MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem8 Structured version   Unicode version

Theorem aaliou3lem8 21698
Description: Lemma for aaliou3 21704. (Contributed by Stefan O'Rear, 20-Nov-2014.)
Assertion
Ref Expression
aaliou3lem8  |-  ( ( A  e.  NN  /\  B  e.  RR+ )  ->  E. x  e.  NN  ( 2  x.  (
2 ^ -u ( ! `  ( x  +  1 ) ) ) )  <_  ( B  /  ( ( 2 ^ ( ! `  x ) ) ^ A ) ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem aaliou3lem8
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 2rp 10986 . . . . . 6  |-  2  e.  RR+
2 rpdivcl 11003 . . . . . 6  |-  ( ( 2  e.  RR+  /\  B  e.  RR+ )  ->  (
2  /  B )  e.  RR+ )
31, 2mpan 665 . . . . 5  |-  ( B  e.  RR+  ->  ( 2  /  B )  e.  RR+ )
43rpred 11017 . . . 4  |-  ( B  e.  RR+  ->  ( 2  /  B )  e.  RR )
5 2re 10381 . . . . 5  |-  2  e.  RR
6 1lt2 10478 . . . . 5  |-  1  <  2
7 expnbnd 11979 . . . . 5  |-  ( ( ( 2  /  B
)  e.  RR  /\  2  e.  RR  /\  1  <  2 )  ->  E. a  e.  NN  ( 2  /  B )  <  (
2 ^ a ) )
85, 6, 7mp3an23 1301 . . . 4  |-  ( ( 2  /  B )  e.  RR  ->  E. a  e.  NN  ( 2  /  B )  <  (
2 ^ a ) )
94, 8syl 16 . . 3  |-  ( B  e.  RR+  ->  E. a  e.  NN  ( 2  /  B )  <  (
2 ^ a ) )
109adantl 463 . 2  |-  ( ( A  e.  NN  /\  B  e.  RR+ )  ->  E. a  e.  NN  ( 2  /  B
)  <  ( 2 ^ a ) )
11 simprl 750 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  a  e.  NN )
12 simpll 748 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  A  e.  NN )
13 nnaddm1cl 10691 . . . 4  |-  ( ( a  e.  NN  /\  A  e.  NN )  ->  ( ( a  +  A )  -  1 )  e.  NN )
1411, 12, 13syl2anc 656 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
a  +  A )  -  1 )  e.  NN )
15 simplr 749 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  B  e.  RR+ )
16 rerpdivcl 11008 . . . . . . . . . 10  |-  ( ( 2  e.  RR  /\  B  e.  RR+ )  -> 
( 2  /  B
)  e.  RR )
175, 15, 16sylancr 658 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2  /  B )  e.  RR )
1811nnnn0d 10626 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  a  e.  NN0 )
19 reexpcl 11868 . . . . . . . . . 10  |-  ( ( 2  e.  RR  /\  a  e.  NN0 )  -> 
( 2 ^ a
)  e.  RR )
205, 18, 19sylancr 658 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2 ^ a )  e.  RR )
2111, 12nnaddcld 10358 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( a  +  A )  e.  NN )
22 nnm1nn0 10611 . . . . . . . . . . . . . . . 16  |-  ( ( a  +  A )  e.  NN  ->  (
( a  +  A
)  -  1 )  e.  NN0 )
2321, 22syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
a  +  A )  -  1 )  e. 
NN0 )
24 peano2nn0 10610 . . . . . . . . . . . . . . 15  |-  ( ( ( a  +  A
)  -  1 )  e.  NN0  ->  ( ( ( a  +  A
)  -  1 )  +  1 )  e. 
NN0 )
2523, 24syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
( a  +  A
)  -  1 )  +  1 )  e. 
