MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem7 Structured version   Unicode version

Theorem aaliou3lem7 21790
Description: Lemma for aaliou3 21792. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aaliou3lem.c  |-  F  =  ( a  e.  NN  |->  ( 2 ^ -u ( ! `  a )
) )
aaliou3lem.d  |-  L  = 
sum_ b  e.  NN  ( F `  b )
aaliou3lem.e  |-  H  =  ( c  e.  NN  |->  sum_ b  e.  ( 1 ... c ) ( F `  b ) )
Assertion
Ref Expression
aaliou3lem7  |-  ( A  e.  NN  ->  (
( H `  A
)  =/=  L  /\  ( abs `  ( L  -  ( H `  A ) ) )  <_  ( 2  x.  ( 2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )
Distinct variable groups:    a, b,
c    F, b, c    L, c    A, a, b, c
Allowed substitution hints:    F( a)    H( a, b, c)    L( a, b)

Proof of Theorem aaliou3lem7
StepHypRef Expression
1 peano2nn 10326 . . 3  |-  ( A  e.  NN  ->  ( A  +  1 )  e.  NN )
2 eqid 2438 . . . 4  |-  ( c  e.  ( ZZ>= `  ( A  +  1 ) )  |->  ( ( 2 ^ -u ( ! `
 ( A  + 
1 ) ) )  x.  ( ( 1  /  2 ) ^
( c  -  ( A  +  1 ) ) ) ) )  =  ( c  e.  ( ZZ>= `  ( A  +  1 ) ) 
|->  ( ( 2 ^
-u ( ! `  ( A  +  1
) ) )  x.  ( ( 1  / 
2 ) ^ (
c  -  ( A  +  1 ) ) ) ) )
3 aaliou3lem.c . . . 4  |-  F  =  ( a  e.  NN  |->  ( 2 ^ -u ( ! `  a )
) )
42, 3aaliou3lem3 21785 . . 3  |-  ( ( A  +  1 )  e.  NN  ->  (  seq ( A  +  1 ) (  +  ,  F )  e.  dom  ~~>  /\ 
sum_ b  e.  (
ZZ>= `  ( A  + 
1 ) ) ( F `  b )  e.  RR+  /\  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
)  <_  ( 2  x.  ( 2 ^
-u ( ! `  ( A  +  1
) ) ) ) ) )
5 3simpc 987 . . 3  |-  ( (  seq ( A  + 
1 ) (  +  ,  F )  e. 
dom 
~~>  /\  sum_ b  e.  (
ZZ>= `  ( A  + 
1 ) ) ( F `  b )  e.  RR+  /\  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
)  <_  ( 2  x.  ( 2 ^
-u ( ! `  ( A  +  1
) ) ) ) )  ->  ( sum_ b  e.  ( ZZ>= `  ( A  +  1
) ) ( F `
 b )  e.  RR+  /\  sum_ b  e.  (
ZZ>= `  ( A  + 
1 ) ) ( F `  b )  <_  ( 2  x.  ( 2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )
61, 4, 53syl 20 . 2  |-  ( A  e.  NN  ->  ( sum_ b  e.  ( ZZ>= `  ( A  +  1
) ) ( F `
 b )  e.  RR+  /\  sum_ b  e.  (
ZZ>= `  ( A  + 
1 ) ) ( F `  b )  <_  ( 2  x.  ( 2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )
7 nncn 10322 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  A  e.  CC )
8 ax-1cn 9332 . . . . . . . . . . . 12  |-  1  e.  CC
9 pncan 9608 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  + 
1 )  -  1 )  =  A )
107, 8, 9sylancl 662 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  (
( A  +  1 )  -  1 )  =  A )
1110oveq2d 6102 . . . . . . . . . 10  |-  ( A  e.  NN  ->  (
1 ... ( ( A  +  1 )  - 
1 ) )  =  ( 1 ... A
) )
1211sumeq1d 13170 . . . . . . . . 9  |-  ( A  e.  NN  ->  sum_ b  e.  ( 1 ... (
( A  +  1 )  -  1 ) ) ( F `  b )  =  sum_ b  e.  ( 1 ... A ) ( F `  b ) )
1312oveq1d 6101 . . . . . . . 8  |-  ( A  e.  NN  ->  ( sum_ b  e.  ( 1 ... ( ( A  +  1 )  - 
1 ) ) ( F `  b )  +  sum_ b  e.  (
ZZ>= `  ( A  + 
1 ) ) ( F `  b ) )  =  ( sum_ b  e.  ( 1 ... A ) ( F `  b )  +  sum_ b  e.  (
ZZ>= `  ( A  + 
1 ) ) ( F `  b ) ) )
14 nnuz 10888 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
