MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem7 Structured version   Unicode version

Theorem aaliou3lem7 21700
Description: Lemma for aaliou3 21702. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aaliou3lem.c  |-  F  =  ( a  e.  NN  |->  ( 2 ^ -u ( ! `  a )
) )
aaliou3lem.d  |-  L  = 
sum_ b  e.  NN  ( F `  b )
aaliou3lem.e  |-  H  =  ( c  e.  NN  |->  sum_ b  e.  ( 1 ... c ) ( F `  b ) )
Assertion
Ref Expression
aaliou3lem7  |-  ( A  e.  NN  ->  (
( H `  A
)  =/=  L  /\  ( abs `  ( L  -  ( H `  A ) ) )  <_  ( 2  x.  ( 2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )
Distinct variable groups:    a, b,
c    F, b, c    L, c    A, a, b, c
Allowed substitution hints:    F( a)    H( a, b, c)    L( a, b)

Proof of Theorem aaliou3lem7
StepHypRef Expression
1 peano2nn 10322 . . 3  |-  ( A  e.  NN  ->  ( A  +  1 )  e.  NN )
2 eqid 2433 . . . 4  |-  ( c  e.  ( ZZ>= `  ( A  +  1 ) )  |->  ( ( 2 ^ -u ( ! `
 ( A  + 
1 ) ) )  x.  ( ( 1  /  2 ) ^
( c  -  ( A  +  1 ) ) ) ) )  =  ( c  e.  ( ZZ>= `  ( A  +  1 ) ) 
|->  ( ( 2 ^
-u ( ! `  ( A  +  1
) ) )  x.  ( ( 1  / 
2 ) ^ (
c  -  ( A  +  1 ) ) ) ) )
3 aaliou3lem.c . . . 4  |-  F  =  ( a  e.  NN  |->  ( 2 ^ -u ( ! `  a )
) )
42, 3aaliou3lem3 21695 . . 3  |-  ( ( A  +  1 )  e.  NN  ->  (  seq ( A  +  1 ) (  +  ,  F )  e.  dom  ~~>  /\ 
sum_ b  e.  (
ZZ>= `  ( A  + 
1 ) ) ( F `  b )  e.  RR+  /\  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
)  <_  ( 2  x.  ( 2 ^
-u ( ! `  ( A  +  1
) ) ) ) ) )
5 3simpc 980 . . 3  |-  ( (  seq ( A  + 
1 ) (  +  ,  F )  e. 
dom 
~~>  /\  sum_ b  e.  (
ZZ>= `  ( A  + 
1 ) ) ( F `  b )  e.  RR+  /\  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
)  <_  ( 2  x.  ( 2 ^
-u ( ! `  ( A  +  1
) ) ) ) )  ->  ( sum_ b  e.  ( ZZ>= `  ( A  +  1
) ) ( F `
 b )  e.  RR+  /\  sum_ b  e.  (
ZZ>= `  ( A  + 
1 ) ) ( F `  b )  <_  ( 2  x.  ( 2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )
61, 4, 53syl 20 . 2  |-  ( A  e.  NN  ->  ( sum_ b  e.  ( ZZ>= `  ( A  +  1
) ) ( F `
 b )  e.  RR+  /\  sum_ b  e.  (
ZZ>= `  ( A  + 
1 ) ) ( F `  b )  <_  ( 2  x.  ( 2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )
7 nncn 10318 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  A  e.  CC )
8 ax-1cn 9328 . . . . . . . . . . . 12  |-  1  e.  CC
9 pncan 9604 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  + 
1 )  -  1 )  =  A )
107, 8, 9sylancl 655 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  (
( A  +  1 )  -  1 )  =  A )
1110oveq2d 6096 . . . . . . . . . 10  |-  ( A  e.  NN  ->  (
1 ... ( ( A  +  1 )  - 
1 ) )  =  ( 1 ... A
) )
1211sumeq1d 13162 . . . . . . . . 9  |-  ( A  e.  NN  ->  sum_ b  e.  ( 1 ... (
( A  +  1 )  -  1 ) ) ( F `  b )  =  sum_ b  e.  ( 1 ... A ) ( F `  b ) )
1312oveq1d 6095 . . . . . . . 8  |-  ( A  e.  NN  ->  ( sum_ b  e.  ( 1 ... ( ( A  +  1 )  - 
1 ) ) ( F `  b )  +  sum_ b  e.  (
ZZ>= `  ( A  + 
1 ) ) ( F `  b ) )  =  ( sum_ b  e.  ( 1 ... A ) ( F `  b )  +  sum_ b  e.  (
ZZ>= `  ( A  + 
1 ) ) ( F `  b ) ) )
14 nnuz 10884 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
