MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem8 Structured version   Unicode version

Theorem aaliou3lem8 21814
Description: Lemma for aaliou3 21820. (Contributed by Stefan O'Rear, 20-Nov-2014.)
Assertion
Ref Expression
aaliou3lem8  |-  ( ( A  e.  NN  /\  B  e.  RR+ )  ->  E. x  e.  NN  ( 2  x.  (
2 ^ -u ( ! `  ( x  +  1 ) ) ) )  <_  ( B  /  ( ( 2 ^ ( ! `  x ) ) ^ A ) ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem aaliou3lem8
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 2rp 10999 . . . . . 6  |-  2  e.  RR+
2 rpdivcl 11016 . . . . . 6  |-  ( ( 2  e.  RR+  /\  B  e.  RR+ )  ->  (
2  /  B )  e.  RR+ )
31, 2mpan 670 . . . . 5  |-  ( B  e.  RR+  ->  ( 2  /  B )  e.  RR+ )
43rpred 11030 . . . 4  |-  ( B  e.  RR+  ->  ( 2  /  B )  e.  RR )
5 2re 10394 . . . . 5  |-  2  e.  RR
6 1lt2 10491 . . . . 5  |-  1  <  2
7 expnbnd 11996 . . . . 5  |-  ( ( ( 2  /  B
)  e.  RR  /\  2  e.  RR  /\  1  <  2 )  ->  E. a  e.  NN  ( 2  /  B )  <  (
2 ^ a ) )
85, 6, 7mp3an23 1306 . . . 4  |-  ( ( 2  /  B )  e.  RR  ->  E. a  e.  NN  ( 2  /  B )  <  (
2 ^ a ) )
94, 8syl 16 . . 3  |-  ( B  e.  RR+  ->  E. a  e.  NN  ( 2  /  B )  <  (
2 ^ a ) )
109adantl 466 . 2  |-  ( ( A  e.  NN  /\  B  e.  RR+ )  ->  E. a  e.  NN  ( 2  /  B
)  <  ( 2 ^ a ) )
11 simprl 755 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  a  e.  NN )
12 simpll 753 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  A  e.  NN )
13 nnaddm1cl 10704 . . . 4  |-  ( ( a  e.  NN  /\  A  e.  NN )  ->  ( ( a  +  A )  -  1 )  e.  NN )
1411, 12, 13syl2anc 661 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
a  +  A )  -  1 )  e.  NN )
15 simplr 754 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  B  e.  RR+ )
16 rerpdivcl 11021 . . . . . . . . . 10  |-  ( ( 2  e.  RR  /\  B  e.  RR+ )  -> 
( 2  /  B
)  e.  RR )
175, 15, 16sylancr 663 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2  /  B )  e.  RR )
1811nnnn0d 10639 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  a  e.  NN0 )
19 reexpcl 11885 . . . . . . . . . 10  |-  ( ( 2  e.  RR  /\  a  e.  NN0 )  -> 
( 2 ^ a
)  e.  RR )
205, 18, 19sylancr 663 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2 ^ a )  e.  RR )
2111, 12nnaddcld 10371 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( a  +  A )  e.  NN )
22 nnm1nn0 10624 . . . . . . . . . . . . . . . 16  |-  ( ( a  +  A )  e.  NN  ->  (
( a  +  A
)  -  1 )  e.  NN0 )
2321, 22syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
a  +  A )  -  1 )  e. 
NN0 )
24 peano2nn0 10623 . . . . . . . . . . . . . . 15  |-  ( ( ( a  +  A
)  -  1 )  e.  NN0  ->  ( ( ( a  +  A
)  -  1 )  +  1 )  e. 
NN0 )
2523, 24syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
( a  +  A
)  -  1 )  +  1 )  e. 