NN0 )
26 faccl 12047 . . . . . . . . . . . . . 14  |-  ( ( ( ( a  +  A )  -  1 )  +  1 )  e.  NN0  ->  ( ! `
 ( ( ( a  +  A )  -  1 )  +  1 ) )  e.  NN )
2725, 26syl 16 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( ! `  ( ( ( a  +  A )  - 
1 )  +  1 ) )  e.  NN )
2827nnzd 10736 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( ! `  ( ( ( a  +  A )  - 
1 )  +  1 ) )  e.  ZZ )
29 faccl 12047 . . . . . . . . . . . . . . 15  |-  ( ( ( a  +  A
)  -  1 )  e.  NN0  ->  ( ! `
 ( ( a  +  A )  - 
1 ) )  e.  NN )
3023, 29syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( ! `  ( ( a  +  A )  -  1 ) )  e.  NN )
3130nnzd 10736 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( ! `  ( ( a  +  A )  -  1 ) )  e.  ZZ )
3212nnzd 10736 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  A  e.  ZZ )
3331, 32zmulcld 10743 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( ( ! `  ( (
a  +  A )  -  1 ) )  x.  A )  e.  ZZ )
3428, 33zsubcld 10742 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( ( ! `  ( (
( a  +  A
)  -  1 )  +  1 ) )  -  ( ( ! `
 ( ( a  +  A )  - 
1 ) )  x.  A ) )  e.  ZZ )
35 rpexpcl 11870 . . . . . . . . . . 11  |-  ( ( 2  e.  RR+  /\  (
( ! `  (
( ( a  +  A )  -  1 )  +  1 ) )  -  ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  A ) )  e.  ZZ )  -> 
( 2 ^ (
( ! `  (
( ( a  +  A )  -  1 )  +  1 ) )  -  ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  A ) ) )  e.  RR+ )
361, 34, 35sylancr 658 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2 ^ ( ( ! `
 ( ( ( a  +  A )  -  1 )  +  1 ) )  -  ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  A
) ) )  e.  RR+ )
3736rpred 11017 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2 ^ ( ( ! `
 ( ( ( a  +  A )  -  1 )  +  1 ) )  -  ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  A
) ) )  e.  RR )
38 simprr 751 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2  /  B )  < 
( 2 ^ a
) )
3917, 20, 38ltled 9512 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2  /  B )  <_ 
( 2 ^ a
) )
405a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  2  e.  RR )
41 1le2 10525 . . . . . . . . . . 11  |-  1  <_  2
4241a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  1  <_  2 )
4311nnred 10327 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  a  e.  RR )
4430nnred 10327 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( ! `  ( ( a  +  A )  -  1 ) )  e.  RR )
4518nn0ge0d 10629 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  0  <_  a )
4630nnge1d 10354 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  1  <_  ( ! `  ( ( a  +  A )  -  1 ) ) )
4743, 44, 45, 46lemulge12d 10261 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  a  <_  ( ( ! `  (
( a  +  A
)  -  1 ) )  x.  a ) )
48 facp1 12042 . . . . . . . . . . . . . . 15  |-  ( ( ( a  +  A