15 eqid 2433 . . . . . . . . 9  |-  ( ZZ>= `  ( A  +  1
) )  =  (
ZZ>= `  ( A  + 
1 ) )
16 eqidd 2434 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  b  e.  NN )  ->  ( F `  b
)  =  ( F `
 b ) )
17 fveq2 5679 . . . . . . . . . . . . . 14  |-  ( a  =  b  ->  ( ! `  a )  =  ( ! `  b ) )
1817negeqd 9592 . . . . . . . . . . . . 13  |-  ( a  =  b  ->  -u ( ! `  a )  =  -u ( ! `  b ) )
1918oveq2d 6096 . . . . . . . . . . . 12  |-  ( a  =  b  ->  (
2 ^ -u ( ! `  a )
)  =  ( 2 ^ -u ( ! `
 b ) ) )
20 ovex 6105 . . . . . . . . . . . 12  |-  ( 2 ^ -u ( ! `
 b ) )  e.  _V
2119, 3, 20fvmpt 5762 . . . . . . . . . . 11  |-  ( b  e.  NN  ->  ( F `  b )  =  ( 2 ^
-u ( ! `  b ) ) )
22 2rp 10984 . . . . . . . . . . . . 13  |-  2  e.  RR+
23 nnnn0 10574 . . . . . . . . . . . . . . . 16  |-  ( b  e.  NN  ->  b  e.  NN0 )
24 faccl 12045 . . . . . . . . . . . . . . . 16  |-  ( b  e.  NN0  ->  ( ! `
 b )  e.  NN )
2523, 24syl 16 . . . . . . . . . . . . . . 15  |-  ( b  e.  NN  ->  ( ! `  b )  e.  NN )
2625nnzd 10734 . . . . . . . . . . . . . 14  |-  ( b  e.  NN  ->  ( ! `  b )  e.  ZZ )
2726znegcld 10737 . . . . . . . . . . . . 13  |-  ( b  e.  NN  ->  -u ( ! `  b )  e.  ZZ )
28 rpexpcl 11868 . . . . . . . . . . . . 13  |-  ( ( 2  e.  RR+  /\  -u ( ! `  b )  e.  ZZ )  ->  (
2 ^ -u ( ! `  b )
)  e.  RR+ )
2922, 27, 28sylancr 656 . . . . . . . . . . . 12  |-  ( b  e.  NN  ->  (
2 ^ -u ( ! `  b )
)  e.  RR+ )
3029rpcnd 11017 . . . . . . . . . . 11  |-  ( b  e.  NN  ->  (
2 ^ -u ( ! `  b )
)  e.  CC )
3121, 30eqeltrd 2507 . . . . . . . . . 10  |-  ( b  e.  NN  ->  ( F `  b )  e.  CC )
3231adantl 463 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  b  e.  NN )  ->  ( F `  b
)  e.  CC )
33 1nn 10321 . . . . . . . . . 10  |-  1  e.  NN
34 eqid 2433 . . . . . . . . . . . 12  |-  ( c  e.  ( ZZ>= `  1
)  |->  ( ( 2 ^ -u ( ! `
 1 ) )  x.  ( ( 1  /  2 ) ^
( c  -  1 ) ) ) )  =  ( c  e.  ( ZZ>= `  1 )  |->  ( ( 2 ^
-u ( ! ` 
1 ) )  x.  ( ( 1  / 
2 ) ^ (
c  -  1 ) ) ) )
3534, 3aaliou3lem3 21695 . . . . . . . . . . 11  |-  ( 1  e.  NN  ->  (  seq 1 (  +  ,  F )  e.  dom  ~~>  /\ 
sum_ b  e.  (
ZZ>= `  1 ) ( F `  b )  e.  RR+  /\  sum_ b  e.  ( ZZ>= `  1 )
( F `  b
)  <_  ( 2  x.  ( 2 ^
-u ( ! ` 
1 ) ) ) ) )
3635simp1d 993 . . . . . . . . . 10  |-  ( 1  e.  NN  ->  seq 1 (  +  ,  F )  e.  dom  ~~>  )
3733, 36mp1i 12 . . . . . . . . 9  |-  ( A  e.  NN  ->  seq 1 (  +  ,  F )  e.  dom  ~~>  )
3814, 15, 1, 16, 32, 37isumsplit 13286 . . . . . . . 8  |-  ( A  e.  NN  ->  sum_ b  e.  NN  ( F `  b )  =  (
sum_ b  e.  ( 1 ... ( ( A  +  1 )  -  1 ) ) ( F `  b
)  +  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
) ) )
39 oveq2 6088 . . . . . . . . . . 11  |-  ( c  =  A  ->  (
1 ... c )  =  ( 1 ... A
) )
4039sumeq1d 13162 . . . . . . . . . 10  |-  ( c  =  A  ->  sum_ b  e.  ( 1 ... c
) ( F `  b )  =  sum_ b  e.  ( 1 ... A ) ( F `  b ) )
41 aaliou3lem.e . . . . . . . . . 10  |-  H  =  ( c  e.  NN  |->  sum_ b  e.  ( 1 ... c ) ( F `  b ) )
42 sumex 13149 . . . . . . . . . 10  |-  sum_ b  e.  ( 1 ... A
) ( F `  b )  e.  _V
