MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aalioulem2 Structured version   Unicode version

Theorem aalioulem2 22479
Description: Lemma for aaliou 22484. (Contributed by Stefan O'Rear, 15-Nov-2014.)
Hypotheses
Ref Expression
aalioulem2.a  |-  N  =  (deg `  F )
aalioulem2.b  |-  ( ph  ->  F  e.  (Poly `  ZZ ) )
aalioulem2.c  |-  ( ph  ->  N  e.  NN )
aalioulem2.d  |-  ( ph  ->  A  e.  RR )
Assertion
Ref Expression
aalioulem2  |-  ( ph  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =  0  -> 
( A  =  ( p  /  q )  \/  ( x  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
Distinct variable groups:    ph, x, p, q    x, A, p, q    x, F, p, q
Allowed substitution hints:    N( x, q, p)

Proof of Theorem aalioulem2
Dummy variables  r 
a  b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1rp 11223 . . . . . . 7  |-  1  e.  RR+
2 snssi 4171 . . . . . . 7  |-  ( 1  e.  RR+  ->  { 1 }  C_  RR+ )
31, 2ax-mp 5 . . . . . 6  |-  { 1 }  C_  RR+
4 ssrab2 3585 . . . . . 6  |-  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) }  C_  RR+
53, 4unssi 3679 . . . . 5  |-  ( { 1 }  u.  {
a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  C_  RR+
6 gtso 9665 . . . . . . 7  |-  `'  <  Or  RR
76a1i 11 . . . . . 6  |-  ( ph  ->  `'  <  Or  RR )
8 snfi 7596 . . . . . . 7  |-  { 1 }  e.  Fin
9 aalioulem2.b . . . . . . . . . . 11  |-  ( ph  ->  F  e.  (Poly `  ZZ ) )
10 aalioulem2.c . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  NN )
1110nnne0d 10579 . . . . . . . . . . . . 13  |-  ( ph  ->  N  =/=  0 )
12 aalioulem2.a . . . . . . . . . . . . . 14  |-  N  =  (deg `  F )
1312eqcomi 2480 . . . . . . . . . . . . 13  |-  (deg `  F )  =  N
14 dgr0 22409 . . . . . . . . . . . . 13  |-  (deg ` 
0p )  =  0
1511, 13, 143netr4g 2775 . . . . . . . . . . . 12  |-  ( ph  ->  (deg `  F )  =/=  (deg `  0p
) )
16 fveq2 5865 . . . . . . . . . . . . 13  |-  ( F  =  0p  -> 
(deg `  F )  =  (deg `  0p
) )
1716necon3i 2707 . . . . . . . . . . . 12  |-  ( (deg
`  F )  =/=  (deg `  0p
)  ->  F  =/=  0p )
1815, 17syl 16 . . . . . . . . . . 11  |-  ( ph  ->  F  =/=  0p )
19 eqid 2467 . . . . . . . . . . . 12  |-  ( `' F " { 0 } )  =  ( `' F " { 0 } )
2019fta1 22454 . . . . . . . . . . 11  |-  ( ( F  e.  (Poly `  ZZ )  /\  F  =/=  0p )  -> 
( ( `' F " { 0 } )  e.  Fin  /\  ( # `
 ( `' F " { 0 } ) )  <_  (deg `  F
) ) )
219, 18, 20syl2anc 661 . . . . . . . . . 10  |-  ( ph  ->  ( ( `' F " { 0 } )  e.  Fin  /\  ( # `
 ( `' F " { 0 } ) )  <_  (deg `  F
) ) )
2221simpld 459 . . . . . . . . 9  |-  ( ph  ->  ( `' F " { 0 } )  e.  Fin )
23 abrexfi 7819 . . . . . . . . 9  |-  ( ( `' F " { 0 } )  e.  Fin  ->  { a  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) }  e.  Fin )
2422, 23syl 16 . . . . . . . 8  |-  ( ph  ->  { a  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) }  e.  Fin )
25 rabssab 3587 . . . . . . . 8  |-  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) }  C_  { a  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b )
) }
26 ssfi 7740 . . . . . . . 8  |-  ( ( { a  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) }  e.  Fin  /\  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) }  C_  { a  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b )
) } )  ->  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b )
) }  e.  Fin )
2724, 25, 26sylancl 662 . . . . . . 7  |-  ( ph  ->  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b )
) }  e.  Fin )
28 unfi 7786 . . . . . . 7  |-  ( ( { 1 }  e.  Fin  /\  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) }  e.  Fin )  ->  ( { 1 }  u.  {
a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  e.  Fin )