NN0 )
26 faccl 12064 . . . . . . . . . . . . . 14  |-  ( ( ( ( a  +  A )  -  1 )  +  1 )  e.  NN0  ->  ( ! `
 ( ( ( a  +  A )  -  1 )  +  1 ) )  e.  NN )
2725, 26syl 16 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( ! `  ( ( ( a  +  A )  - 
1 )  +  1 ) )  e.  NN )
2827nnzd 10749 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( ! `  ( ( ( a  +  A )  - 
1 )  +  1 ) )  e.  ZZ )
29 faccl 12064 . . . . . . . . . . . . . . 15  |-  ( ( ( a  +  A
)  -  1 )  e.  NN0  ->  ( ! `
 ( ( a  +  A )  - 
1 ) )  e.  NN )
3023, 29syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( ! `  ( ( a  +  A )  -  1 ) )  e.  NN )
3130nnzd 10749 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( ! `  ( ( a  +  A )  -  1 ) )  e.  ZZ )
3212nnzd 10749 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  A  e.  ZZ )
3331, 32zmulcld 10756 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( ( ! `  ( (
a  +  A )  -  1 ) )  x.  A )  e.  ZZ )
3428, 33zsubcld 10755 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( ( ! `  ( (
( a  +  A
)  -  1 )  +  1 ) )  -  ( ( ! `
 ( ( a  +  A )  - 
1 ) )  x.  A ) )  e.  ZZ )
35 rpexpcl 11887 . . . . . . . . . . 11  |-  ( ( 2  e.  RR+  /\  (
( ! `  (
( ( a  +  A )  -  1 )  +  1 ) )  -  ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  A ) )  e.  ZZ )  -> 
( 2 ^ (
( ! `  (
( ( a  +  A )  -  1 )  +  1 ) )  -  ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  A ) ) )  e.  RR+ )
361, 34, 35sylancr 663 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2 ^ ( ( ! `
 ( ( ( a  +  A )  -  1 )  +  1 ) )  -  ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  A
) ) )  e.  RR+ )
3736rpred 11030 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2 ^ ( ( ! `
 ( ( ( a  +  A )  -  1 )  +  1 ) )  -  ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  A
) ) )  e.  RR )
38 simprr 756 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2  /  B )  < 
( 2 ^ a
) )
3917, 20, 38ltled 9525 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2  /  B )  <_ 
( 2 ^ a
) )
405a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  2  e.  RR )
41 1le2 10538 . . . . . . . . . . 11  |-  1  <_  2
4241a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  1  <_  2 )
4311nnred 10340 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  a  e.  RR )
4430nnred 10340 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( ! `  ( ( a  +  A )  -  1 ) )  e.  RR )
4518nn0ge0d 10642 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  0  <_  a )
4630nnge1d 10367 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  1  <_  ( ! `  ( ( a  +  A )  -  1 ) ) )
4743, 44, 45, 46lemulge12d 10274 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  a  <_  ( ( ! `  (
( a  +  A
)  -  1 ) )  x.  a ) )
48 facp1 12059 . . . . . . . . . . . . . . 15  |-  ( ( ( a  +  A
)  -  1 )  e.  NN0  ->  ( ! `
 ( ( ( a  +  A )  -  1 )  +  1 ) )  =  ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  (
( ( a  +  A )  -  1 )  +  1 ) ) )
4923, 48syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( ! `  ( ( ( a  +  A )  - 
1 )  +  1 ) )  =  ( ( ! `  (
( a  +  A
)  -  1 ) )  x.  ( ( ( a  +  A
)  -  1 )  +  1 ) ) )
5049oveq1d 6109 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( ( ! `  ( (
