MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aalioulem2 Structured version   Unicode version

Theorem aalioulem2 21811
Description: Lemma for aaliou 21816. (Contributed by Stefan O'Rear, 15-Nov-2014.)
Hypotheses
Ref Expression
aalioulem2.a  |-  N  =  (deg `  F )
aalioulem2.b  |-  ( ph  ->  F  e.  (Poly `  ZZ ) )
aalioulem2.c  |-  ( ph  ->  N  e.  NN )
aalioulem2.d  |-  ( ph  ->  A  e.  RR )
Assertion
Ref Expression
aalioulem2  |-  ( ph  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =  0  -> 
( A  =  ( p  /  q )  \/  ( x  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
Distinct variable groups:    ph, x, p, q    x, A, p, q    x, F, p, q
Allowed substitution hints:    N( x, q, p)

Proof of Theorem aalioulem2
Dummy variables  r 
a  b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1rp 11007 . . . . . . 7  |-  1  e.  RR+
2 snssi 4029 . . . . . . 7  |-  ( 1  e.  RR+  ->  { 1 }  C_  RR+ )
31, 2ax-mp 5 . . . . . 6  |-  { 1 }  C_  RR+
4 ssrab2 3449 . . . . . 6  |-  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) }  C_  RR+
53, 4unssi 3543 . . . . 5  |-  ( { 1 }  u.  {
a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  C_  RR+
6 gtso 9468 . . . . . . 7  |-  `'  <  Or  RR
76a1i 11 . . . . . 6  |-  ( ph  ->  `'  <  Or  RR )
8 snfi 7402 . . . . . . 7  |-  { 1 }  e.  Fin
9 aalioulem2.b . . . . . . . . . . 11  |-  ( ph  ->  F  e.  (Poly `  ZZ ) )
10 aalioulem2.c . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  NN )
1110nnne0d 10378 . . . . . . . . . . . . 13  |-  ( ph  ->  N  =/=  0 )
12 aalioulem2.a . . . . . . . . . . . . . 14  |-  N  =  (deg `  F )
1312eqcomi 2447 . . . . . . . . . . . . 13  |-  (deg `  F )  =  N
14 dgr0 21741 . . . . . . . . . . . . 13  |-  (deg ` 
0p )  =  0
1511, 13, 143netr4g 2649 . . . . . . . . . . . 12  |-  ( ph  ->  (deg `  F )  =/=  (deg `  0p
) )
16 fveq2 5703 . . . . . . . . . . . . 13  |-  ( F  =  0p  -> 
(deg `  F )  =  (deg `  0p
) )
1716necon3i 2662 . . . . . . . . . . . 12  |-  ( (deg
`  F )  =/=  (deg `  0p
)  ->  F  =/=  0p )
1815, 17syl 16 . . . . . . . . . . 11  |-  ( ph  ->  F  =/=  0p )
19 eqid 2443 . . . . . . . . . . . 12  |-  ( `' F " { 0 } )  =  ( `' F " { 0 } )
2019fta1 21786 . . . . . . . . . . 11  |-  ( ( F  e.  (Poly `  ZZ )  /\  F  =/=  0p )  -> 
( ( `' F " { 0 } )  e.  Fin  /\  ( # `
 ( `' F " { 0 } ) )  <_  (deg `  F
) ) )
219, 18, 20syl2anc 661 . . . . . . . . . 10  |-  ( ph  ->  ( ( `' F " { 0 } )  e.  Fin  /\  ( # `
 ( `' F " { 0 } ) )  <_  (deg `  F
) ) )
2221simpld 459 . . . . . . . . 9  |-  ( ph  ->  ( `' F " { 0 } )  e.  Fin )
23 abrexfi 7623 . . . . . . . . 9  |-  ( ( `' F " { 0 } )  e.  Fin  ->  { a  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) }  e.  Fin )
2422, 23syl 16 . . . . . . . 8  |-  ( ph  ->  { a  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) }  e.  Fin )
25 rabssab 3451 . . . . . . . 8  |-  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) }  C_  { a  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b )
) }
26 ssfi 7545 . . . . . . . 8  |-  ( ( { a  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) }  e.  Fin  /\  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) }  C_  { a  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b )
) } )  ->  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b )
) }  e.  Fin )
2724, 25, 26sylancl 662 . . . . . . 7  |-  ( ph  ->  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b )
) }  e.  Fin )
28 unfi 7591 . . . . . . 7  |-  ( ( { 1 }  e.  Fin  /\  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) }  e.  Fin )  ->  ( { 1 }  u.  {
a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  e.  Fin )