298, 27, 28sylancr 663 . . . . . 6  |-  ( ph  ->  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } )  e.  Fin )
30 1ex 9590 . . . . . . . . 9  |-  1  e.  _V
3130snid 4055 . . . . . . . 8  |-  1  e.  { 1 }
32 elun1 3671 . . . . . . . 8  |-  ( 1  e.  { 1 }  ->  1  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) )
33 ne0i 3791 . . . . . . . 8  |-  ( 1  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  ->  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  =/=  (/) )
3431, 32, 33mp2b 10 . . . . . . 7  |-  ( { 1 }  u.  {
a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  =/=  (/)
3534a1i 11 . . . . . 6  |-  ( ph  ->  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } )  =/=  (/) )
36 rpssre 11229 . . . . . . . 8  |-  RR+  C_  RR
375, 36sstri 3513 . . . . . . 7  |-  ( { 1 }  u.  {
a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  C_  RR
3837a1i 11 . . . . . 6  |-  ( ph  ->  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) 
C_  RR )
39 fisupcl 7926 . . . . . 6  |-  ( ( `'  <  Or  RR  /\  ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  e.  Fin  /\  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } )  =/=  (/)  /\  ( { 1 }  u.  {
a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  C_  RR ) )  ->  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) )
407, 29, 35, 38, 39syl13anc 1230 . . . . 5  |-  ( ph  ->  sup ( ( { 1 }  u.  {
a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) )
415, 40sseldi 3502 . . . 4  |-  ( ph  ->  sup ( ( { 1 }  u.  {
a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  e.  RR+ )
4237a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  C_  RR )
43 0re 9595 . . . . . . . . . . . 12  |-  0  e.  RR
44 rpge0 11231 . . . . . . . . . . . . 13  |-  ( d  e.  RR+  ->  0  <_ 
d )
4544rgen 2824 . . . . . . . . . . . 12  |-  A. d  e.  RR+  0  <_  d
46 breq1 4450 . . . . . . . . . . . . . 14  |-  ( c  =  0  ->  (
c  <_  d  <->  0  <_  d ) )
4746ralbidv 2903 . . . . . . . . . . . . 13  |-  ( c  =  0  ->  ( A. d  e.  RR+  c  <_  d  <->  A. d  e.  RR+  0  <_  d ) )
4847rspcev 3214 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  A. d  e.  RR+  0  <_  d )  ->  E. c  e.  RR  A. d  e.  RR+  c  <_  d )
4943, 45, 48mp2an 672 . . . . . . . . . . 11  |-  E. c  e.  RR  A. d  e.  RR+  c  <_  d
50 ssralv 3564 . . . . . . . . . . . . 13  |-  ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } )  C_  RR+  ->  ( A. d  e.  RR+  c  <_  d  ->  A. d  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) c  <_  d )
)
515, 50ax-mp 5 . . . . . . . . . . . 12  |-  ( A. d  e.  RR+  c  <_ 
d  ->  A. d  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) c  <_  d )
5251reximi 2932 . . . . . . . . . . 11  |-  ( E. c  e.  RR  A. d  e.  RR+  c  <_ 
d  ->  E. c  e.  RR  A. d  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) c  <_  d )
5349, 52ax-mp 5 . . . . . . . . . 10  |-  E. c  e.  RR  A. d  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) c  <_  d
5453a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  E. c  e.  RR  A. d  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) c  <_  d )
55 aalioulem2.d . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  RR )
5655ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  A  e.  RR )
57 simplr 754 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  r  e.  RR )
5856, 57resubcld 9986 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  ( A  -  r )  e.  RR )
5958recnd 9621 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  ( A  -  r )  e.  CC )
6055ad2antrr 725 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  r  e.  RR )  /\  ( F `  r )  =  0 )  ->  A  e.  RR )