( a  +  A
)  -  1 )  +  1 ) )  -  ( ( ! `
 ( ( a  +  A )  - 
1 ) )  x.  A ) )  =  ( ( ( ! `
 ( ( a  +  A )  - 
1 ) )  x.  ( ( ( a  +  A )  - 
1 )  +  1 ) )  -  (
( ! `  (
( a  +  A
)  -  1 ) )  x.  A ) ) )
5130nncnd 10341 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( ! `  ( ( a  +  A )  -  1 ) )  e.  CC )
5225nn0cnd 10641 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
( a  +  A
)  -  1 )  +  1 )  e.  CC )
5312nncnd 10341 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  A  e.  CC )
5451, 52, 53subdid 9803 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( ( ! `  ( (
a  +  A )  -  1 ) )  x.  ( ( ( ( a  +  A
)  -  1 )  +  1 )  -  A ) )  =  ( ( ( ! `
 ( ( a  +  A )  - 
1 ) )  x.  ( ( ( a  +  A )  - 
1 )  +  1 ) )  -  (
( ! `  (
( a  +  A
)  -  1 ) )  x.  A ) ) )
5521nncnd 10341 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( a  +  A )  e.  CC )
56 ax-1cn 9343 . . . . . . . . . . . . . . . . . 18  |-  1  e.  CC
5756a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  1  e.  CC )
5855, 57npcand 9726 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
( a  +  A
)  -  1 )  +  1 )  =  ( a  +  A
) )
5958oveq1d 6109 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
( ( a  +  A )  -  1 )  +  1 )  -  A )  =  ( ( a  +  A )  -  A
) )
6011nncnd 10341 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  a  e.  CC )
6160, 53pncand 9723 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
a  +  A )  -  A )  =  a )
6259, 61eqtrd 2475 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
( ( a  +  A )  -  1 )  +  1 )  -  A )  =  a )
6362oveq2d 6110 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( ( ! `  ( (
a  +  A )  -  1 ) )  x.  ( ( ( ( a  +  A
)  -  1 )  +  1 )  -  A ) )  =  ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  a
) )
6450, 54, 633eqtr2d 2481 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( ( ! `  ( (
( a  +  A
)  -  1 )  +  1 ) )  -  ( ( ! `
 ( ( a  +  A )  - 
1 ) )  x.  A ) )  =  ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  a
) )
6547, 64breqtrrd 4321 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  a  <_  ( ( ! `  (
( ( a  +  A )  -  1 )  +  1 ) )  -  ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  A ) ) )
6611nnzd 10749 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  a  e.  ZZ )
67 eluz 10877 . . . . . . . . . . . 12  |-  ( ( a  e.  ZZ  /\  ( ( ! `  ( ( ( a  +  A )  - 
1 )  +  1 ) )  -  (
( ! `  (
( a  +  A
)  -  1 ) )  x.  A ) )  e.  ZZ )  ->  ( ( ( ! `  ( ( ( a  +  A
)  -  1 )  +  1 ) )  -  ( ( ! `
 ( ( a  +  A )  - 
1 ) )  x.  A ) )  e.  ( ZZ>= `  a )  <->  a  <_  ( ( ! `
 ( ( ( a  +  A )  -  1 )  +  1 ) )  -  ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  A
) ) ) )
6866, 34, 67syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
( ! `  (
( ( a  +  A )  -  1 )  +  1 ) )  -  ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  A ) )  e.  ( ZZ>= `  a
)  <->  a  <_  (
( ! `  (
( ( a  +  A )  -  1 )  +  1 ) )  -  ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  A ) ) ) )
6965, 68mpbird 232 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( ( ! `  ( (
( a  +  A
)  -  1 )  +  1 ) )  -  ( ( ! `