4340, 41, 42fvmpt 5762 . . . . . . . . 9  |-  ( A  e.  NN  ->  ( H `  A )  =  sum_ b  e.  ( 1 ... A ) ( F `  b
) )
4443oveq1d 6095 . . . . . . . 8  |-  ( A  e.  NN  ->  (
( H `  A
)  +  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
) )  =  (
sum_ b  e.  ( 1 ... A ) ( F `  b
)  +  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
) ) )
4513, 38, 443eqtr4rd 2476 . . . . . . 7  |-  ( A  e.  NN  ->  (
( H `  A
)  +  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
) )  =  sum_ b  e.  NN  ( F `  b )
)
46 aaliou3lem.d . . . . . . 7  |-  L  = 
sum_ b  e.  NN  ( F `  b )
4745, 46syl6eqr 2483 . . . . . 6  |-  ( A  e.  NN  ->  (
( H `  A
)  +  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
) )  =  L )
483, 46, 41aaliou3lem4 21697 . . . . . . . . 9  |-  L  e.  RR
4948recni 9386 . . . . . . . 8  |-  L  e.  CC
5049a1i 11 . . . . . . 7  |-  ( A  e.  NN  ->  L  e.  CC )
513, 46, 41aaliou3lem5 21698 . . . . . . . 8  |-  ( A  e.  NN  ->  ( H `  A )  e.  RR )
5251recnd 9400 . . . . . . 7  |-  ( A  e.  NN  ->  ( H `  A )  e.  CC )
534simp2d 994 . . . . . . . . 9  |-  ( ( A  +  1 )  e.  NN  ->  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
)  e.  RR+ )
541, 53syl 16 . . . . . . . 8  |-  ( A  e.  NN  ->  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
)  e.  RR+ )
5554rpcnd 11017 . . . . . . 7  |-  ( A  e.  NN  ->  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
)  e.  CC )
5650, 52, 55subaddd 9725 . . . . . 6  |-  ( A  e.  NN  ->  (
( L  -  ( H `  A )
)  =  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
)  <->  ( ( H `
 A )  + 
sum_ b  e.  (
ZZ>= `  ( A  + 
1 ) ) ( F `  b ) )  =  L ) )
5747, 56mpbird 232 . . . . 5  |-  ( A  e.  NN  ->  ( L  -  ( H `  A ) )  = 
sum_ b  e.  (
ZZ>= `  ( A  + 
1 ) ) ( F `  b ) )
5857eqcomd 2438 . . . 4  |-  ( A  e.  NN  ->  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
)  =  ( L  -  ( H `  A ) ) )
59 eleq1 2493 . . . . 5  |-  ( sum_ b  e.  ( ZZ>= `  ( A  +  1
) ) ( F `
 b )  =  ( L  -  ( H `  A )
)  ->  ( sum_ b  e.  ( ZZ>= `  ( A  +  1
) ) ( F `
 b )  e.  RR+ 
<->  ( L  -  ( H `  A )
)  e.  RR+ )
)
60 breq1 4283 . . . . 5  |-  ( sum_ b  e.  ( ZZ>= `  ( A  +  1
) ) ( F `
 b )  =  ( L  -  ( H `  A )
)  ->  ( sum_ b  e.  ( ZZ>= `  ( A  +  1
) ) ( F `
 b )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) )  <->  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )
6159, 60anbi12d 703 . . . 4  |-  ( sum_ b  e.  ( ZZ>= `  ( A  +  1
) ) ( F `
 b )  =  ( L  -  ( H `  A )
)  ->  ( ( sum_ b  e.  ( ZZ>= `  ( A  +  1
) ) ( F `
 b )  e.  RR+  /\  sum_ b  e.  (
ZZ>= `  ( A  + 
1 ) ) ( F `  b )  <_  ( 2  x.  ( 2 ^ -u ( ! `  ( A  +  1 ) ) ) ) )  <->  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_  ( 2  x.  ( 2 ^
-u ( ! `  ( A  +  1
) ) ) ) ) ) )
6258, 61syl 16 . . 3  |-  ( A  e.  NN  ->  (
( sum_ b  e.  (
ZZ>= `  ( A  + 
1 ) ) ( F `  b )  e.  RR+  /\  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
)  <_  ( 2  x.  ( 2 ^
-u ( ! `  ( A  +  1
) ) ) ) )  <->  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_  ( 2  x.  ( 2 ^
-u ( ! `  ( A  +  1
