MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aalioulem1 Structured version   Unicode version

Theorem aalioulem1 22894
Description: Lemma for aaliou 22900. An integer polynomial cannot inflate the denominator of a rational by more than its degree. (Contributed by Stefan O'Rear, 12-Nov-2014.)
Hypotheses
Ref Expression
aalioulem1.a  |-  ( ph  ->  F  e.  (Poly `  ZZ ) )
aalioulem1.b  |-  ( ph  ->  X  e.  ZZ )
aalioulem1.c  |-  ( ph  ->  Y  e.  NN )
Assertion
Ref Expression
aalioulem1  |-  ( ph  ->  ( ( F `  ( X  /  Y
) )  x.  ( Y ^ (deg `  F
) ) )  e.  ZZ )

Proof of Theorem aalioulem1
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 aalioulem1.a . . . . 5  |-  ( ph  ->  F  e.  (Poly `  ZZ ) )
2 aalioulem1.b . . . . . . 7  |-  ( ph  ->  X  e.  ZZ )
32zcnd 10966 . . . . . 6  |-  ( ph  ->  X  e.  CC )
4 aalioulem1.c . . . . . . 7  |-  ( ph  ->  Y  e.  NN )
54nncnd 10547 . . . . . 6  |-  ( ph  ->  Y  e.  CC )
64nnne0d 10576 . . . . . 6  |-  ( ph  ->  Y  =/=  0 )
73, 5, 6divcld 10316 . . . . 5  |-  ( ph  ->  ( X  /  Y
)  e.  CC )
8 eqid 2454 . . . . . 6  |-  (coeff `  F )  =  (coeff `  F )
9 eqid 2454 . . . . . 6  |-  (deg `  F )  =  (deg
`  F )
108, 9coeid2 22802 . . . . 5  |-  ( ( F  e.  (Poly `  ZZ )  /\  ( X  /  Y )  e.  CC )  ->  ( F `  ( X  /  Y ) )  = 
sum_ a  e.  ( 0 ... (deg `  F ) ) ( ( (coeff `  F
) `  a )  x.  ( ( X  /  Y ) ^ a
) ) )
111, 7, 10syl2anc 659 . . . 4  |-  ( ph  ->  ( F `  ( X  /  Y ) )  =  sum_ a  e.  ( 0 ... (deg `  F ) ) ( ( (coeff `  F
) `  a )  x.  ( ( X  /  Y ) ^ a
) ) )
1211oveq1d 6285 . . 3  |-  ( ph  ->  ( ( F `  ( X  /  Y
) )  x.  ( Y ^ (deg `  F
) ) )  =  ( sum_ a  e.  ( 0 ... (deg `  F ) ) ( ( (coeff `  F
) `  a )  x.  ( ( X  /  Y ) ^ a
) )  x.  ( Y ^ (deg `  F
) ) ) )
13 fzfid 12065 . . . 4  |-  ( ph  ->  ( 0 ... (deg `  F ) )  e. 