298, 27, 28sylancr 663 . . . . . 6  |-  ( ph  ->  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } )  e.  Fin )
30 1ex 9393 . . . . . . . . 9  |-  1  e.  _V
3130snid 3917 . . . . . . . 8  |-  1  e.  { 1 }
32 elun1 3535 . . . . . . . 8  |-  ( 1  e.  { 1 }  ->  1  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) )
33 ne0i 3655 . . . . . . . 8  |-  ( 1  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  ->  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  =/=  (/) )
3431, 32, 33mp2b 10 . . . . . . 7  |-  ( { 1 }  u.  {
a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  =/=  (/)
3534a1i 11 . . . . . 6  |-  ( ph  ->  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } )  =/=  (/) )
36 rpssre 11013 . . . . . . . 8  |-  RR+  C_  RR
375, 36sstri 3377 . . . . . . 7  |-  ( { 1 }  u.  {
a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  C_  RR
3837a1i 11 . . . . . 6  |-  ( ph  ->  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) 
C_  RR )
39 fisupcl 7729 . . . . . 6  |-  ( ( `'  <  Or  RR  /\  ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  e.  Fin  /\  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } )  =/=  (/)  /\  ( { 1 }  u.  {
a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  C_  RR ) )  ->  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) )
407, 29, 35, 38, 39syl13anc 1220 . . . . 5  |-  ( ph  ->  sup ( ( { 1 }  u.  {
a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) )
415, 40sseldi 3366 . . . 4  |-  ( ph  ->  sup ( ( { 1 }  u.  {
a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  e.  RR+ )
4237a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  C_  RR )
43 0re 9398 . . . . . . . . . . . 12  |-  0  e.  RR
44 rpge0 11015 . . . . . . . . . . . . 13  |-  ( d  e.  RR+  ->  0  <_ 
d )
4544rgen 2793 . . . . . . . . . . . 12  |-  A. d  e.  RR+  0  <_  d
46 breq1 4307 . . . . . . . . . . . . . 14  |-  ( c  =  0  ->  (
c  <_  d  <->  0  <_  d ) )
4746ralbidv 2747 . . . . . . . . . . . . 13  |-  ( c  =  0  ->  ( A. d  e.  RR+  c  <_  d  <->  A. d  e.  RR+  0  <_  d ) )
4847rspcev 3085 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  A. d  e.  RR+  0  <_  d )  ->  E. c  e.  RR  A. d  e.  RR+  c  <_  d )
4943, 45, 48mp2an 672 . . . . . . . . . . 11  |-  E. c  e.  RR  A. d  e.  RR+  c  <_  d
50 ssralv 3428 . . . . . . . . . . . . 13  |-  ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  C_  RR+  ->  ( A. d  e.  RR+  c  <_  d  ->  A. d  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) c  <_  d )
)
515, 50ax-mp 5 . . . . . . . . . . . 12  |-  ( A. d  e.  RR+  c  <_ 
d  ->  A. d  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) c  <_  d )
5251reximi 2835 . . . . . . . . . . 11  |-  ( E. c  e.  RR  A. d  e.  RR+  c  <_ 
d  ->  E. c  e.  RR  A. d  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) c  <_  d )
5349, 52ax-mp 5 . . . . . . . . . 10  |-  E. c  e.  RR  A. d  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) c  <_  d
5453a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  E. c  e.  RR  A. d  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) c  <_  d )
55 aalioulem2.d . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  RR )
5655ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  A  e.  RR )
57 simplr 754 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  r  e.  RR )
5856, 57resubcld 9788 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  ( A  -  r )  e.  RR )
5958recnd 9424 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  ( A  -  r )  e.  CC )
6055ad2antrr 725 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  r  e.  RR )  /\  ( F `  r )  =  0 )  ->  A  e.  RR )