6160recnd 9621 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR )  /\  ( F `  r )  =  0 )  ->  A  e.  CC )
62 simplr 754 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  r  e.  RR )  /\  ( F `  r )  =  0 )  -> 
r  e.  RR )
6362recnd 9621 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR )  /\  ( F `  r )  =  0 )  -> 
r  e.  CC )
6461, 63subeq0ad 9939 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  RR )  /\  ( F `  r )  =  0 )  -> 
( ( A  -  r )  =  0  <-> 
A  =  r ) )
6564necon3abid 2713 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR )  /\  ( F `  r )  =  0 )  -> 
( ( A  -  r )  =/=  0  <->  -.  A  =  r ) )
6665biimprd 223 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR )  /\  ( F `  r )  =  0 )  -> 
( -.  A  =  r  ->  ( A  -  r )  =/=  0 ) )
6766impr 619 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  ( A  -  r )  =/=  0 )
6859, 67absrpcld 13241 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  ( abs `  ( A  -  r ) )  e.  RR+ )
6957recnd 9621 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  r  e.  CC )
70 simprl 755 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  ( F `  r )  =  0 )
71 plyf 22346 . . . . . . . . . . . . . . . . 17  |-  ( F  e.  (Poly `  ZZ )  ->  F : CC --> CC )
729, 71syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F : CC --> CC )
73 ffn 5730 . . . . . . . . . . . . . . . 16  |-  ( F : CC --> CC  ->  F  Fn  CC )
7472, 73syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  F  Fn  CC )
7574ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  F  Fn  CC )
76 fniniseg 6001 . . . . . . . . . . . . . 14  |-  ( F  Fn  CC  ->  (
r  e.  ( `' F " { 0 } )  <->  ( r  e.  CC  /\  ( F `
 r )  =  0 ) ) )
7775, 76syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  (
r  e.  ( `' F " { 0 } )  <->  ( r  e.  CC  /\  ( F `
 r )  =  0 ) ) )
7869, 70, 77mpbir2and 920 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  r  e.  ( `' F " { 0 } ) )
79 eqid 2467 . . . . . . . . . . . 12  |-  ( abs `  ( A  -  r
) )  =  ( abs `  ( A  -  r ) )
80 oveq2 6291 . . . . . . . . . . . . . . 15  |-  ( b  =  r  ->  ( A  -  b )  =  ( A  -  r ) )
8180fveq2d 5869 . . . . . . . . . . . . . 14  |-  ( b  =  r  ->  ( abs `  ( A  -  b ) )  =  ( abs `  ( A  -  r )
) )
8281eqeq2d 2481 . . . . . . . . . . . . 13  |-  ( b  =  r  ->  (
( abs `  ( A  -  r )
)  =  ( abs `  ( A  -  b
) )  <->  ( abs `  ( A  -  r
) )  =  ( abs `  ( A  -  r ) ) ) )
8382rspcev 3214 . . . . . . . . . . . 12  |-  ( ( r  e.  ( `' F " { 0 } )  /\  ( abs `  ( A  -  r ) )  =  ( abs `  ( A  -  r )
) )  ->  E. b  e.  ( `' F " { 0 } ) ( abs `  ( A  -  r )
)  =  ( abs `  ( A  -  b
) ) )
8478, 79, 83sylancl 662 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  E. b  e.  ( `' F " { 0 } ) ( abs `  ( A  -  r )
)  =  ( abs `  ( A  -  b
) ) )
85 eqeq1 2471 . . . . . . . . . . . . 13  |-  ( a  =  ( abs `  ( A  -  r )
)  ->  ( a  =  ( abs `  ( A  -  b )
)  <->  ( abs `  ( A  -  r )
)  =  ( abs `  ( A  -  b
) ) ) )
8685rexbidv 2973 . . . . . . . . . . . 12  |-  ( a  =  ( abs `  ( A  -  r )
)  ->  ( E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) )  <->  E. b  e.  ( `' F " { 0 } ) ( abs `  ( A  -  r
) )  =  ( abs `  ( A  -  b ) ) ) )
8786elrab 3261 . . . . . . . . . . 11  |-  ( ( abs `  ( A  -  r ) )  e.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) }  <->  ( ( abs `  ( A  -  r ) )  e.  RR+  /\  E. b  e.  ( `' F " { 0 } ) ( abs `  ( A  -  r )
)  =  ( abs `  ( A  -  b
) ) ) )
8868, 84, 87sylanbrc 664 . . . . . . . . . 10  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  ( abs `  ( A  -  r ) )  e. 