 ( ( a  +  A )  - 
1 ) )  x.  A ) )  e.  ( ZZ>= `  a )
)
7040, 42, 69leexp2ad 12043 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2 ^ a )  <_ 
( 2 ^ (
( ! `  (
( ( a  +  A )  -  1 )  +  1 ) )  -  ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  A ) ) ) )
7117, 20, 37, 39, 70letrd 9531 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2  /  B )  <_ 
( 2 ^ (
( ! `  (
( ( a  +  A )  -  1 )  +  1 ) )  -  ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  A ) ) ) )
72 rpcnne0 11011 . . . . . . . . . . 11  |-  ( 2  e.  RR+  ->  ( 2  e.  CC  /\  2  =/=  0 ) )
731, 72mp1i 12 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2  e.  CC  /\  2  =/=  0 ) )
74 expsub 11914 . . . . . . . . . 10  |-  ( ( ( 2  e.  CC  /\  2  =/=  0 )  /\  ( ( ! `
 ( ( ( a  +  A )  -  1 )  +  1 ) )  e.  ZZ  /\  ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  A )  e.  ZZ ) )  -> 
( 2 ^ (
( ! `  (
( ( a  +  A )  -  1 )  +  1 ) )  -  ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  A ) ) )  =  ( ( 2 ^ ( ! `
 ( ( ( a  +  A )  -  1 )  +  1 ) ) )  /  ( 2 ^ ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  A
) ) ) )
7573, 28, 33, 74syl12anc 1216 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2 ^ ( ( ! `
 ( ( ( a  +  A )  -  1 )  +  1 ) )  -  ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  A
) ) )  =  ( ( 2 ^ ( ! `  (
( ( a  +  A )  -  1 )  +  1 ) ) )  /  (
2 ^ ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  A ) ) ) )
76 2cn 10395 . . . . . . . . . . . 12  |-  2  e.  CC
7776a1i 11 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  2  e.  CC )
7812nnnn0d 10639 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  A  e.  NN0 )
7930nnnn0d 10639 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( ! `  ( ( a  +  A )  -  1 ) )  e.  NN0 )
8077, 78, 79expmuld 12014 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2 ^ ( ( ! `
 ( ( a  +  A )  - 
1 ) )  x.  A ) )  =  ( ( 2 ^ ( ! `  (
( a  +  A
)  -  1 ) ) ) ^ A
) )
8180oveq2d 6110 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
2 ^ ( ! `
 ( ( ( a  +  A )  -  1 )  +  1 ) ) )  /  ( 2 ^ ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  A
) ) )  =  ( ( 2 ^ ( ! `  (
( ( a  +  A )  -  1 )  +  1 ) ) )  /  (
( 2 ^ ( ! `  ( (
a  +  A )  -  1 ) ) ) ^ A ) ) )
82 rpexpcl 11887 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR+  /\  ( ! `  ( (
( a  +  A
)  -  1 )  +  1 ) )  e.  ZZ )  -> 
( 2 ^ ( ! `  ( (
( a  +  A
)  -  1 )  +  1 ) ) )  e.  RR+ )
831, 28, 82sylancr 663 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2 ^ ( ! `  ( ( ( a  +  A )  - 
1 )  +  1 ) ) )  e.  RR+ )
8483rpcnd 11032 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2 ^ ( ! `  ( ( ( a  +  A )  - 
1 )  +  1 ) ) )  e.  CC )
85 rpexpcl 11887 . . . . . . . . . . . . 13  |-  ( ( 2  e.  RR+  /\  ( ! `  ( (
a  +  A )  -  1 ) )  e.  ZZ )  -> 
( 2 ^ ( ! `  ( (
a  +  A )  -  1 ) ) )  e.  RR+ )
861, 31, 85sylancr 663 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2 ^ ( ! `  ( ( a  +  A )  -  1 ) ) )  e.  RR+ )
8786, 32rpexpcld 12034 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
2 ^ ( ! `
 ( ( a  +  A )  - 
1 ) ) ) ^ A )  e.  RR+ )
8887rpcnd 11032 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