6160recnd 9424 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR )  /\  ( F `  r )  =  0 )  ->  A  e.  CC )
62 simplr 754 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  r  e.  RR )  /\  ( F `  r )  =  0 )  -> 
r  e.  RR )
6362recnd 9424 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR )  /\  ( F `  r )  =  0 )  -> 
r  e.  CC )
6461, 63subeq0ad 9741 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR )  /\  ( F `  r )  =  0 )  -> 
( ( A  -  r )  =  0  <-> 
A  =  r ) )
6564necon3abid 2653 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR )  /\  ( F `  r )  =  0 )  -> 
( ( A  -  r )  =/=  0  <->  -.  A  =  r ) )
6665biimprd 223 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR )  /\  ( F `  r )  =  0 )  -> 
( -.  A  =  r  ->  ( A  -  r )  =/=  0 ) )
6766impr 619 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  ( A  -  r )  =/=  0 )
6859, 67absrpcld 12946 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  ( abs `  ( A  -  r ) )  e.  RR+ )
6957recnd 9424 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  r  e.  CC )
70 simprl 755 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  ( F `  r )  =  0 )
71 plyf 21678 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  (Poly `  ZZ )  ->  F : CC --> CC )
729, 71syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F : CC --> CC )
73 ffn 5571 . . . . . . . . . . . . . . . 16  |-  ( F : CC --> CC  ->  F  Fn  CC )
7472, 73syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  F  Fn  CC )
7574ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  F  Fn  CC )
76 fniniseg 5836 . . . . . . . . . . . . . 14  |-  ( F  Fn  CC  ->  (
r  e.  ( `' F " { 0 } )  <->  ( r  e.  CC  /\  ( F `
 r )  =  0 ) ) )
7775, 76syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  (
r  e.  ( `' F " { 0 } )  <->  ( r  e.  CC  /\  ( F `
 r )  =  0 ) ) )
7869, 70, 77mpbir2and 913 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  r  e.  ( `' F " { 0 } ) )
79 eqid 2443 . . . . . . . . . . . 12  |-  ( abs `  ( A  -  r
) )  =  ( abs `  ( A  -  r ) )
80 oveq2 6111 . . . . . . . . . . . . . . 15  |-  ( b  =  r  ->  ( A  -  b )  =  ( A  -  r ) )
8180fveq2d 5707 . . . . . . . . . . . . . 14  |-  ( b  =  r  ->  ( abs `  ( A  -  b ) )  =  ( abs `  ( A  -  r )
) )
8281eqeq2d 2454 . . . . . . . . . . . . 13  |-  ( b  =  r  ->  (
( abs `  ( A  -  r )
)  =  ( abs `  ( A  -  b
) )  <->  ( abs `  ( A  -  r
) )  =  ( abs `  ( A  -  r ) ) ) )
8382rspcev 3085 . . . . . . . . . . . 12  |-  ( ( r  e.  ( `' F " { 0 } )  /\  ( abs `  ( A  -  r ) )  =  ( abs `  ( A  -  r )
) )  ->  E. b  e.  ( `' F " { 0 } ) ( abs `  ( A  -  r )
)  =  ( abs `  ( A  -  b
) ) )
8478, 79, 83sylancl 662 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  E. b  e.  ( `' F " { 0 } ) ( abs `  ( A  -  r )
)  =  ( abs `  ( A  -  b
) ) )
85 eqeq1 2449 . . . . . . . . . . . . 13  |-  ( a  =  ( abs `  ( A  -  r )
)  ->  ( a  =  ( abs `  ( A  -  b )
)  <->  ( abs `  ( A  -  r )
)  =  ( abs `  ( A  -  b
) ) ) )
8685rexbidv 2748 . . . . . . . . . . . 12  |-  ( a  =  ( abs `  ( A  -  r )
)  ->  ( E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) )  <->  E. b  e.  ( `' F " { 0 } ) ( abs `  ( A  -  r
) )  =  ( abs `  ( A  -  b ) ) ) )
8786elrab 3129 . . . . . . . . . . 11  |-  ( ( abs `  ( A  -  r ) )  e.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) }  <->  ( ( abs `  ( A  -  r ) )  e.  RR+  /\  E. b  e.  ( `' F " { 0 } ) ( abs `  ( A  -  r )
)  =  ( abs `  ( A  -  b
) ) ) )
8868, 84, 87sylanbrc 664 . . . . . . . . . 10  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  ( abs `  ( A  -  r ) )  e. 