15 eqid 2438 . . . . . . . . 9  |-  ( ZZ>= `  ( A  +  1
) )  =  (
ZZ>= `  ( A  + 
1 ) )
16 eqidd 2439 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  b  e.  NN )  ->  ( F `  b
)  =  ( F `
 b ) )
17 fveq2 5686 . . . . . . . . . . . . . 14  |-  ( a  =  b  ->  ( ! `  a )  =  ( ! `  b ) )
1817negeqd 9596 . . . . . . . . . . . . 13  |-  ( a  =  b  ->  -u ( ! `  a )  =  -u ( ! `  b ) )
1918oveq2d 6102 . . . . . . . . . . . 12  |-  ( a  =  b  ->  (
2 ^ -u ( ! `  a )
)  =  ( 2 ^ -u ( ! `
 b ) ) )
20 ovex 6111 . . . . . . . . . . . 12  |-  ( 2 ^ -u ( ! `
 b ) )  e.  _V
2119, 3, 20fvmpt 5769 . . . . . . . . . . 11  |-  ( b  e.  NN  ->  ( F `  b )  =  ( 2 ^
-u ( ! `  b ) ) )
22 2rp 10988 . . . . . . . . . . . . 13  |-  2  e.  RR+
23 nnnn0 10578 . . . . . . . . . . . . . . . 16  |-  ( b  e.  NN  ->  b  e.  NN0 )
24 faccl 12053 . . . . . . . . . . . . . . . 16  |-  ( b  e.  NN0  ->  ( ! `
 b )  e.  NN )
2523, 24syl 16 . . . . . . . . . . . . . . 15  |-  ( b  e.  NN  ->  ( ! `  b )  e.  NN )
2625nnzd 10738 . . . . . . . . . . . . . 14  |-  ( b  e.  NN  ->  ( ! `  b )  e.  ZZ )
2726znegcld 10741 . . . . . . . . . . . . 13  |-  ( b  e.  NN  ->  -u ( ! `  b )  e.  ZZ )
28 rpexpcl 11876 . . . . . . . . . . . . 13  |-  ( ( 2  e.  RR+  /\  -u ( ! `  b )  e.  ZZ )  ->  (
2 ^ -u ( ! `  b )
)  e.  RR+ )
2922, 27, 28sylancr 663 . . . . . . . . . . . 12  |-  ( b  e.  NN  ->  (
2 ^ -u ( ! `  b )
)  e.  RR+ )
3029rpcnd 11021 . . . . . . . . . . 11  |-  ( b  e.  NN  ->  (
2 ^ -u ( ! `  b )
)  e.  CC )
3121, 30eqeltrd 2512 . . . . . . . . . 10  |-  ( b  e.  NN  ->  ( F `  b )  e.  CC )
3231adantl 466 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  b  e.  NN )  ->  ( F `  b
)  e.  CC )
33 1nn 10325 . . . . . . . . . 10  |-  1  e.  NN
34 eqid 2438 . . . . . . . . . . . 12  |-  ( c  e.  ( ZZ>= `  1
)  |->  ( ( 2 ^ -u ( ! `
 1 ) )  x.  ( ( 1  /  2 ) ^
( c  -  1 ) ) ) )  =  ( c  e.  ( ZZ>= `  1 )  |->  ( ( 2 ^
-u ( ! ` 
1 ) )  x.  ( ( 1  / 
2 ) ^ (
c  -  1 ) ) ) )
3534, 3aaliou3lem3 21785 . . . . . . . . . . 11  |-  ( 1  e.  NN  ->  (  seq 1 (  +  ,  F )  e.  dom  ~~>  /\ 
sum_ b  e.  (
ZZ>= `  1 ) ( F `  b )  e.  RR+  /\  sum_ b  e.  ( ZZ>= `  1 )
( F `  b
)  <_  ( 2  x.  ( 2 ^
-u ( ! ` 
1 ) ) ) ) )
3635simp1d 1000 . . . . . . . . . 10  |-  ( 1  e.  NN  ->  seq 1 (  +  ,  F )  e.  dom  ~~>  )
3733, 36mp1i 12 . . . . . . . . 9  |-  ( A  e.  NN  ->  seq 1 (  +  ,  F )  e.  dom  ~~>  )
3814, 15, 1, 16, 32, 37isumsplit 13295 . . . . . . . 8  |-  ( A  e.  NN  ->  sum_ b  e.  NN  ( F `  b )  =  (
sum_ b  e.  ( 1 ... ( ( A  +  1 )  -  1 ) ) ( F `  b
)  +  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
) ) )
39 oveq2 6094 . . . . . . . . . . 11  |-  ( c  =  A  ->  (
1 ... c )  =  ( 1 ... A
) )
4039sumeq1d 13170 . . . . . . . . . 10  |-  ( c  =  A  ->  sum_ b  e.  ( 1 ... c
) ( F `  b )  =  sum_ b  e.  ( 1 ... A ) ( F `  b ) )
41 aaliou3lem.e . . . . . . . . . 10  |-  H  =  ( c  e.  NN  |->  sum_ b  e.  ( 1 ... c ) ( F `  b ) )
42 sumex 13157 . . . . . . . . . 10  |-  sum_ b  e.  ( 1 ... A