)  -  1 )  e.  NN0  ->  ( ! `
 ( ( ( a  +  A )  -  1 )  +  1 ) )  =  ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  (
( ( a  +  A )  -  1 )  +  1 ) ) )
4923, 48syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( ! `  ( ( ( a  +  A )  - 
1 )  +  1 ) )  =  ( ( ! `  (
( a  +  A
)  -  1 ) )  x.  ( ( ( a  +  A
)  -  1 )  +  1 ) ) )
5049oveq1d 6097 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( ( ! `  ( (
( a  +  A
)  -  1 )  +  1 ) )  -  ( ( ! `
 ( ( a  +  A )  - 
1 ) )  x.  A ) )  =  ( ( ( ! `
 ( ( a  +  A )  - 
1 ) )  x.  ( ( ( a  +  A )  - 
1 )  +  1 ) )  -  (
( ! `  (
( a  +  A
)  -  1 ) )  x.  A ) ) )
5130nncnd 10328 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( ! `  ( ( a  +  A )  -  1 ) )  e.  CC )
5225nn0cnd 10628 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
( a  +  A
)  -  1 )  +  1 )  e.  CC )
5312nncnd 10328 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  A  e.  CC )
5451, 52, 53subdid 9790 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( ( ! `  ( (
a  +  A )  -  1 ) )  x.  ( ( ( ( a  +  A
)  -  1 )  +  1 )  -  A ) )  =  ( ( ( ! `
 ( ( a  +  A )  - 
1 ) )  x.  ( ( ( a  +  A )  - 
1 )  +  1 ) )  -  (
( ! `  (
( a  +  A
)  -  1 ) )  x.  A ) ) )
5521nncnd 10328 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( a  +  A )  e.  CC )
56 ax-1cn 9330 . . . . . . . . . . . . . . . . . 18  |-  1  e.  CC
5756a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  1  e.  CC )
5855, 57npcand 9713 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
( a  +  A
)  -  1 )  +  1 )  =  ( a  +  A
) )
5958oveq1d 6097 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
( ( a  +  A )  -  1 )  +  1 )  -  A )  =  ( ( a  +  A )  -  A
) )
6011nncnd 10328 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  a  e.  CC )
6160, 53pncand 9710 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
a  +  A )  -  A )  =  a )
6259, 61eqtrd 2467 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
( ( a  +  A )  -  1 )  +  1 )  -  A )  =  a )
6362oveq2d 6098 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( ( ! `  ( (
a  +  A )  -  1 ) )  x.  ( ( ( ( a  +  A
)  -  1 )  +  1 )  -  A ) )  =  ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  a
) )
6450, 54, 633eqtr2d 2473 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( ( ! `  ( (
( a  +  A
)  -  1 )  +  1 ) )  -  ( ( ! `
 ( ( a  +  A )  - 
1 ) )  x.  A ) )  =  ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  a
) )
6547, 64breqtrrd 4308 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  a  <_  ( ( ! `  (
( ( a  +  A )  -  1 )  +  1 ) )  -  ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  A ) ) )
6611nnzd 10736 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  a  e.  ZZ )
67 eluz 10864 . . . . . . . . . . . 12  |-  ( ( a  e.  ZZ  /\  ( ( ! `  ( ( ( a  +  A )  - 