2 ^ ( ! `
 ( ( a  +  A )  - 
1 ) ) ) ^ A )  e.  CC )
8987rpne0d 11035 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
2 ^ ( ! `
 ( ( a  +  A )  - 
1 ) ) ) ^ A )  =/=  0 )
9084, 88, 89divrecd 10113 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
2 ^ ( ! `
 ( ( ( a  +  A )  -  1 )  +  1 ) ) )  /  ( ( 2 ^ ( ! `  ( ( a  +  A )  -  1 ) ) ) ^ A ) )  =  ( ( 2 ^ ( ! `  (
( ( a  +  A )  -  1 )  +  1 ) ) )  x.  (
1  /  ( ( 2 ^ ( ! `
 ( ( a  +  A )  - 
1 ) ) ) ^ A ) ) ) )
9175, 81, 903eqtrrd 2480 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
2 ^ ( ! `
 ( ( ( a  +  A )  -  1 )  +  1 ) ) )  x.  ( 1  / 
( ( 2 ^ ( ! `  (
( a  +  A
)  -  1 ) ) ) ^ A
) ) )  =  ( 2 ^ (
( ! `  (
( ( a  +  A )  -  1 )  +  1 ) )  -  ( ( ! `  ( ( a  +  A )  -  1 ) )  x.  A ) ) ) )
9271, 91breqtrrd 4321 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2  /  B )  <_ 
( ( 2 ^ ( ! `  (
( ( a  +  A )  -  1 )  +  1 ) ) )  x.  (
1  /  ( ( 2 ^ ( ! `
 ( ( a  +  A )  - 
1 ) ) ) ^ A ) ) ) )
9387rpreccld 11040 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 1  /  ( ( 2 ^ ( ! `  ( ( a  +  A )  -  1 ) ) ) ^ A ) )  e.  RR+ )
9483, 93rpmulcld 11046 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
2 ^ ( ! `
 ( ( ( a  +  A )  -  1 )  +  1 ) ) )  x.  ( 1  / 
( ( 2 ^ ( ! `  (
( a  +  A
)  -  1 ) ) ) ^ A
) ) )  e.  RR+ )
9594rpred 11030 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
2 ^ ( ! `
 ( ( ( a  +  A )  -  1 )  +  1 ) ) )  x.  ( 1  / 
( ( 2 ^ ( ! `  (
( a  +  A
)  -  1 ) ) ) ^ A
) ) )  e.  RR )
9640, 95, 15ledivmuld 11079 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
2  /  B )  <_  ( ( 2 ^ ( ! `  ( ( ( a  +  A )  - 
1 )  +  1 ) ) )  x.  ( 1  /  (
( 2 ^ ( ! `  ( (
a  +  A )  -  1 ) ) ) ^ A ) ) )  <->  2  <_  ( B  x.  ( ( 2 ^ ( ! `
 ( ( ( a  +  A )  -  1 )  +  1 ) ) )  x.  ( 1  / 
( ( 2 ^ ( ! `  (
( a  +  A
)  -  1 ) ) ) ^ A
) ) ) ) ) )
9792, 96mpbid 210 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  2  <_  ( B  x.  ( ( 2 ^ ( ! `
 ( ( ( a  +  A )  -  1 )  +  1 ) ) )  x.  ( 1  / 
( ( 2 ^ ( ! `  (
( a  +  A
)  -  1 ) ) ) ^ A
) ) ) ) )
9815rpcnd 11032 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  B  e.  CC )
9993rpcnd 11032 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 1  /  ( ( 2 ^ ( ! `  ( ( a  +  A )  -  1 ) ) ) ^ A ) )  e.  CC )
10098, 84, 99mul12d 9581 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( B  x.  ( ( 2 ^ ( ! `  (
( ( a  +  A )  -  1 )  +  1 ) ) )  x.  (
1  /  ( ( 2 ^ ( ! `
 ( ( a  +  A )  - 
1 ) ) ) ^ A ) ) ) )  =  ( ( 2 ^ ( ! `  ( (
( a  +  A
)  -  1 )  +  1 ) ) )  x.  ( B  x.  ( 1  / 
( ( 2 ^ ( ! `  (
( a  +  A
)  -  1 ) ) ) ^ A
) ) ) ) )
10197, 100breqtrd 4319 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  2  <_  ( ( 2 ^ ( ! `  ( (
( a  +  A
)  -  1 )  +  1 ) ) )  x.  ( B  x.  ( 1  / 
( ( 2 ^ ( ! `  (
( a  +  A
)  -  1 ) ) ) ^ A
) ) ) ) )
10215, 93rpmulcld 11046 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( B  x.  ( 1  /  (
( 2 ^ ( ! `  ( (
a  +  A )  -  1 ) ) ) ^ A ) ) )  e.  RR+ )
103102rpred 11030 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( B  x.  ( 1  /  (
( 2 ^ ( ! `  ( (
a  +  A )  -  1 ) ) ) ^ A ) ) )  e.  RR )
10440, 103, 83ledivmuld 11079 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( (