) ( F `  b )  e.  _V
4340, 41, 42fvmpt 5769 . . . . . . . . 9  |-  ( A  e.  NN  ->  ( H `  A )  =  sum_ b  e.  ( 1 ... A ) ( F `  b
) )
4443oveq1d 6101 . . . . . . . 8  |-  ( A  e.  NN  ->  (
( H `  A
)  +  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
) )  =  (
sum_ b  e.  ( 1 ... A ) ( F `  b
)  +  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
) ) )
4513, 38, 443eqtr4rd 2481 . . . . . . 7  |-  ( A  e.  NN  ->  (
( H `  A
)  +  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
) )  =  sum_ b  e.  NN  ( F `  b )
)
46 aaliou3lem.d . . . . . . 7  |-  L  = 
sum_ b  e.  NN  ( F `  b )
4745, 46syl6eqr 2488 . . . . . 6  |-  ( A  e.  NN  ->  (
( H `  A
)  +  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
) )  =  L )
483, 46, 41aaliou3lem4 21787 . . . . . . . . 9  |-  L  e.  RR
4948recni 9390 . . . . . . . 8  |-  L  e.  CC
5049a1i 11 . . . . . . 7  |-  ( A  e.  NN  ->  L  e.  CC )
513, 46, 41aaliou3lem5 21788 . . . . . . . 8  |-  ( A  e.  NN  ->  ( H `  A )  e.  RR )
5251recnd 9404 . . . . . . 7  |-  ( A  e.  NN  ->  ( H `  A )  e.  CC )
534simp2d 1001 . . . . . . . . 9  |-  ( ( A  +  1 )  e.  NN  ->  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
)  e.  RR+ )
541, 53syl 16 . . . . . . . 8  |-  ( A  e.  NN  ->  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
)  e.  RR+ )
5554rpcnd 11021 . . . . . . 7  |-  ( A  e.  NN  ->  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
)  e.  CC )
5650, 52, 55subaddd 9729 . . . . . 6  |-  ( A  e.  NN  ->  (
( L  -  ( H `  A )
)  =  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
)  <->  ( ( H `
 A )  + 
sum_ b  e.  (
ZZ>= `  ( A  + 
1 ) ) ( F `  b ) )  =  L ) )
5747, 56mpbird 232 . . . . 5  |-  ( A  e.  NN  ->  ( L  -  ( H `  A ) )  = 
sum_ b  e.  (
ZZ>= `  ( A  + 
1 ) ) ( F `  b ) )
5857eqcomd 2443 . . . 4  |-  ( A  e.  NN  ->  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
)  =  ( L  -  ( H `  A ) ) )
59 eleq1 2498 . . . . 5  |-  ( sum_ b  e.  ( ZZ>= `  ( A  +  1
) ) ( F `
 b )  =  ( L  -  ( H `  A )
)  ->  ( sum_ b  e.  ( ZZ>= `  ( A  +  1
) ) ( F `
 b )  e.  RR+ 
<->  ( L  -  ( H `  A )
)  e.  RR+ )
)
60 breq1 4290 . . . . 5  |-  ( sum_ b  e.  ( ZZ>= `  ( A  +  1
) ) ( F `
 b )  =  ( L  -  ( H `  A )
)  ->  ( sum_ b  e.  ( ZZ>= `  ( A  +  1
) ) ( F `
 b )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) )  <->  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )
6159, 60anbi12d 710 . . . 4  |-  ( sum_ b  e.  ( ZZ>= `  ( A  +  1
) ) ( F `
 b )  =  ( L  -  ( H `  A )
)  ->  ( ( sum_ b  e.  ( ZZ>= `  ( A  +  1
) ) ( F `
 b )  e.  RR+  /\  sum_ b  e.  (
ZZ>= `  ( A  + 
1 ) ) ( F `  b )  <_  ( 2  x.  ( 2 ^ -u ( ! `  ( A  +  1 ) ) ) ) )  <->  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_  ( 2  x.  ( 2 ^
-u ( ! `  ( A  +  1
) ) ) ) ) ) )
6258, 61syl 16 . . 3  |-  ( A  e.  NN  ->  (
( sum_ b  e.  (
ZZ>= `  ( A  + 
1 ) ) ( F `  b )  e.  RR+  /\  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
)  <_  ( 2  x.  ( 2 ^
-u ( ! `  ( A  +  1