1 )  +  1 ) )  -  (
( ! `  (
( a  +  A
)  -  1 ) )  x.  A ) )  e.  ZZ )  ->  ( ( ( ! `  ( ( ( a  +  A
)  -  1 )  +  1 ) )  -  ( ( ! `
 ( ( a  +  A )  - 
1 ) )  x.  A ) )  e.  ( ZZ>= `  a )  <->  a  <_  ( ( ! `
 ( ( ( a  +  A )  -  1 )  +  1 ) )  -  ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  A
) ) ) )
6866, 34, 67syl2anc 656 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
( ! `  (
( ( a  +  A )  -  1 )  +  1 ) )  -  ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  A ) )  e.  ( ZZ>= `  a
)  <->  a  <_  (
( ! `  (
( ( a  +  A )  -  1 )  +  1 ) )  -  ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  A ) ) ) )
6965, 68mpbird 232 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( ( ! `  ( (
( a  +  A
)  -  1 )  +  1 ) )  -  ( ( ! `
 ( ( a  +  A )  - 
1 ) )  x.  A ) )  e.  ( ZZ>= `  a )
)
7040, 42, 69leexp2ad 12026 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2 ^ a )  <_ 
( 2 ^ (
( ! `  (
( ( a  +  A )  -  1 )  +  1 ) )  -  ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  A ) ) ) )
7117, 20, 37, 39, 70letrd 9518 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2  /  B )  <_ 
( 2 ^ (
( ! `  (
( ( a  +  A )  -  1 )  +  1 ) )  -  ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  A ) ) ) )
72 rpcnne0 10998 . . . . . . . . . . 11  |-  ( 2  e.  RR+  ->  ( 2  e.  CC  /\  2  =/=  0 ) )
731, 72mp1i 12 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2  e.  CC  /\  2  =/=  0 ) )
74 expsub 11897 . . . . . . . . . 10  |-  ( ( ( 2  e.  CC  /\  2  =/=  0 )  /\  ( ( ! `
 ( ( ( a  +  A )  -  1 )  +  1 ) )  e.  ZZ  /\  ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  A )  e.  ZZ ) )  -> 
( 2 ^ (
( ! `  (
( ( a  +  A )  -  1 )  +  1 ) )  -  ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  A ) ) )  =  ( ( 2 ^ ( ! `
 ( ( ( a  +  A )  -  1 )  +  1 ) ) )  /  ( 2 ^ ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  A
) ) ) )
7573, 28, 33, 74syl12anc 1211 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2 ^ ( ( ! `
 ( ( ( a  +  A )  -  1 )  +  1 ) )  -  ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  A
) ) )  =  ( ( 2 ^ ( ! `  (
( ( a  +  A )  -  1 )  +  1 ) ) )  /  (
2 ^ ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  A ) ) ) )
76 2cn 10382 . . . . . . . . . . . 12  |-  2  e.  CC
7776a1i 11 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  2  e.  CC )
7812nnnn0d 10626 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  A  e.  NN0 )
7930nnnn0d 10626 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( ! `  ( ( a  +  A )  -  1 ) )  e.  NN0 )
8077, 78, 79expmuld 11997 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2 ^ ( ( ! `
 ( ( a  +  A )  - 
1 ) )  x.  A ) )  =  ( ( 2 ^ ( ! `  (
( a  +  A
)  -  1 ) ) ) ^ A
) )