{ a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b )
) } )
89 elun2 3672 . . . . . . . . . 10  |-  ( ( abs `  ( A  -  r ) )  e.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) }  ->  ( abs `  ( A  -  r ) )  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) )
9088, 89syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  ( abs `  ( A  -  r ) )  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) )
91 infmrlb 10523 . . . . . . . . 9  |-  ( ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) 
C_  RR  /\  E. c  e.  RR  A. d  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) c  <_  d  /\  ( abs `  ( A  -  r ) )  e.  ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) )  ->  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  <_ 
( abs `  ( A  -  r )
) )
9242, 54, 90, 91syl3anc 1228 . . . . . . . 8  |-  ( ( ( ph  /\  r  e.  RR )  /\  (
( F `  r
)  =  0  /\ 
-.  A  =  r ) )  ->  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  <_ 
( abs `  ( A  -  r )
) )
9392expr 615 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  RR )  /\  ( F `  r )  =  0 )  -> 
( -.  A  =  r  ->  sup (
( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) ,  RR ,  `'  <  )  <_  ( abs `  ( A  -  r
) ) ) )
9493orrd 378 . . . . . 6  |-  ( ( ( ph  /\  r  e.  RR )  /\  ( F `  r )  =  0 )  -> 
( A  =  r  \/  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  <_ 
( abs `  ( A  -  r )
) ) )
9594ex 434 . . . . 5  |-  ( (
ph  /\  r  e.  RR )  ->  ( ( F `  r )  =  0  ->  ( A  =  r  \/  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  <_ 
( abs `  ( A  -  r )
) ) ) )
9695ralrimiva 2878 . . . 4  |-  ( ph  ->  A. r  e.  RR  ( ( F `  r )  =  0  ->  ( A  =  r  \/  sup (
( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) ,  RR ,  `'  <  )  <_  ( abs `  ( A  -  r
) ) ) ) )
97 breq1 4450 . . . . . . . 8  |-  ( x  =  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  -> 
( x  <_  ( abs `  ( A  -  r ) )  <->  sup (
( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b
) ) } ) ,  RR ,  `'  <  )  <_  ( abs `  ( A  -  r
) ) ) )
9897orbi2d 701 . . . . . . 7  |-  ( x  =  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  -> 
( ( A  =  r  \/  x  <_ 
( abs `  ( A  -  r )
) )  <->  ( A  =  r  \/  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  <_ 
( abs `  ( A  -  r )
) ) ) )
9998imbi2d 316 . . . . . 6  |-  ( x  =  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  -> 
( ( ( F `
 r )  =  0  ->  ( A  =  r  \/  x  <_  ( abs `  ( A  -  r )
) ) )  <->  ( ( F `  r )  =  0  ->  ( A  =  r  \/  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  <_ 
( abs `  ( A  -  r )
) ) ) ) )
10099ralbidv 2903 . . . . 5  |-  ( x  =  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  -> 
( A. r  e.  RR  ( ( F `
 r )  =  0  ->  ( A  =  r  \/  x  <_  ( abs `  ( A  -  r )
) ) )  <->  A. r  e.  RR  ( ( F `
 r )  =  0  ->  ( A  =  r  \/  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  <_ 
( abs `  ( A  -  r )
) ) ) ) )
101100rspcev 3214 . . . 4  |-  ( ( sup ( ( { 1 }  u.  {
a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  e.  RR+  /\  A. r  e.  RR  ( ( F `
 r )  =  0  ->  ( A  =  r  \/  sup ( ( { 1 }  u.  { a  e.  RR+  |  E. b  e.  ( `' F " { 0 } ) a  =  ( abs `  ( A  -  b ) ) } ) ,  RR ,  `'  <  )  <_ 
( abs `  ( A  -  r )
) ) ) )  ->  E. x  e.  RR+  A. r  e.  RR  (
( F `  r
)  =  0  -> 
( A  =  r  \/  x  <_  ( abs `  ( A  -  r ) ) ) ) )