2  /  ( 2 ^ ( ! `  ( ( ( a  +  A )  - 
1 )  +  1 ) ) ) )  <_  ( B  x.  ( 1  /  (
( 2 ^ ( ! `  ( (
a  +  A )  -  1 ) ) ) ^ A ) ) )  <->  2  <_  ( ( 2 ^ ( ! `  ( (
( a  +  A
)  -  1 )  +  1 ) ) )  x.  ( B  x.  ( 1  / 
( ( 2 ^ ( ! `  (
( a  +  A
)  -  1 ) ) ) ^ A
) ) ) ) ) )
105101, 104mpbird 232 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2  /  ( 2 ^ ( ! `  (
( ( a  +  A )  -  1 )  +  1 ) ) ) )  <_ 
( B  x.  (
1  /  ( ( 2 ^ ( ! `
 ( ( a  +  A )  - 
1 ) ) ) ^ A ) ) ) )
10627nnnn0d 10639 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( ! `  ( ( ( a  +  A )  - 
1 )  +  1 ) )  e.  NN0 )
107 expneg 11876 . . . . . . 7  |-  ( ( 2  e.  CC  /\  ( ! `  ( ( ( a  +  A
)  -  1 )  +  1 ) )  e.  NN0 )  -> 
( 2 ^ -u ( ! `  ( (
( a  +  A
)  -  1 )  +  1 ) ) )  =  ( 1  /  ( 2 ^ ( ! `  (
( ( a  +  A )  -  1 )  +  1 ) ) ) ) )
10876, 106, 107sylancr 663 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2 ^ -u ( ! `
 ( ( ( a  +  A )  -  1 )  +  1 ) ) )  =  ( 1  / 
( 2 ^ ( ! `  ( (
( a  +  A
)  -  1 )  +  1 ) ) ) ) )
109108oveq2d 6110 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2  x.  ( 2 ^
-u ( ! `  ( ( ( a  +  A )  - 
1 )  +  1 ) ) ) )  =  ( 2  x.  ( 1  /  (
2 ^ ( ! `
 ( ( ( a  +  A )  -  1 )  +  1 ) ) ) ) ) )
11083rpne0d 11035 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2 ^ ( ! `  ( ( ( a  +  A )  - 
1 )  +  1 ) ) )  =/=  0 )
11177, 84, 110divrecd 10113 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2  /  ( 2 ^ ( ! `  (
( ( a  +  A )  -  1 )  +  1 ) ) ) )  =  ( 2  x.  (
1  /  ( 2 ^ ( ! `  ( ( ( a  +  A )  - 
1 )  +  1 ) ) ) ) ) )
112109, 111eqtr4d 2478 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2  x.  ( 2 ^
-u ( ! `  ( ( ( a  +  A )  - 
1 )  +  1 ) ) ) )  =  ( 2  / 
( 2 ^ ( ! `  ( (
( a  +  A
)  -  1 )  +  1 ) ) ) ) )
11398, 88, 89divrecd 10113 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( B  /  ( ( 2 ^ ( ! `  ( ( a  +  A )  -  1 ) ) ) ^ A ) )  =  ( B  x.  (
1  /  ( ( 2 ^ ( ! `
 ( ( a  +  A )  - 
1 ) ) ) ^ A ) ) ) )
114105, 112, 1133brtr4d 4325 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  ( 2  x.  ( 2 ^
-u ( ! `  ( ( ( a  +  A )  - 
1 )  +  1 ) ) ) )  <_  ( B  / 
( ( 2 ^ ( ! `  (
( a  +  A
)  -  1 ) ) ) ^ A
) ) )
115 oveq1 6101 . . . . . . . . 9  |-  ( x  =  ( ( a  +  A )  - 
1 )  ->  (
x  +  1 )  =  ( ( ( a  +  A )  -  1 )  +  1 ) )
116115fveq2d 5698 . . . . . . . 8  |-  ( x  =  ( ( a  +  A )  - 
1 )  ->  ( ! `  ( x  +  1 ) )  =  ( ! `  ( ( ( a  +  A )  - 
1 )  +  1 ) ) )
117116negeqd 9607 . . . . . . 7  |-  ( x  =  ( ( a  +  A )  - 
1 )  ->  -u ( ! `  ( x  +  1 ) )  =  -u ( ! `  ( ( ( a  +  A )  - 
1 )  +  1 ) ) )
118117oveq2d 6110 . . . . . 6  |-  ( x  =  ( ( a  +  A )  - 
1 )  ->  (
2 ^ -u ( ! `  ( x  +  1 ) ) )  =  ( 2 ^ -u ( ! `
 ( ( ( a  +  A )  -  1 )  +  1 ) ) ) )
119118oveq2d 6110 . . . . 5  |-  ( x  =  ( ( a  +  A )  - 
1 )  ->  (
2  x.  ( 2 ^ -u ( ! `
 ( x  + 
1 ) ) ) )  =  ( 2  x.  ( 2 ^
-u ( ! `  ( ( ( a  +  A )  - 
1 )  +  1 ) ) ) ) )
120 fveq2 5694 . . . . . . . 8  |-  ( x  =  ( ( a  +  A )  - 
1 )  ->  ( ! `  x )  =  ( ! `  ( ( a  +  A )  -  1 ) ) )
121120oveq2d 6110 . . . . . . 7  |-  ( x  =  ( ( a  +  A )  - 
1 )  ->  (
2 ^ ( ! `
 x ) )  =  ( 2 ^ ( ! `  (