Fin )
14 dgrcl 22796 . . . . . 6  |-  ( F  e.  (Poly `  ZZ )  ->  (deg `  F
)  e.  NN0 )
151, 14syl 16 . . . . 5  |-  ( ph  ->  (deg `  F )  e.  NN0 )
165, 15expcld 12292 . . . 4  |-  ( ph  ->  ( Y ^ (deg `  F ) )  e.  CC )
17 0z 10871 . . . . . . . 8  |-  0  e.  ZZ
188coef2 22794 . . . . . . . 8  |-  ( ( F  e.  (Poly `  ZZ )  /\  0  e.  ZZ )  ->  (coeff `  F ) : NN0 --> ZZ )
191, 17, 18sylancl 660 . . . . . . 7  |-  ( ph  ->  (coeff `  F ) : NN0 --> ZZ )
20 elfznn0 11775 . . . . . . 7  |-  ( a  e.  ( 0 ... (deg `  F )
)  ->  a  e.  NN0 )
21 ffvelrn 6005 . . . . . . 7  |-  ( ( (coeff `  F ) : NN0 --> ZZ  /\  a  e.  NN0 )  ->  (
(coeff `  F ) `  a )  e.  ZZ )
2219, 20, 21syl2an 475 . . . . . 6  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( (coeff `  F ) `  a
)  e.  ZZ )
2322zcnd 10966 . . . . 5  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( (coeff `  F ) `  a
)  e.  CC )
24 expcl 12166 . . . . . 6  |-  ( ( ( X  /  Y
)  e.  CC  /\  a  e.  NN0 )  -> 
( ( X  /  Y ) ^ a
)  e.  CC )
257, 20, 24syl2an 475 . . . . 5  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( X  /  Y ) ^
a )  e.  CC )
2623, 25mulcld 9605 . . . 4  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( (coeff `  F ) `  a
)  x.  ( ( X  /  Y ) ^ a ) )  e.  CC )
2713, 16, 26fsummulc1 13682 . . 3  |-  ( ph  ->  ( sum_ a  e.  ( 0 ... (deg `  F ) ) ( ( (coeff `  F
) `  a )  x.  ( ( X  /  Y ) ^ a
) )  x.  ( Y ^ (deg `  F
) ) )  = 
sum_ a  e.  ( 0 ... (deg `  F ) ) ( ( ( (coeff `  F ) `  a
)  x.  ( ( X  /  Y ) ^ a ) )  x.  ( Y ^
(deg `  F )
) ) )
2812, 27eqtrd 2495 . 2  |-  ( ph  ->  ( ( F `  ( X  /  Y
) )  x.  ( Y ^ (deg `  F
) ) )  = 
sum_ a  e.  ( 0 ... (deg `  F ) ) ( ( ( (coeff `  F ) `  a
)  x.  ( ( X  /  Y ) ^ a ) )  x.  ( Y ^
(deg `  F )
) ) )
295adantr 463 . . . . . 6  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  Y  e.  CC )
3015adantr 463 . . . . . 6  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  (deg `  F
)  e.  NN0 )
3129, 30expcld 12292 . . . . 5  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( Y ^
(deg `  F )
)  e.  CC )
3223, 25, 31mulassd 9608 . . . 4  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( ( (coeff `  F ) `  a )  x.  (
( X  /  Y
) ^ a ) )  x.  ( Y ^ (deg `  F
) ) )  =  ( ( (coeff `  F ) `  a
)  x.  ( ( ( X  /  Y
) ^ a )  x.  ( Y ^
(deg `  F )
) ) ) )
332adantr 463 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  X  e.  ZZ )
3433zcnd 10966 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  X  e.  CC )
356adantr 463 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  Y  =/=  0
)
3620adantl 464 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  a  e.  NN0 )
3734, 29, 35, 36expdivd 12306 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( X  /  Y ) ^
a )  =  ( ( X ^ a
)  /  ( Y ^ a ) ) )
3837oveq1d 6285 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( ( X  /  Y ) ^ a )  x.  ( Y ^ (deg `  F ) ) )  =  ( ( ( X ^ a )  /  ( Y ^
a ) )  x.  ( Y ^ (deg `  F ) ) ) )
3934, 36expcld 12292 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( X ^
a )  e.  CC )
40 nnexpcl 12161 . . . . . . . . . 10  |-  ( ( Y  e.  NN  /\  a  e.  NN0 )  -> 
( Y ^ a
)  e.  NN )
414, 20, 40syl2an 475 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( Y ^
a )  e.  NN )
4241nncnd 10547 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( Y ^
a )  e.  CC )
4341nnne0d 10576 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( Y ^
a )  =/=  0
)
4439, 42, 31, 43div13d 10340 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( ( X ^ a )  /  ( Y ^
a ) )  x.  ( Y ^ (deg `  F ) ) )  =  ( ( ( Y ^ (deg `  F ) )  / 
( Y ^ a
) )  x.  ( X ^ a ) ) )
4538, 44eqtrd 2495 . . . . . 6  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( ( X  /  Y ) ^ a )  x.  ( Y ^ (deg `  F ) ) )  =  ( ( ( Y ^ (deg `  F ) )  / 
( Y ^ a
) )  x.  ( X ^ a ) ) )
46 elfzelz 11691 . . . . . . . . . 10  |-  ( a  e.  ( 0 ... (deg `  F )
)  ->  a  e.  ZZ )
4746adantl 464 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  a  e.  ZZ )
4830nn0zd 10963 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  (deg `  F
)  e.  ZZ )
4929, 35, 47, 48expsubd 12303 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( Y ^
( (deg `  F
)  -  a ) )  =  ( ( Y ^ (deg `  F ) )  / 
( Y ^ a
) ) )
504adantr 463 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  Y  e.  NN )
5150nnzd 10964 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  Y  e.  ZZ )
52 fznn0sub 11720 . . . . . . . . . 10  |-  ( a  e.  ( 0 ... (deg `  F )
)  ->  ( (deg `  F )  -  a
)  e.  NN0 )
5352adantl 464 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( (deg `  F )  -  a
)  e.  NN0 )
54 zexpcl 12163 . . . . . . . . 9  |-  ( ( Y  e.  ZZ  /\  ( (deg `  F )  -  a )  e. 