8180oveq2d 6098 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
2 ^ ( ! `
 ( ( ( a  +  A )  -  1 )  +  1 ) ) )  /  ( 2 ^ ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  A
) ) )  =  ( ( 2 ^ ( ! `  (
( ( a  +  A )  -  1 )  +  1 ) ) )  /  (
( 2 ^ ( ! `  ( (
a  +  A )  -  1 ) ) ) ^ A ) ) )
82 rpexpcl 11870 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR+  /\  ( ! `  ( (
( a  +  A
)  -  1 )  +  1 ) )  e.  ZZ )  -> 
( 2 ^ ( ! `  ( (
( a  +  A
)  -  1 )  +  1 ) ) )  e.  RR+ )
831, 28, 82sylancr 658 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2 ^ ( ! `  ( ( ( a  +  A )  - 
1 )  +  1 ) ) )  e.  RR+ )
8483rpcnd 11019 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2 ^ ( ! `  ( ( ( a  +  A )  - 
1 )  +  1 ) ) )  e.  CC )
85 rpexpcl 11870 . . . . . . . . . . . . 13  |-  ( ( 2  e.  RR+  /\  ( ! `  ( (
a  +  A )  -  1 ) )  e.  ZZ )  -> 
( 2 ^ ( ! `  ( (
a  +  A )  -  1 ) ) )  e.  RR+ )
861, 31, 85sylancr 658 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2 ^ ( ! `  ( ( a  +  A )  -  1 ) ) )  e.  RR+ )
8786, 32rpexpcld 12017 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
2 ^ ( ! `
 ( ( a  +  A )  - 
1 ) ) ) ^ A )  e.  RR+ )
8887rpcnd 11019 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
2 ^ ( ! `
 ( ( a  +  A )  - 
1 ) ) ) ^ A )  e.  CC )
8987rpne0d 11022 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
2 ^ ( ! `
 ( ( a  +  A )  - 
1 ) ) ) ^ A )  =/=  0 )
9084, 88, 89divrecd 10100 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
2 ^ ( ! `
 ( ( ( a  +  A )  -  1 )  +  1 ) ) )  /  ( ( 2 ^ ( ! `  ( ( a  +  A )  -  1 ) ) ) ^ A ) )  =  ( ( 2 ^ ( ! `  (
( ( a  +  A )  -  1 )  +  1 ) ) )  x.  (
1  /  ( ( 2 ^ ( ! `
 ( ( a  +  A )  - 
1 ) ) ) ^ A ) ) ) )
9175, 81, 903eqtrrd 2472 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
2 ^ ( ! `
 ( ( ( a  +  A )  -  1 )  +  1 ) ) )  x.  ( 1  / 
( ( 2 ^ ( ! `  (
( a  +  A
)  -  1 ) ) ) ^ A
) ) )  =  ( 2 ^ (
( ! `  (
( ( a  +  A )  -  1 )  +  1 ) )  -  ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  A ) ) ) )
9271, 91breqtrrd 4308 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2  /  B )  <_ 
( ( 2 ^ ( ! `  (
( ( a  +  A )  -  1 )  +  1 ) ) )  x.  (
1  /  ( ( 2 ^ ( ! `
 ( ( a  +  A )  - 
1 ) ) ) ^ A ) ) ) )
9387rpreccld 11027 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 1  /  ( ( 2 ^ ( ! `  ( ( a  +  A )  -  1 ) ) ) ^ A ) )  e.  RR+ )
9483, 93rpmulcld 11033 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
2 ^ ( ! `
 ( ( ( a  +  A )  -  1 )  +  1 ) ) )  x.  ( 1  / 
( ( 2 ^ ( ! `  (
( a  +  A
)  -  1 ) ) ) ^ A
) ) )  e.  RR+ )
9594rpred 11017 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
2 ^ ( ! `
 ( ( ( a  +  A )  -  1 )  +  1 ) ) )  x.  ( 1  / 
( ( 2 ^ ( ! `  (
( a  +  A
)  -  1 ) ) ) ^ A
) ) )  e.  RR )
9640, 95, 15ledivmuld 11066 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