) ) ) ) )  <->  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_  ( 2  x.  ( 2 ^
-u ( ! `  ( A  +  1
) ) ) ) ) ) )
6351adantr 465 . . . . . 6  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( H `  A )  e.  RR )
64 simprl 755 . . . . . . 7  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( L  -  ( H `  A ) )  e.  RR+ )
65 difrp 11016 . . . . . . . 8  |-  ( ( ( H `  A
)  e.  RR  /\  L  e.  RR )  ->  ( ( H `  A )  <  L  <->  ( L  -  ( H `
 A ) )  e.  RR+ ) )
6663, 48, 65sylancl 662 . . . . . . 7  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( ( H `
 A )  < 
L  <->  ( L  -  ( H `  A ) )  e.  RR+ )
)
6764, 66mpbird 232 . . . . . 6  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( H `  A )  <  L
)
6863, 67ltned 9502 . . . . 5  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( H `  A )  =/=  L
)
69 nnnn0 10578 . . . . . . . . . . . . . . 15  |-  ( ( A  +  1 )  e.  NN  ->  ( A  +  1 )  e.  NN0 )
70 faccl 12053 . . . . . . . . . . . . . . 15  |-  ( ( A  +  1 )  e.  NN0  ->  ( ! `
 ( A  + 
1 ) )  e.  NN )
711, 69, 703syl 20 . . . . . . . . . . . . . 14  |-  ( A  e.  NN  ->  ( ! `  ( A  +  1 ) )  e.  NN )
7271nnzd 10738 . . . . . . . . . . . . 13  |-  ( A  e.  NN  ->  ( ! `  ( A  +  1 ) )  e.  ZZ )
7372znegcld 10741 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  -u ( ! `  ( A  +  1 ) )  e.  ZZ )
74 rpexpcl 11876 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR+  /\  -u ( ! `  ( A  +  1 ) )  e.  ZZ )  -> 
( 2 ^ -u ( ! `  ( A  +  1 ) ) )  e.  RR+ )
7522, 73, 74sylancr 663 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  (
2 ^ -u ( ! `  ( A  +  1 ) ) )  e.  RR+ )
76 rpmulcl 11004 . . . . . . . . . . 11  |-  ( ( 2  e.  RR+  /\  (
2 ^ -u ( ! `  ( A  +  1 ) ) )  e.  RR+ )  ->  ( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) )  e.  RR+ )
7722, 75, 76sylancr 663 . . . . . . . . . 10  |-  ( A  e.  NN  ->  (
2  x.  ( 2 ^ -u ( ! `
 ( A  + 
1 ) ) ) )  e.  RR+ )
7877adantr 465 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( 2  x.  ( 2 ^ -u ( ! `  ( A  +  1 ) ) ) )  e.  RR+ )
7978rpred 11019 . . . . . . . 8  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( 2  x.  ( 2 ^ -u ( ! `  ( A  +  1 ) ) ) )  e.  RR )
8063, 79resubcld 9768 . . . . . . 7  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( ( H `
 A )  -  ( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) )  e.  RR )
8148a1i 11 . . . . . . 7  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  L  e.  RR )
8263, 78ltsubrpd 11047 . . . . . . . 8  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( ( H `
 A )  -  ( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) )  < 
( H `  A
) )
8380, 63, 81, 82, 67lttrd 9524 . . . . . . 7  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( ( H `
 A )  -  ( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) )  < 
L )
8480, 81, 83ltled 9514 . . . . . 6  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( ( H `
 A )  -  ( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) )  <_  L )