{ a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b )
) } )
89 elun2 3536 . . . . . . . . . 10  |-  ( ( abs `  ( A  -  r ) )  e.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) }  ->  ( abs `  ( A  -  r ) )  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) )
9088, 89syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  ( abs `  ( A  -  r ) )  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) )
91 infmrlb 10323 . . . . . . . . 9  |-  ( ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) 
C_  RR  /\  E. c  e.  RR  A. d  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) c  <_  d  /\  ( abs `  ( A  -  r ) )  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) )  ->  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  <_ 
( abs `  ( A  -  r )
) )
9242, 54, 90, 91syl3anc 1218 . . . . . . . 8  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  <_ 
( abs `  ( A  -  r )
) )
9392expr 615 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  RR )  /\  ( F `  r )  =  0 )  -> 
( -.  A  =  r  ->  sup (
( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) ,  RR ,  `'  <  )  <_  ( abs `  ( A  -  r
) ) ) )
9493orrd 378 . . . . . 6  |-  ( ( ( ph  /\  r  e.  RR )  /\  ( F `  r )  =  0 )  -> 
( A  =  r  \/  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  <_ 
( abs `  ( A  -  r )
) ) )
9594ex 434 . . . . 5  |-  ( (
ph  /\  r  e.  RR )  ->  ( ( F `  r )  =  0  ->  ( A  =  r  \/  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  <_ 
( abs `  ( A  -  r )
) ) ) )
9695ralrimiva 2811 . . . 4  |-  ( ph  ->  A. r  e.  RR  ( ( F `  r )  =  0  ->  ( A  =  r  \/  sup (
( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) ,  RR ,  `'  <  )  <_  ( abs `  ( A  -  r
) ) ) ) )
97 breq1 4307 . . . . . . . 8  |-  ( x  =  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  -> 
( x  <_  ( abs `  ( A  -  r ) )  <->  sup (
( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) ,  RR ,  `'  <  )  <_  ( abs `  ( A  -  r
) ) ) )
9897orbi2d 701 . . . . . . 7  |-  ( x  =  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  -> 
( ( A  =  r  \/  x  <_ 
( abs `  ( A  -  r )
) )  <->  ( A  =  r  \/  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  <_ 
( abs `  ( A  -  r )
) ) ) )
9998imbi2d 316 . . . . . 6  |-  ( x  =  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  -> 
( ( ( F `
 r )  =  0  ->  ( A  =  r  \/  x  <_  ( abs `  ( A  -  r )
) ) )  <->  ( ( F `  r )  =  0  ->  ( A  =  r  \/  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  <_ 
( abs `  ( A  -  r )
) ) ) ) )
10099ralbidv 2747 . . . . 5  |-  ( x  =  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  -> 
( A. r  e.  RR  ( ( F `
 r )  =  0  ->  ( A  =  r  \/  x  <_  ( abs `  ( A  -  r )
) ) )  <->  A. r  e.  RR  ( ( F `
 r )  =  0  ->  ( A  =  r  \/  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  <_ 
( abs `  ( A  -  r )
) ) ) ) )
101100rspcev 3085 . . . 4  |-  ( ( sup ( ( { 1 }  u.  {
a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  e.  RR+  /\  A. r  e.  RR  ( ( F `
 r )  =  0  ->  ( A  =  r  \/  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  <_ 
( abs `  ( A  -  r )
) ) ) )  ->  E. x  e.  RR+  A. r  e.  RR  (
( F `  r
)  =  0  -> 
( A  =  r  \/  x  <_  ( abs `  ( A  -  r ) ) ) ) )
10241, 96, 101syl2anc 661 . . 3  |-  ( ph  ->  E. x  e.  RR+  A. r  e.  RR  (