2  /  B )  <_  ( ( 2 ^ ( ! `  ( ( ( a  +  A )  - 
1 )  +  1 ) ) )  x.  ( 1  /  (
( 2 ^ ( ! `  ( (
a  +  A )  -  1 ) ) ) ^ A ) ) )  <->  2  <_  ( B  x.  ( ( 2 ^ ( ! `
 ( ( ( a  +  A )  -  1 )  +  1 ) ) )  x.  ( 1  / 
( ( 2 ^ ( ! `  (
( a  +  A
)  -  1 ) ) ) ^ A
) ) ) ) ) )
9792, 96mpbid 210 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  2  <_  ( B  x.  ( ( 2 ^ ( ! `
 ( ( ( a  +  A )  -  1 )  +  1 ) ) )  x.  ( 1  / 
( ( 2 ^ ( ! `  (
( a  +  A
)  -  1 ) ) ) ^ A
) ) ) ) )
9815rpcnd 11019 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  B  e.  CC )
9993rpcnd 11019 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 1  /  ( ( 2 ^ ( ! `  ( ( a  +  A )  -  1 ) ) ) ^ A ) )  e.  CC )
10098, 84, 99mul12d 9568 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( B  x.  ( ( 2 ^ ( ! `  (
( ( a  +  A )  -  1 )  +  1 ) ) )  x.  (
1  /  ( ( 2 ^ ( ! `
 ( ( a  +  A )  - 
1 ) ) ) ^ A ) ) ) )  =  ( ( 2 ^ ( ! `  ( (
( a  +  A
)  -  1 )  +  1 ) ) )  x.  ( B  x.  ( 1  / 
( ( 2 ^ ( ! `  (
( a  +  A
)  -  1 ) ) ) ^ A
) ) ) ) )
10197, 100breqtrd 4306 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  2  <_  ( ( 2 ^ ( ! `  ( (
( a  +  A
)  -  1 )  +  1 ) ) )  x.  ( B  x.  ( 1  / 
( ( 2 ^ ( ! `  (
( a  +  A
)  -  1 ) ) ) ^ A
) ) ) ) )
10215, 93rpmulcld 11033 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( B  x.  ( 1  /  (
( 2 ^ ( ! `  ( (
a  +  A )  -  1 ) ) ) ^ A ) ) )  e.  RR+ )
103102rpred 11017 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( B  x.  ( 1  /  (
( 2 ^ ( ! `  ( (
a  +  A )  -  1 ) ) ) ^ A ) ) )  e.  RR )
10440, 103, 83ledivmuld 11066 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
2  /  ( 2 ^ ( ! `  ( ( ( a  +  A )  - 
1 )  +  1 ) ) ) )  <_  ( B  x.  ( 1  /  (
( 2 ^ ( ! `  ( (
a  +  A )  -  1 ) ) ) ^ A ) ) )  <->  2  <_  ( ( 2 ^ ( ! `  ( (
( a  +  A
)  -  1 )  +  1 ) ) )  x.  ( B  x.  ( 1  / 
( ( 2 ^ ( ! `  (
( a  +  A
)  -  1 ) ) ) ^ A
) ) ) ) ) )
105101, 104mpbird 232 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2  /  ( 2 ^ ( ! `  (
( ( a  +  A )  -  1 )  +  1 ) ) ) )  <_ 
( B  x.  (
1  /  ( ( 2 ^ ( ! `
 ( ( a  +  A )  - 
1 ) ) ) ^ A ) ) ) )
10627nnnn0d 10626 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( ! `  ( ( ( a  +  A )  - 
1 )  +  1 ) )  e.  NN0 )
107 expneg 11859 . . . . . . 7  |-  ( ( 2  e.  CC  /\  ( ! `  ( ( ( a  +  A
)  -  1 )  +  1 ) )  e.  NN0 )  -> 
( 2 ^ -u ( ! `  ( (
( a  +  A
)  -  1 )  +  1 ) ) )  =  ( 1  /  ( 2 ^ ( ! `  (
( ( a  +  A )  -  1 )  +  1 ) ) ) ) )
10876, 106, 107sylancr 658 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2 ^ -u ( ! `
 ( ( ( a  +  A )  -  1 )  +  1 ) ) )  =  ( 1  / 
( 2 ^ ( ! `  ( (
( a  +  A
)  -  1 )  +  1 ) ) ) ) )
109108oveq2d 6098 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2  x.  ( 2 ^