10241, 96, 101syl2anc 661 . . 3  |-  ( ph  ->  E. x  e.  RR+  A. r  e.  RR  (
( F `  r
)  =  0  -> 
( A  =  r  \/  x  <_  ( abs `  ( A  -  r ) ) ) ) )
103 znq 11185 . . . . . . . 8  |-  ( ( p  e.  ZZ  /\  q  e.  NN )  ->  ( p  /  q
)  e.  QQ )
104 qre 11186 . . . . . . . 8  |-  ( ( p  /  q )  e.  QQ  ->  (
p  /  q )  e.  RR )
105103, 104syl 16 . . . . . . 7  |-  ( ( p  e.  ZZ  /\  q  e.  NN )  ->  ( p  /  q
)  e.  RR )
106 fveq2 5865 . . . . . . . . . 10  |-  ( r  =  ( p  / 
q )  ->  ( F `  r )  =  ( F `  ( p  /  q
) ) )
107106eqeq1d 2469 . . . . . . . . 9  |-  ( r  =  ( p  / 
q )  ->  (
( F `  r
)  =  0  <->  ( F `  ( p  /  q ) )  =  0 ) )
108 eqeq2 2482 . . . . . . . . . 10  |-  ( r  =  ( p  / 
q )  ->  ( A  =  r  <->  A  =  ( p  /  q
) ) )
109 oveq2 6291 . . . . . . . . . . . 12  |-  ( r  =  ( p  / 
q )  ->  ( A  -  r )  =  ( A  -  ( p  /  q
) ) )
110109fveq2d 5869 . . . . . . . . . . 11  |-  ( r  =  ( p  / 
q )  ->  ( abs `  ( A  -  r ) )  =  ( abs `  ( A  -  ( p  /  q ) ) ) )
111110breq2d 4459 . . . . . . . . . 10  |-  ( r  =  ( p  / 
q )  ->  (
x  <_  ( abs `  ( A  -  r
) )  <->  x  <_  ( abs `  ( A  -  ( p  / 
q ) ) ) ) )
112108, 111orbi12d 709 . . . . . . . . 9  |-  ( r  =  ( p  / 
q )  ->  (
( A  =  r  \/  x  <_  ( abs `  ( A  -  r ) ) )  <-> 
( A  =  ( p  /  q )  \/  x  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
113107, 112imbi12d 320 . . . . . . . 8  |-  ( r  =  ( p  / 
q )  ->  (
( ( F `  r )  =  0  ->  ( A  =  r  \/  x  <_ 
( abs `  ( A  -  r )
) ) )  <->  ( ( F `  ( p  /  q ) )  =  0  ->  ( A  =  ( p  /  q )  \/  x  <_  ( abs `  ( A  -  (
p  /  q ) ) ) ) ) ) )
114113rspcv 3210 . . . . . . 7  |-  ( ( p  /  q )  e.  RR  ->  ( A. r  e.  RR  ( ( F `  r )  =  0  ->  ( A  =  r  \/  x  <_ 
( abs `  ( A  -  r )
) ) )  -> 
( ( F `  ( p  /  q
) )  =  0  ->  ( A  =  ( p  /  q
)  \/  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
115105, 114syl 16 . . . . . 6  |-  ( ( p  e.  ZZ  /\  q  e.  NN )  ->  ( A. r  e.  RR  ( ( F `
 r )  =  0  ->  ( A  =  r  \/  x  <_  ( abs `  ( A  -  r )
) ) )  -> 
( ( F `  ( p  /  q
) )  =  0  ->  ( A  =  ( p  /  q
)  \/  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
116115com12 31 . . . . 5  |-  ( A. r  e.  RR  (
( F `  r
)  =  0  -> 
( A  =  r  \/  x  <_  ( abs `  ( A  -  r ) ) ) )  ->  ( (
p  e.  ZZ  /\  q  e.  NN )  ->  ( ( F `  ( p  /  q
) )  =  0  ->  ( A  =  ( p  /  q
)  \/  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
117116ralrimivv 2884 . . . 4  |-  ( A. r  e.  RR  (
( F `  r
)  =  0  -> 
( A  =  r  \/  x  <_  ( abs `  ( A  -  r ) ) ) )  ->  A. p  e.  ZZ  A. q  e.  NN  ( ( F `
 ( p  / 
q ) )  =  0  ->  ( A  =  ( p  / 
q )  \/  x  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
118117reximi 2932 . . 3  |-  ( E. x  e.  RR+  A. r  e.  RR  ( ( F `
 r )  =  0  ->  ( A  =  r  \/  x  <_  ( abs `  ( A  -  r )
) ) )  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( ( F `
 ( p  / 
q ) )  =  0  ->  ( A  =  ( p  / 
q )  \/  x  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
119102, 118syl 16 . 2  |-  ( ph  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =  0  -> 
( A  =  ( p  /  q )  \/  x  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
120 simplr 754 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  x  e.  RR+ )
121 simprr 756 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  q  e.  NN )
12210nnnn0d 10851 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  e.  NN0 )