) ) ) ) ) ) )
6351adantr 462 . . . . . 6  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( H `  A )  e.  RR )
64 simprl 748 . . . . . . 7  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( L  -  ( H `  A ) )  e.  RR+ )
65 difrp 11012 . . . . . . . 8  |-  ( ( ( H `  A
)  e.  RR  /\  L  e.  RR )  ->  ( ( H `  A )  <  L  <->  ( L  -  ( H `
 A ) )  e.  RR+ ) )
6663, 48, 65sylancl 655 . . . . . . 7  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( ( H `
 A )  < 
L  <->  ( L  -  ( H `  A ) )  e.  RR+ )
)
6764, 66mpbird 232 . . . . . 6  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( H `  A )  <  L
)
6863, 67ltned 9498 . . . . 5  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( H `  A )  =/=  L
)
69 nnnn0 10574 . . . . . . . . . . . . . . 15  |-  ( ( A  +  1 )  e.  NN  ->  ( A  +  1 )  e.  NN0 )
70 faccl 12045 . . . . . . . . . . . . . . 15  |-  ( ( A  +  1 )  e.  NN0  ->  ( ! `
 ( A  + 
1 ) )  e.  NN )
711, 69, 703syl 20 . . . . . . . . . . . . . 14  |-  ( A  e.  NN  ->  ( ! `  ( A  +  1 ) )  e.  NN )
7271nnzd 10734 . . . . . . . . . . . . 13  |-  ( A  e.  NN  ->  ( ! `  ( A  +  1 ) )  e.  ZZ )
7372znegcld 10737 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  -u ( ! `  ( A  +  1 ) )  e.  ZZ )
74 rpexpcl 11868 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR+  /\  -u ( ! `  ( A  +  1 ) )  e.  ZZ )  -> 
( 2 ^ -u ( ! `  ( A  +  1 ) ) )  e.  RR+ )
7522, 73, 74sylancr 656 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  (
2 ^ -u ( ! `  ( A  +  1 ) ) )  e.  RR+ )
76 rpmulcl 11000 . . . . . . . . . . 11  |-  ( ( 2  e.  RR+  /\  (
2 ^ -u ( ! `  ( A  +  1 ) ) )  e.  RR+ )  ->  ( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) )  e.  RR+ )
7722, 75, 76sylancr 656 . . . . . . . . . 10  |-  ( A  e.  NN  ->  (
2  x.  ( 2 ^ -u ( ! `
 ( A  + 
1 ) ) ) )  e.  RR+ )
7877adantr 462 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( 2  x.  ( 2 ^ -u ( ! `  ( A  +  1 ) ) ) )  e.  RR+ )
7978rpred 11015 . . . . . . . 8  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( 2  x.  ( 2 ^ -u ( ! `  ( A  +  1 ) ) ) )  e.  RR )
8063, 79resubcld 9764 . . . . . . 7  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( ( H `
 A )  -  ( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) )  e.  RR )
8148a1i 11 . . . . . . 7  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  L  e.  RR )
8263, 78ltsubrpd 11043 . . . . . . . 8  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( ( H `
 A )  -  ( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) )  < 
( H `  A
) )
8380, 63, 81, 82, 67lttrd 9520 . . . . . . 7  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( ( H `
 A )  -  ( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) )  < 
L )
8480, 81, 83ltled 9510 . . . . . 6  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( ( H `
 A )  -  ( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) )  <_  L )
85 simprr 749 . . . . . . 7  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( L  -  ( H `  A ) )  <_  ( 2  x.  ( 2 ^
-u ( ! `  ( A  +  1
) ) ) ) )