-u ( ! `  ( ( ( a  +  A )  - 
1 )  +  1 ) ) ) )  =  ( 2  x.  ( 1  /  (
2 ^ ( ! `
 ( ( ( a  +  A )  -  1 )  +  1 ) ) ) ) ) )
11083rpne0d 11022 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2 ^ ( ! `  ( ( ( a  +  A )  - 
1 )  +  1 ) ) )  =/=  0 )
11177, 84, 110divrecd 10100 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2  /  ( 2 ^ ( ! `  (
( ( a  +  A )  -  1 )  +  1 ) ) ) )  =  ( 2  x.  (
1  /  ( 2 ^ ( ! `  ( ( ( a  +  A )  - 
1 )  +  1 ) ) ) ) ) )
112109, 111eqtr4d 2470 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2  x.  ( 2 ^
-u ( ! `  ( ( ( a  +  A )  - 
1 )  +  1 ) ) ) )  =  ( 2  / 
( 2 ^ ( ! `  ( (
( a  +  A
)  -  1 )  +  1 ) ) ) ) )
11398, 88, 89divrecd 10100 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( B  /  ( ( 2 ^ ( ! `  ( ( a  +  A )  -  1 ) ) ) ^ A ) )  =  ( B  x.  (
1  /  ( ( 2 ^ ( ! `
 ( ( a  +  A )  - 
1 ) ) ) ^ A ) ) ) )
114105, 112, 1133brtr4d 4312 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2  x.  ( 2 ^
-u ( ! `  ( ( ( a  +  A )  - 
1 )  +  1 ) ) ) )  <_  ( B  / 
( ( 2 ^ ( ! `  (
( a  +  A
)  -  1 ) ) ) ^ A
) ) )
115 oveq1 6089 . . . . . . . . 9  |-  ( x  =  ( ( a  +  A )  - 
1 )  ->  (
x  +  1 )  =  ( ( ( a  +  A )  -  1 )  +  1 ) )
116115fveq2d 5685 . . . . . . . 8  |-  ( x  =  ( ( a  +  A )  - 
1 )  ->  ( ! `  ( x  +  1 ) )  =  ( ! `  ( ( ( a  +  A )  - 
1 )  +  1 ) ) )
117116negeqd 9594 . . . . . . 7  |-  ( x  =  ( ( a  +  A )  - 
1 )  ->  -u ( ! `  ( x  +  1 ) )  =  -u ( ! `  ( ( ( a  +  A )  - 
1 )  +  1 ) ) )
118117oveq2d 6098 . . . . . 6  |-  ( x  =  ( ( a  +  A )  - 
1 )  ->  (
2 ^ -u ( ! `  ( x  +  1 ) ) )  =  ( 2 ^ -u ( ! `
 ( ( ( a  +  A )  -  1 )  +  1 ) ) ) )
119118oveq2d 6098 . . . . 5  |-  ( x  =  ( ( a  +  A )  - 
1 )  ->  (
2  x.  ( 2 ^ -u ( ! `
 ( x  + 
1 ) ) ) )  =  ( 2  x.  ( 2 ^
-u ( ! `  ( ( ( a  +  A )  - 
1 )  +  1 ) ) ) ) )
120 fveq2 5681 . . . . . . . 8  |-  ( x  =  ( ( a  +  A )  - 
1 )  ->  ( ! `  x )  =  ( ! `  ( ( a  +  A )  -  1 ) ) )
121120oveq2d 6098 . . . . . . 7  |-  ( x  =  ( ( a  +  A )  - 
1 )  ->  (
2 ^ ( ! `
 x ) )  =  ( 2 ^ ( ! `  (
( a  +  A
)  -  1 ) ) ) )
122121oveq1d 6097 . . . . . 6  |-  ( x  =  ( ( a  +  A )  - 
1 )  ->  (
( 2 ^ ( ! `  x )
) ^ A )  =  ( ( 2 ^ ( ! `  ( ( a  +  A )  -  1 ) ) ) ^ A ) )
123122oveq2d 6098 . . . . 5  |-  ( x  =  ( ( a  +  A )  - 
1 )  ->  ( B  /  ( ( 2 ^ ( ! `  x ) ) ^ A ) )  =  ( B  /  (
( 2 ^ ( ! `  ( (
a  +  A )  -  1 ) ) ) ^ A ) ) )
124119, 123breq12d 4295 . . . 4  |-  ( x  =  ( ( a  +  A )  - 
1 )  ->  (
( 2  x.  (
2 ^ -u ( ! `  ( x  +  1 ) ) ) )  <_  ( B  /  ( ( 2 ^ ( ! `  x ) ) ^ A ) )  <->  ( 2  x.  ( 2 ^
-u ( ! `  ( ( ( a  +  A )  - 
1 )  +  1 ) ) ) )  <_  ( B  / 
( ( 2 ^ ( ! `  (
( a  +  A
)  -  1 ) ) ) ^ A
) ) ) )
125124rspcev 3064 . . 3  |-  ( ( ( ( a  +  A )  -  1 )  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( (