( a  +  A
)  -  1 ) ) ) )
122121oveq1d 6109 . . . . . 6  |-  ( x  =  ( ( a  +  A )  - 
1 )  ->  (
( 2 ^ ( ! `  x )
) ^ A )  =  ( ( 2 ^ ( ! `  ( ( a  +  A )  -  1 ) ) ) ^ A ) )
123122oveq2d 6110 . . . . 5  |-  ( x  =  ( ( a  +  A )  - 
1 )  ->  ( B  /  ( ( 2 ^ ( ! `  x ) ) ^ A ) )  =  ( B  /  (
( 2 ^ ( ! `  ( (
a  +  A )  -  1 ) ) ) ^ A ) ) )
124119, 123breq12d 4308 . . . 4  |-  ( x  =  ( ( a  +  A )  - 
1 )  ->  (
( 2  x.  (
2 ^ -u ( ! `  ( x  +  1 ) ) ) )  <_  ( B  /  ( ( 2 ^ ( ! `  x ) ) ^ A ) )  <->  ( 2  x.  ( 2 ^
-u ( ! `  ( ( ( a  +  A )  - 
1 )  +  1 ) ) ) )  <_  ( B  / 
( ( 2 ^ ( ! `  (
( a  +  A
)  -  1 ) ) ) ^ A
) ) ) )
125124rspcev 3076 . . 3  |-  ( ( ( ( a  +  A )  -  1 )  e.  NN  /\  ( 2  x.  (
2 ^ -u ( ! `  ( (
( a  +  A
)  -  1 )  +  1 ) ) ) )  <_  ( B  /  ( ( 2 ^ ( ! `  ( ( a  +  A )  -  1 ) ) ) ^ A ) ) )  ->  E. x  e.  NN  ( 2  x.  (
2 ^ -u ( ! `  ( x  +  1 ) ) ) )  <_  ( B  /  ( ( 2 ^ ( ! `  x ) ) ^ A ) ) )
12614, 114, 125syl2anc 661 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  RR+ )  /\  ( a  e.  NN  /\  ( 2  /  B
)  <  ( 2 ^ a ) ) )  ->  E. x  e.  NN  ( 2  x.  ( 2 ^ -u ( ! `  ( x  +  1 ) ) ) )  <_  ( B  /  ( ( 2 ^ ( ! `  x ) ) ^ A ) ) )
12710, 126rexlimddv 2848 1  |-  ( ( A  e.  NN  /\  B  e.  RR+ )  ->  E. x  e.  NN  ( 2  x.  (
2 ^ -u ( ! `  ( x  +  1 ) ) ) )  <_  ( B  /  ( ( 2 ^ ( ! `  x ) ) ^ A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2609   E.wrex 2719   class class class wbr 4295   ` cfv 5421  (class class class)co 6094   CCcc 9283   RRcr 9284   0cc0 9285   1c1 9286    + caddc 9288    x. cmul 9290    < clt 9421    <_ cle 9422    - cmin 9598   -ucneg 9599    / cdiv 9996   NNcn 10325   2c2 10374   NN0cn0 10582   ZZcz 10649   ZZ>=cuz 10864   RR+crp 10994   ^cexp 11868   !cfa 12054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375  ax-cnex 9341  ax-resscn 9342  ax-1cn 9343  ax-icn 9344  ax-addcl 9345  ax-addrcl 9346  ax-mulcl 9347  ax-mulrcl 9348  ax-mulcom 9349  ax-addass 9350  ax-mulass 9351  ax-distr 9352  ax-i2m1 9353  ax-1ne0 9354  ax-1rid 9355  ax-rnegex 9356  ax-rrecex 9357  ax-cnre 9358  ax-pre-lttri 9359  ax-pre-lttrn 9360  ax-pre-ltadd 9361  ax-pre-mulgt0 9362  ax-pre-sup 9363
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-nel 2612  df-ral 2723  df-rex 2724  df-reu 2725  df-rmo 2726  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-pss 3347  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-tp 3885  df-op 3887  df-uni 4095  df-iun 4176  df-br 4296  df-opab 4354  df-mpt 4355  df-tr 4389  df-eprel 4635  df-id 4639  df-po 4644  df-so 4645  df-fr 4682  df-we 4684  df-ord 4725  df-on 4726  df-lim 4727  df-suc 4728  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-riota 6055  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-om 6480  df-2nd 6581  df-recs 6835  df-rdg 6869  df-er 7104  df-en 7314  df-dom 7315  df-sdom 7316  df-sup 7694  df-pnf 9423  df-mnf 9424  df-xr 9425  df-ltxr 9426  df-le 9427  df-sub 9600  df-neg 9601  df-div 9997  df-nn 10326  df-2 10383  df-n0 10583  df-z 10650  df-uz 10865  df-rp 10995  df-fl 11645  df-seq 11810  df-exp 11869  df-fac 12055
This theorem is referenced by:  aaliou3lem9  21819
  Copyright terms: Public domain W3C validator