123122ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  N  e.  NN0 )
124121, 123nnexpcld 12298 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( q ^ N )  e.  NN )
125124nnrpd 11254 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( q ^ N )  e.  RR+ )
126120, 125rpdivcld 11272 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( x  /  ( q ^ N ) )  e.  RR+ )
127126rpred 11255 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( x  /  ( q ^ N ) )  e.  RR )
128127adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  (
x  /  ( q ^ N ) )  e.  RR )
129 simpllr 758 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  x  e.  RR+ )
130129rpred 11255 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  x  e.  RR )
13155ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  A  e.  RR )
132105adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( p  /  q )  e.  RR )
133131, 132resubcld 9986 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( A  -  ( p  / 
q ) )  e.  RR )
134133recnd 9621 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( A  -  ( p  / 
q ) )  e.  CC )
135134abscld 13229 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( abs `  ( A  -  (
p  /  q ) ) )  e.  RR )
136135adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  ( abs `  ( A  -  ( p  /  q
) ) )  e.  RR )
137 rpre 11225 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  x  e.  RR )
138137ad2antlr 726 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  x  e.  RR )
139120rpcnne0d 11264 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( x  e.  CC  /\  x  =/=  0 ) )
140 divid 10233 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  x  =/=  0 )  -> 
( x  /  x
)  =  1 )
141139, 140syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( x  /  x )  =  1 )
142124nnge1d 10577 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  1  <_  ( q ^ N ) )
143141, 142eqbrtrd 4467 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( x  /  x )  <_  (
q ^ N ) )
144138, 120, 125, 143lediv23d 11312 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( x  /  ( q ^ N ) )  <_  x )
145144adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  (
x  /  ( q ^ N ) )  <_  x )
146 simpr 461 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  x  <_  ( abs `  ( A  -  ( p  /  q ) ) ) )
147128, 130, 136, 145, 146letrd 9737 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  /\  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )  ->  (
x  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) )
148147ex 434 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( x  <_  ( abs `  ( A  -  ( p  /  q ) ) )  ->  ( x  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) )
149148orim2d 838 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( ( A  =  ( p  /  q )  \/  x  <_  ( abs `  ( A  -  (
p  /  q ) ) ) )  -> 
( A  =  ( p  /  q )  \/  ( x  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
150149imim2d 52 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
p  e.  ZZ  /\  q  e.  NN )
)  ->  ( (
( F `  (
p  /  q ) )  =  0  -> 
( A  =  ( p  /  q )  \/  x  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) )  ->  ( ( F `  ( p  /  q ) )  =  0  ->  ( A  =  ( p  /  q )  \/  ( x  /  (
q ^ N ) )  <_  ( abs `  ( A  -  (
p  /  q ) ) ) ) ) ) )
151150anassrs 648 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  p  e.  ZZ )  /\  q  e.  NN )  ->  ( ( ( F `  ( p  /  q ) )  =  0  ->  ( A  =  ( p  /  q )  \/  x  <_  ( abs `  ( A  -  (