( a  +  A
)  -  1 )  +  1 ) ) ) )  <_  ( B  /  ( ( 2 ^ ( ! `  ( ( a  +  A )  -  1 ) ) ) ^ A ) ) )  ->  E. x  e.  NN  ( 2  x.  (
2 ^ -u ( ! `  ( x  +  1 ) ) ) )  <_  ( B  /  ( ( 2 ^ ( ! `  x ) ) ^ A ) ) )
12614, 114, 125syl2anc 656 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  E. x  e.  NN  ( 2  x.  ( 2 ^ -u ( ! `  ( x  +  1 ) ) ) )  <_  ( B  /  ( ( 2 ^ ( ! `  x ) ) ^ A ) ) )
12710, 126rexlimddv 2837 1  |-  ( ( A  e.  NN  /\  B  e.  RR+ )  ->  E. x  e.  NN  ( 2  x.  (
2 ^ -u ( ! `  ( x  +  1 ) ) ) )  <_  ( B  /  ( ( 2 ^ ( ! `  x ) ) ^ A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1757    =/= wne 2598   E.wrex 2708   class class class wbr 4282   ` cfv 5408  (class class class)co 6082   CCcc 9270   RRcr 9271   0cc0 9272   1c1 9273    + caddc 9275    x. cmul 9277    < clt 9408    <_ cle 9409    - cmin 9585   -ucneg 9586    / cdiv 9983   NNcn 10312   2c2 10361   NN0cn0 10569   ZZcz 10636   ZZ>=cuz 10851   RR+crp 10981   ^cexp 11851   !cfa 12037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1671  ax-6 1709  ax-7 1729  ax-8 1759  ax-9 1761  ax-10 1776  ax-11 1781  ax-12 1793  ax-13 1944  ax-ext 2416  ax-sep 4403  ax-nul 4411  ax-pow 4460  ax-pr 4521  ax-un 6363  ax-cnex 9328  ax-resscn 9329  ax-1cn 9330  ax-icn 9331  ax-addcl 9332  ax-addrcl 9333  ax-mulcl 9334  ax-mulrcl 9335  ax-mulcom 9336  ax-addass 9337  ax-mulass 9338  ax-distr 9339  ax-i2m1 9340  ax-1ne0 9341  ax-1rid 9342  ax-rnegex 9343  ax-rrecex 9344  ax-cnre 9345  ax-pre-lttri 9346  ax-pre-lttrn 9347  ax-pre-ltadd 9348  ax-pre-mulgt0 9349  ax-pre-sup 9350
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1702  df-eu 2260  df-mo 2261  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2966  df-sbc 3178  df-csb 3279  df-dif 3321  df-un 3323  df-in 3325  df-ss 3332  df-pss 3334  df-nul 3628  df-if 3782  df-pw 3852  df-sn 3868  df-pr 3870  df-tp 3872  df-op 3874  df-uni 4082  df-iun 4163  df-br 4283  df-opab 4341  df-mpt 4342  df-tr 4376  df-eprel 4621  df-id 4625  df-po 4630  df-so 4631  df-fr 4668  df-we 4670  df-ord 4711  df-on 4712  df-lim 4713  df-suc 4714  df-xp 4835  df-rel 4836  df-cnv 4837  df-co 4838  df-dm 4839  df-rn 4840  df-res 4841  df-ima 4842  df-iota 5371  df-fun 5410  df-fn 5411  df-f 5412  df-f1 5413  df-fo 5414  df-f1o 5415  df-fv 5416  df-riota 6041  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-om 6468  df-2nd 6569  df-recs 6820  df-rdg 6854  df-er 7091  df-en 7301  df-dom 7302  df-sdom 7303  df-sup 7681  df-pnf 9410  df-mnf 9411  df-xr 9412  df-ltxr 9413  df-le 9414  df-sub 9587  df-neg 9588  df-div 9984  df-nn 10313  df-2 10370  df-n0 10570  df-z 10637  df-uz 10852  df-rp 10982  df-fl 11628  df-seq 11793  df-exp 11852  df-fac 12038
This theorem is referenced by:  aaliou3lem9  21703
  Copyright terms: Public domain W3C validator