( F `  r
)  =  0  -> 
( A  =  r  \/  x  <_  ( abs `  ( A  -  r ) ) ) ) )
103 znq 10969 . . . . . . . 8  |-  ( ( p  e.  ZZ  /\  q  e.  NN )  ->  ( p  /  q
)  e.  QQ )
104 qre 10970 . . . . . . . 8  |-  ( ( p  /  q )  e.  QQ  ->  (
p  /  q )  e.  RR )
105103, 104syl 16 . . . . . . 7  |-  ( ( p  e.  ZZ  /\  q  e.  NN )  ->  ( p  /  q
)  e.  RR )
106 fveq2 5703 . . . . . . . . . 10  |-  ( r  =  ( p  / 
q )  ->  ( F `  r )  =  ( F `  ( p  /  q
) ) )
107106eqeq1d 2451 . . . . . . . . 9  |-  ( r  =  ( p  / 
q )  ->  (
( F `  r
)  =  0  <->  ( F `  ( p  /  q ) )  =  0 ) )
108 eqeq2 2452 . . . . . . . . . 10  |-  ( r  =  ( p  / 
q )  ->  ( A  =  r  <->  A  =  ( p  /  q
) ) )
109 oveq2 6111 . . . . . . . . . . . 12  |-  ( r  =  ( p  / 
q )  ->  ( A  -  r )  =  ( A  -  ( p  /  q
) ) )
110109fveq2d 5707 . . . . . . . . . . 11  |-  ( r  =  ( p  / 
q )  ->  ( abs `  ( A  -  r ) )  =  ( abs `  ( A  -  ( p  /  q ) ) ) )
111110breq2d 4316 . . . . . . . . . 10  |-  ( r  =  ( p  / 
q )  ->  (
x  <_  ( abs `  ( A  -  r
) )  <->  x  <_  ( abs `  ( A  -  ( p  / 
q ) ) ) ) )
112108, 111orbi12d 709 . . . . . . . . 9  |-  ( r  =  ( p  / 
q )  ->  (
( A  =  r  \/  x  <_  ( abs `  ( A  -  r ) ) )  <-> 
( A  =  ( p  /  q )  \/  x  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
113107, 112imbi12d 320 . . . . . . . 8  |-  ( r  =  ( p  / 
q )  ->  (
( ( F `  r )  =  0  ->  ( A  =  r  \/  x  <_ 
( abs `  ( A  -  r )
) ) )  <->  ( ( F `  ( p  /  q ) )  =  0  ->  ( A  =  ( p  /  q )  \/  x  <_  ( abs `  ( A  -  (
p  /  q ) ) ) ) ) ) )
114113rspcv 3081 . . . . . . 7  |-  ( ( p  /  q )  e.  RR  ->  ( A. r  e.  RR  ( ( F `  r )  =  0  ->  ( A  =  r  \/  x  <_ 
( abs `  ( A  -  r )
) ) )  -> 
( ( F `  ( p  /  q
) )  =  0  ->  ( A  =  ( p  /  q
)  \/  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
115105, 114syl 16 . . . . . 6  |-  ( ( p  e.  ZZ  /\  q  e.  NN )  ->  ( A. r  e.  RR  ( ( F `
 r )  =  0  ->  ( A  =  r  \/  x  <_  ( abs `  ( A  -  r )
) ) )  -> 
( ( F `  ( p  /  q
) )  =  0  ->  ( A  =  ( p  /  q
)  \/  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
116115com12 31 . . . . 5  |-  ( A. r  e.  RR  (
( F `  r
)  =  0  -> 
( A  =  r  \/  x  <_  ( abs `  ( A  -  r ) ) ) )  ->  ( (
p  e.  ZZ  /\  q  e.  NN )  ->  ( ( F `  ( p  /  q
) )  =  0  ->  ( A  =  ( p  /  q
)  \/  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
117116ralrimivv 2819 . . . 4  |-  ( A. r  e.  RR  (
( F `  r
)  =  0  -> 
( A  =  r  \/  x  <_  ( abs `  ( A  -  r ) ) ) )  ->  A. p  e.  ZZ  A. q  e.  NN  ( ( F `
 ( p  / 
q ) )  =  0  ->  ( A  =  ( p  / 
q )  \/  x  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
118117reximi 2835 . . 3  |-  ( E. x  e.  RR+  A. r  e.  RR  ( ( F `
 r )  =  0  ->  ( A  =  r  \/  x  <_  ( abs `  ( A  -  r )
) ) )  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( ( F `
 ( p  / 
q ) )  =  0  ->  ( A  =  ( p  / 
q )  \/  x  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
119102, 118syl 16 . 2  |-  ( ph  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =  0  -> 
( A  =  ( p  /  q )  \/  x  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
120 simplr 754 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  x  e.  RR+ )
121 simprr 756 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  q  e.  NN )