85 simprr 756 . . . . . . 7  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( L  -  ( H `  A ) )  <_  ( 2  x.  ( 2 ^
-u ( ! `  ( A  +  1
) ) ) ) )
8681, 63, 79lesubadd2d 9930 . . . . . . 7  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) )  <->  L  <_  ( ( H `  A
)  +  ( 2  x.  ( 2 ^
-u ( ! `  ( A  +  1
) ) ) ) ) ) )
8785, 86mpbid 210 . . . . . 6  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  L  <_  (
( H `  A
)  +  ( 2  x.  ( 2 ^
-u ( ! `  ( A  +  1
) ) ) ) ) )
8881, 63, 79absdifled 12913 . . . . . 6  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( ( abs `  ( L  -  ( H `  A )
) )  <_  (
2  x.  ( 2 ^ -u ( ! `
 ( A  + 
1 ) ) ) )  <->  ( ( ( H `  A )  -  ( 2  x.  ( 2 ^ -u ( ! `  ( A  +  1 ) ) ) ) )  <_  L  /\  L  <_  (
( H `  A
)  +  ( 2  x.  ( 2 ^
-u ( ! `  ( A  +  1
) ) ) ) ) ) ) )
8984, 87, 88mpbir2and 913 . . . . 5  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( abs `  ( L  -  ( H `  A ) ) )  <_  ( 2  x.  ( 2 ^ -u ( ! `  ( A  +  1 ) ) ) ) )
9068, 89jca 532 . . . 4  |-  ( ( A  e.  NN  /\  ( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )  ->  ( ( H `
 A )  =/= 
L  /\  ( abs `  ( L  -  ( H `  A )
) )  <_  (
2  x.  ( 2 ^ -u ( ! `
 ( A  + 
1 ) ) ) ) ) )
9190ex 434 . . 3  |-  ( A  e.  NN  ->  (
( ( L  -  ( H `  A ) )  e.  RR+  /\  ( L  -  ( H `  A ) )  <_ 
( 2  x.  (
2 ^ -u ( ! `  ( A  +  1 ) ) ) ) )  -> 
( ( H `  A )  =/=  L  /\  ( abs `  ( L  -  ( H `  A ) ) )  <_  ( 2  x.  ( 2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) ) )
9262, 91sylbid 215 . 2  |-  ( A  e.  NN  ->  (
( sum_ b  e.  (
ZZ>= `  ( A  + 
1 ) ) ( F `  b )  e.  RR+  /\  sum_ b  e.  ( ZZ>= `  ( A  +  1 ) ) ( F `  b
)  <_  ( 2  x.  ( 2 ^
-u ( ! `  ( A  +  1
) ) ) ) )  ->  ( ( H `  A )  =/=  L  /\  ( abs `  ( L  -  ( H `  A )
) )  <_  (
2  x.  ( 2 ^ -u ( ! `
 ( A  + 
1 ) ) ) ) ) ) )
936, 92mpd 15 1  |-  ( A  e.  NN  ->  (
( H `  A
)  =/=  L  /\  ( abs `  ( L  -  ( H `  A ) ) )  <_  ( 2  x.  ( 2 ^ -u ( ! `  ( A  +  1 ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2601   class class class wbr 4287    e. cmpt 4345   dom cdm 4835   ` cfv 5413  (class class class)co 6086   CCcc 9272   RRcr 9273   1c1 9275    + caddc 9277    x. cmul 9279    < clt 9410    <_ cle 9411    - cmin 9587   -ucneg 9588    / cdiv 9985   NNcn 10314   2c2 10363   NN0cn0 10571   ZZcz 10638   ZZ>=cuz 10853   RR+crp 10983   ...cfz 11429    seqcseq 11798   ^cexp 11857   !cfa 12043   abscabs 12715    ~~> cli 12954   sum_csu 13155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-oadd 6916  df-er 7093  df-pm 7209  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-sup 7683  df-oi 7716  df-card 8101  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-n0 10572  df-z 10639  df-uz 10854  df-rp 10984  df-ioc 11297  df-ico 11298  df-fz 11430  df-fzo 11541  df-fl 11634  df-seq 11799  df-exp 11858  df-fac 12044  df-hash 12096  df-shft 12548  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-limsup 12941  df-clim 12958  df-rlim 12959  df-sum 13156
This theorem is referenced by:  aaliou3lem9  21791
  Copyright terms: Public domain W3C validator