( p  / 
q )  \/  x  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
118117reximi 2821 . . 3  |-  ( E. x  e.  RR+  A. r  e.  RR  ( ( F `
 r )  =  0  ->  ( A  =  r  \/  x  <_  ( abs `  ( A  -  r )
) ) )  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( ( F `
 ( p  / 
q ) )  =  0  ->  ( A  =  ( p  / 
q )  \/  x  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
119102, 118syl 16 . 2  |-  ( ph  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =  0  -> 
( A  =  ( p  /  q )  \/  x  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
120 simplr 749 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  x  e.  RR+ )
121 simprr 751 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  q  e.  NN )
12210nnnn0d 10632 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  e.  NN0 )
123122ad2antrr 720 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  N  e.  NN0 )
124121, 123nnexpcld 12025 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( q ^ N )  e.  NN )
125124nnrpd 11022 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( q ^ N )  e.  RR+ )
126120, 125rpdivcld 11040 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( x  /  ( q ^ N ) )  e.  RR+ )
127126rpred 11023 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( x  /  ( q ^ N ) )  e.  RR )
128127adantr 462 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  (
x  /  ( q ^ N ) )  e.  RR )
129 simpllr 753 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  x  e.  RR+ )
130129rpred 11023 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  x  e.  RR )
13155ad2antrr 720 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  A  e.  RR )
132105adantl 463 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( p  /  q )  e.  RR )
133131, 132resubcld 9772 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( A  -  ( p  / 
q ) )  e.  RR )
134133recnd 9408 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( A  -  ( p  / 
q ) )  e.  CC )
135134abscld 12918 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( abs `  ( A  -  (
p  /  q ) ) )  e.  RR )
136135adantr 462 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  ( abs `  ( A  -  ( p  /  q
) ) )  e.  RR )
137 rpre 10993 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  x  e.  RR )
138137ad2antlr 721 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  x  e.  RR )
139120rpcnne0d 11032 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( x  e.  CC  /\  x  =/=  0 ) )
140 divid 10017 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  x  =/=  0 )  -> 
( x  /  x
)  =  1 )
141139, 140syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( x  /  x )  =  1 )
142124nnge1d 10360 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  1  <_  ( q ^ N ) )
143141, 142eqbrtrd 4309 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( x  /  x )  <_  (
q ^ N ) )
144138, 120, 125, 143lediv23d 11080 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( x  /  ( q ^ N ) )  <_  x )
145144adantr 462 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  (
x  /  ( q ^ N ) )  <_  x )
146 simpr 458 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  x  <_  ( abs `  ( A  -  ( p  /  q ) ) ) )
147128, 130, 136, 145, 146letrd 9524 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  (
x  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) )
148147ex 434 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( x  <_  ( abs `  ( A  -  ( p  /  q ) ) )  ->  ( x  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) )
149148orim2d 831 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( ( A  =  ( p  /  q )  \/  x  <_  ( abs `  ( A  -  (
p  /  q ) ) ) )  -> 
( A  =  ( p  /  q )  \/  ( x  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
150149imim2d 52 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( (
( F `  (
p  /  q ) )  =  0  -> 
( A  =  ( p  /  q )  \/  x  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) )  ->  ( ( F `  ( p  /  q ) )  =  0  ->  ( A  =  ( p  /  q )  \/  ( x  /  (
q ^ N ) )  <_  ( abs `  ( A  -  (
p  /  q ) ) ) ) ) ) )
151150anassrs 643 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  p  e.  ZZ )  /\  q  e.  NN )  ->  ( ( ( F `  ( p  /  q ) )  =  0  ->  ( A  =  ( p  /  q )  \/  x  <_  ( abs `  ( A  -  (
p  /  q ) ) ) ) )  ->  ( ( F `
 ( p  / 
q ) )  =  0  ->  ( A  =  ( p  / 
q )  \/  (
x  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
152151ralimdva 2792 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  p  e.  ZZ )  ->  ( A. q  e.  NN  ( ( F `  ( p  /  q
) )  =  0  ->  ( A  =  ( p  /  q
)  \/  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) )  ->  A. q  e.  NN  ( ( F `  ( p  /  q
) )  =  0  ->  ( A  =  ( p  /  q
)  \/  ( x  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
153152ralimdva 2792 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( A. p  e.  ZZ  A. q  e.  NN  ( ( F `
 ( p  / 
q ) )  =  0  ->  ( A  =  ( p  / 
q )  \/  x  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) )  ->  A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =  0  -> 
( A  =  ( p  /  q )  \/  ( x  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) ) )
154153reximdva 2826 . 2  |-  ( ph  ->  ( E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =  0  -> 
( A  =  ( p  /  q )  \/  x  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) )  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( ( F `
 ( p  / 
q ) )  =  0  ->  ( A  =  ( p  / 
q )  \/  (
x  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
155119, 154mpd 15 1  |-  ( ph  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =  0  -> 
( A  =  ( p  /  q )  \/  ( x  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1364    e. wcel 1761   {cab 2427    =/= wne 2604   A.wral 2713   E.wrex 2714   {crab 2717    u. cun 3323    C_ wss 3325   (/)c0 3634   {csn 3874   class class class wbr 4289    Or wor 4636   `'ccnv 4835   "cima 4839    Fn wfn 5410   -->wf 5411   ` cfv 5415  (class class class)co 6090   Fincfn 7306   supcsup 7686   CCcc 9276   RRcr 9277   0cc0 9278   1c1 9279    < clt 9414    <_ cle 9415    - cmin 9591    / cdiv 9989   NNcn 10318   NN0cn0 10575   ZZcz 10642   QQcq 10949   RR+crp 10987   ^cexp 11861   #chash 12099   abscabs 12719   0pc0p 21106  Polycply 21611  degcdgr 21614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356  ax-addf 9357
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-map 7212  df-pm 7213  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-sup 7687  df-oi 7720  df-card 8105  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-n0 10576  df-z 10643  df-uz 10858  df-q 10950  df-rp 10988  df-fz 11434  df-fzo 11545  df-fl 11638  df-seq 11803  df-exp 11862  df-hash 12100  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-clim 12962  df-rlim 12963  df-sum 13160  df-0p 21107  df-ply 21615  df-idp 21616  df-coe 21617  df-dgr 21618  df-quot 21716
This theorem is referenced by:  aalioulem6  21762
  Copyright terms: Public domain W3C validator