12210nnnn0d 10648 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  e.  NN0 )
123122ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  N  e.  NN0 )
124121, 123nnexpcld 12041 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( q ^ N )  e.  NN )
125124nnrpd 11038 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( q ^ N )  e.  RR+ )
126120, 125rpdivcld 11056 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( x  /  ( q ^ N ) )  e.  RR+ )
127126rpred 11039 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( x  /  ( q ^ N ) )  e.  RR )
128127adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  (
x  /  ( q ^ N ) )  e.  RR )
129 simpllr 758 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  x  e.  RR+ )
130129rpred 11039 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  x  e.  RR )
13155ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  A  e.  RR )
132105adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( p  /  q )  e.  RR )
133131, 132resubcld 9788 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( A  -  ( p  / 
q ) )  e.  RR )
134133recnd 9424 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( A  -  ( p  / 
q ) )  e.  CC )
135134abscld 12934 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( abs `  ( A  -  (
p  /  q ) ) )  e.  RR )
136135adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  ( abs `  ( A  -  ( p  /  q
) ) )  e.  RR )
137 rpre 11009 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  x  e.  RR )
138137ad2antlr 726 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  x  e.  RR )
139120rpcnne0d 11048 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( x  e.  CC  /\  x  =/=  0 ) )
140 divid 10033 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  x  =/=  0 )  -> 
( x  /  x
)  =  1 )
141139, 140syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( x  /  x )  =  1 )
142124nnge1d 10376 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  1  <_  ( q ^ N ) )
143141, 142eqbrtrd 4324 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( x  /  x )  <_  (
q ^ N ) )
144138, 120, 125, 143lediv23d 11096 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( x  /  ( q ^ N ) )  <_  x )
145144adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  (
x  /  ( q ^ N ) )  <_  x )
146 simpr 461 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  x  <_  ( abs `  ( A  -  ( p  /  q ) ) ) )
147128, 130, 136, 145, 146letrd 9540 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  (
x  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) )
148147ex 434 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( x  <_  ( abs `  ( A  -  ( p  /  q ) ) )  ->  ( x  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) )
149148orim2d 836 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( ( A  =  ( p  /  q )  \/  x  <_  ( abs `  ( A  -  (
p  /  q ) ) ) )  -> 
( A  =  ( p  /  q )  \/  ( x  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
150149imim2d 52 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( (
( F `  (
p  /  q ) )  =  0  -> 
( A  =  ( p  /  q )  \/  x  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) )  ->  ( ( F `  ( p  /  q ) )  =  0  ->  ( A  =  ( p  /  q )  \/  ( x  /  (
q ^ N ) )  <_  ( abs `  ( A  -  (
p  /  q ) ) ) ) ) ) )