NN0 )  ->  ( Y ^ ( (deg `  F )  -  a
) )  e.  ZZ )
5551, 53, 54syl2anc 659 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( Y ^
( (deg `  F
)  -  a ) )  e.  ZZ )
5649, 55eqeltrrd 2543 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( Y ^ (deg `  F
) )  /  ( Y ^ a ) )  e.  ZZ )
57 zexpcl 12163 . . . . . . . 8  |-  ( ( X  e.  ZZ  /\  a  e.  NN0 )  -> 
( X ^ a
)  e.  ZZ )
582, 20, 57syl2an 475 . . . . . . 7  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( X ^
a )  e.  ZZ )
5956, 58zmulcld 10971 . . . . . 6  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( ( Y ^ (deg `  F ) )  / 
( Y ^ a
) )  x.  ( X ^ a ) )  e.  ZZ )
6045, 59eqeltrd 2542 . . . . 5  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( ( X  /  Y ) ^ a )  x.  ( Y ^ (deg `  F ) ) )  e.  ZZ )
6122, 60zmulcld 10971 . . . 4  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( (coeff `  F ) `  a
)  x.  ( ( ( X  /  Y
) ^ a )  x.  ( Y ^
(deg `  F )
) ) )  e.  ZZ )
6232, 61eqeltrd 2542 . . 3  |-  ( (
ph  /\  a  e.  ( 0 ... (deg `  F ) ) )  ->  ( ( ( (coeff `  F ) `  a )  x.  (
( X  /  Y
) ^ a ) )  x.  ( Y ^ (deg `  F
) ) )  e.  ZZ )
6313, 62fsumzcl 13639 . 2  |-  ( ph  -> 
sum_ a  e.  ( 0 ... (deg `  F ) ) ( ( ( (coeff `  F ) `  a
)  x.  ( ( X  /  Y ) ^ a ) )  x.  ( Y ^
(deg `  F )
) )  e.  ZZ )
6428, 63eqeltrd 2542 1  |-  ( ph  ->  ( ( F `  ( X  /  Y
) )  x.  ( Y ^ (deg `  F
) ) )  e.  ZZ )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823    =/= wne 2649   -->wf 5566   ` cfv 5570  (class class class)co 6270   CCcc 9479   0cc0 9481    x. cmul 9486    - cmin 9796    / cdiv 10202   NNcn 10531   NN0cn0 10791   ZZcz 10860   ...cfz 11675   ^cexp 12148   sum_csu 13590  Polycply 22747  coeffccoe 22749  degcdgr 22750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-map 7414  df-pm 7415  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-sup 7893  df-oi 7927  df-card 8311  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11083  df-rp 11222  df-fz 11676  df-fzo 11800  df-fl 11910  df-seq 12090  df-exp 12149  df-hash 12388  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151  df-clim 13393  df-rlim 13394  df-sum 13591  df-0p 22243  df-ply 22751  df-coe 22753  df-dgr 22754
This theorem is referenced by:  aalioulem4  22897
  Copyright terms: Public domain W3C validator