p  /  q ) ) ) ) )  ->  ( ( F `
 ( p  / 
q ) )  =  0  ->  ( A  =  ( p  / 
q )  \/  (
x  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
152151ralimdva 2872 . . . 4  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  p  e.  ZZ )  ->  ( A. q  e.  NN  ( ( F `  ( p  /  q
) )  =  0  ->  ( A  =  ( p  /  q
)  \/  x  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) )  ->  A. q  e.  NN  ( ( F `  ( p  /  q
) )  =  0  ->  ( A  =  ( p  /  q
)  \/  ( x  /  ( q ^ N ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
153152ralimdva 2872 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( A. p  e.  ZZ  A. q  e.  NN  ( ( F `
 ( p  / 
q ) )  =  0  ->  ( A  =  ( p  / 
q )  \/  x  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) )  ->  A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =  0  -> 
( A  =  ( p  /  q )  \/  ( x  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) ) )
154153reximdva 2938 . 2  |-  ( ph  ->  ( E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =  0  -> 
( A  =  ( p  /  q )  \/  x  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) )  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( ( F `
 ( p  / 
q ) )  =  0  ->  ( A  =  ( p  / 
q )  \/  (
x  /  ( q ^ N ) )  <_  ( abs `  ( A  -  ( p  /  q ) ) ) ) ) ) )
155119, 154mpd 15 1  |-  ( ph  ->  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  (
( F `  (
p  /  q ) )  =  0  -> 
( A  =  ( p  /  q )  \/  ( x  / 
( q ^ N
) )  <_  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1379    e. wcel 1767   {cab 2452    =/= wne 2662   A.wral 2814   E.wrex 2815   {crab 2818    u. cun 3474    C_ wss 3476   (/)c0 3785   {csn 4027   class class class wbr 4447    Or wor 4799   `'ccnv 4998   "cima 5002    Fn wfn 5582   -->wf 5583   ` cfv 5587  (class class class)co 6283   Fincfn 7516   supcsup 7899   CCcc 9489   RRcr 9490   0cc0 9491   1c1 9492    < clt 9627    <_ cle 9628    - cmin 9804    / cdiv 10205   NNcn 10535   NN0cn0 10794   ZZcz 10863   QQcq 11181   RR+crp 11219   ^cexp 12133   #chash 12372   abscabs 13029   0pc0p 21827  Polycply 22332  degcdgr 22335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575  ax-inf2 8057  ax-cnex 9547  ax-resscn 9548  ax-1cn 9549  ax-icn 9550  ax-addcl 9551  ax-addrcl 9552  ax-mulcl 9553  ax-mulrcl 9554  ax-mulcom 9555  ax-addass 9556  ax-mulass 9557  ax-distr 9558  ax-i2m1 9559  ax-1ne0 9560  ax-1rid 9561  ax-rnegex 9562  ax-rrecex 9563  ax-cnre 9564  ax-pre-lttri 9565  ax-pre-lttrn 9566  ax-pre-ltadd 9567  ax-pre-mulgt0 9568  ax-pre-sup 9569  ax-addf 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-isom 5596  df-riota 6244  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-of 6523  df-om 6680  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-sup 7900  df-oi 7934  df-card 8319  df-cda 8547  df-pnf 9629  df-mnf 9630  df-xr 9631  df-ltxr 9632  df-le 9633  df-sub 9806  df-neg 9807  df-div 10206  df-nn 10536  df-2 10593  df-3 10594  df-n0 10795  df-z 10864  df-uz 11082  df-q 11182  df-rp 11220  df-fz 11672  df-fzo 11792  df-fl 11896  df-seq 12075  df-exp 12134  df-hash 12373  df-cj 12894  df-re 12895  df-im 12896  df-sqrt 13030  df-abs 13031  df-clim 13273  df-rlim 13274  df-sum 13471  df-0p 21828  df-ply 22336  df-idp 22337  df-coe 22338  df-dgr 22339  df-quot 22437
This theorem is referenced by:  aalioulem6  22483
  Copyright terms: Public domain W3C validator