151150anassrs 648 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  p  e.  ZZ )  /\  q  e.  NN )  ->  ( ( ( F `  ( p  /  q ) )  =  0  ->  ( A  =  ( p  /  q )  \/  x  <_  ( abs `  ( A  -  (
p  /  q ) ) ) ) )  ->  ( ( F `
 ( p  / 
q ) )  =  0  ->  ( A  =  ( p  / 
q )  \/  (
x  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
152151ralimdva 2806 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  p  e.  ZZ )  ->  ( A. q  e.  NN  ( ( F `  ( p  /  q
) )  =  0  ->  ( A  =  ( p  /  q
)  \/  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) )  ->  A. q  e.  NN  ( ( F `  ( p  /  q
) )  =  0  ->  ( A  =  ( p  /  q
)  \/  ( x  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
153152ralimdva 2806 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( A. p  e.  ZZ  A. q  e.  NN  ( ( F `
 ( p  / 
q ) )  =  0  ->  ( A  =  ( p  / 
q )  \/  x  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) )  ->  A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =  0  -> 
( A  =  ( p  /  q )  \/  ( x  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) ) )
154153reximdva 2840 . 2  |-  ( ph  ->  ( E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =  0  -> 
( A  =  ( p  /  q )  \/  x  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) )  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( ( F `
 ( p  / 
q ) )  =  0  ->  ( A  =  ( p  / 
q )  \/  (
x  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
155119, 154mpd 15 1  |-  ( ph  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =  0  -> 
( A  =  ( p  /  q )  \/  ( x  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756   {cab 2429    =/= wne 2618   A.wral 2727   E.wrex 2728   {crab 2731    u. cun 3338    C_ wss 3340   (/)c0 3649   {csn 3889   class class class wbr 4304    Or wor 4652   `'ccnv 4851   "cima 4855    Fn wfn 5425   -->wf 5426   ` cfv 5430  (class class class)co 6103   Fincfn 7322   supcsup 7702   CCcc 9292   RRcr 9293   0cc0 9294   1c1 9295    < clt 9430    <_ cle 9431    - cmin 9607    / cdiv 10005   NNcn 10334   NN0cn0 10591   ZZcz 10658   QQcq 10965   RR+crp 11003   ^cexp 11877   #chash 12115   abscabs 12735   0pc0p 21159  Polycply 21664  degcdgr 21667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-inf2 7859  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371  ax-pre-sup 9372  ax-addf 9373
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-int 4141  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-se 4692  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-isom 5439  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-of 6332  df-om 6489  df-1st 6589  df-2nd 6590  df-recs 6844  df-rdg 6878  df-1o 6932  df-oadd 6936  df-er 7113  df-map 7228  df-pm 7229  df-en 7323  df-dom 7324  df-sdom 7325  df-fin 7326  df-sup 7703  df-oi 7736  df-card 8121  df-cda 8349  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-div 10006  df-nn 10335  df-2 10392  df-3 10393  df-n0 10592  df-z 10659  df-uz 10874  df-q 10966  df-rp 11004  df-fz 11450  df-fzo 11561  df-fl 11654  df-seq 11819  df-exp 11878  df-hash 12116  df-cj 12600  df-re 12601  df-im 12602  df-sqr 12736  df-abs 12737  df-clim 12978  df-rlim 12979  df-sum 13176  df-0p 21160  df-ply 21668  df-idp 21669  df-coe 21670  df-dgr 21671  df-quot 21769
This theorem is referenced by:  aalioulem6  21815
  Copyright terms: Public domain W3C validator