8681, 63, 79lesubadd2d 9926 . . . . . . 7  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) )  <->  L  <_  ( ( H `  A
)  +  ( 2  x.  ( 2 ^
-u ( ! `  ( A  +  1
) ) ) ) ) ) )
8785, 86mpbid 210 . . . . . 6  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  L  <_  (
( H `  A
)  +  ( 2  x.  ( 2 ^
-u ( ! `  ( A  +  1
) ) ) ) ) )
8881, 63, 79absdifled 12905 . . . . . 6  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( ( abs `  ( L  -  ( H `  A )
) )  <_  (
2  x.  ( 2 ^ -u ( ! `
 ( A  + 
1 ) ) ) )  <->  ( ( ( H `  A )  -  ( 2  x.  ( 2 ^ -u ( ! `  ( A  +  1 ) ) ) ) )  <_  L  /\  L  <_  (
( H `  A
)  +  ( 2  x.  ( 2 ^
-u ( ! `  ( A  +  1
) ) ) ) ) ) ) )
8984, 87, 88mpbir2and 906 . . . . 5  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( abs `  ( L  -  ( H `  A ) ) )  <_  ( 2  x.  ( 2 ^ -u ( ! `  ( A  +  1 ) ) ) ) )
9068, 89jca 529 . . . 4  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( ( H `
 A )  =/= 
L  /\  ( abs `  ( L  -  ( H `  A )
) )  <_  (
2  x.  ( 2 ^ -u ( ! `
 ( A  + 
1 ) ) ) ) ) )
9190ex 434 . . 3  |-  ( A  e.  NN  ->  (
( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) )  -> 
( ( H `  A )  =/=  L  /\  ( abs `  ( L  -  ( H `  A ) ) )  <_  ( 2  x.  ( 2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) ) )
9262, 91sylbid 215 . 2  |-  ( A  e.  NN  ->  (
( sum_ b  e.  (
ZZ>= `  ( A  + 
1 ) ) ( F `  b )  e.  RR+  /\  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
)  <_  ( 2  x.  ( 2 ^
-u ( ! `  ( A  +  1
) ) ) ) )  ->  ( ( H `  A )  =/=  L  /\  ( abs `  ( L  -  ( H `  A )
) )  <_  (
2  x.  ( 2 ^ -u ( ! `
 ( A  + 
1 ) ) ) ) ) ) )
936, 92mpd 15 1  |-  ( A  e.  NN  ->  (
( H `  A
)  =/=  L  /\  ( abs `  ( L  -  ( H `  A ) ) )  <_  ( 2  x.  ( 2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 958    = wceq 1362    e. wcel 1755    =/= wne 2596   class class class wbr 4280    e. cmpt 4338   dom cdm 4827   ` cfv 5406  (class class class)co 6080   CCcc 9268   RRcr 9269   1c1 9271    + caddc 9273    x. cmul 9275    < clt 9406    <_ cle 9407    - cmin 9583   -ucneg 9584    / cdiv 9981   NNcn 10310   2c2 10359   NN0cn0 10567   ZZcz 10634   ZZ>=cuz 10849   RR+crp 10979   ...cfz 11424    seqcseq 11790   ^cexp 11849   !cfa 12035   abscabs 12707    ~~> cli 12946   sum_csu 13147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347  ax-pre-sup 9348
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-fal 1368  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-er 7089  df-pm 7205  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-sup 7679  df-oi 7712  df-card 8097  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-div 9982  df-nn 10311  df-2 10368  df-3 10369  df-n0 10568  df-z 10635  df-uz 10850  df-rp 10980  df-ioc 11293  df-ico 11294  df-fz 11425  df-fzo 11533  df-fl 11626  df-seq 11791  df-exp 11850  df-fac 12036  df-hash 12088  df-shft 12540  df-cj 12572  df-re 12573  df-im 12574  df-sqr 12708  df-abs 12709  df-limsup 12933  df-clim 12950  df-rlim 12951  df-sum 13148
This theorem is referenced by:  aaliou3lem9  21701
  Copyright terms: Public domain W3C validator