MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem6 Structured version   Unicode version

Theorem aaliou3lem6 21773
Description: Lemma for aaliou3 21776. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aaliou3lem.c  |-  F  =  ( a  e.  NN  |->  ( 2 ^ -u ( ! `  a )
) )
aaliou3lem.d  |-  L  = 
sum_ b  e.  NN  ( F `  b )
aaliou3lem.e  |-  H  =  ( c  e.  NN  |->  sum_ b  e.  ( 1 ... c ) ( F `  b ) )
Assertion
Ref Expression
aaliou3lem6  |-  ( A  e.  NN  ->  (
( H `  A
)  x.  ( 2 ^ ( ! `  A ) ) )  e.  ZZ )
Distinct variable groups:    a, b,
c    F, b, c    L, c    A, a, b, c
Allowed substitution hints:    F( a)    H( a, b, c)    L( a, b)

Proof of Theorem aaliou3lem6
StepHypRef Expression
1 oveq2 6098 . . . . 5  |-  ( c  =  A  ->  (
1 ... c )  =  ( 1 ... A
) )
21sumeq1d 13174 . . . 4  |-  ( c  =  A  ->  sum_ b  e.  ( 1 ... c
) ( F `  b )  =  sum_ b  e.  ( 1 ... A ) ( F `  b ) )
3 aaliou3lem.e . . . 4  |-  H  =  ( c  e.  NN  |->  sum_ b  e.  ( 1 ... c ) ( F `  b ) )
4 sumex 13161 . . . 4  |-  sum_ b  e.  ( 1 ... A
) ( F `  b )  e.  _V
52, 3, 4fvmpt 5771 . . 3  |-  ( A  e.  NN  ->  ( H `  A )  =  sum_ b  e.  ( 1 ... A ) ( F `  b
) )
65oveq1d 6105 . 2  |-  ( A  e.  NN  ->  (
( H `  A
)  x.  ( 2 ^ ( ! `  A ) ) )  =  ( sum_ b  e.  ( 1 ... A
) ( F `  b )  x.  (
2 ^ ( ! `
 A ) ) ) )
7 fzfid 11791 . . . 4  |-  ( A  e.  NN  ->  (
1 ... A )  e. 
Fin )
8 2rp 10992 . . . . . 6  |-  2  e.  RR+
9 nnnn0 10582 . . . . . . . 8  |-  ( A  e.  NN  ->  A  e.  NN0 )
10 faccl 12057 . . . . . . . 8  |-  ( A  e.  NN0  ->  ( ! `
 A )  e.  NN )
119, 10syl 16 . . . . . . 7  |-  ( A  e.  NN  ->  ( ! `  A )  e.  NN )
1211nnzd 10742 . . . . . 6  |-  ( A  e.  NN  ->  ( ! `  A )  e.  ZZ )
13 rpexpcl 11880 . . . . . 6  |-  ( ( 2  e.  RR+  /\  ( ! `  A )  e.  ZZ )  ->  (
2 ^ ( ! `
 A ) )  e.  RR+ )
148, 12, 13sylancr 658 . . . . 5  |-  ( A  e.  NN  ->  (
2 ^ ( ! `
 A ) )  e.  RR+ )
1514rpcnd 11025 . . . 4  |-  ( A  e.  NN  ->  (
2 ^ ( ! `
 A ) )  e.  CC )
16 elfznn 11474 . . . . . . 7  |-  ( b  e.  ( 1 ... A )  ->  b  e.  NN )
17 fveq2 5688 . . . . . . . . . 10  |-  ( a  =  b  ->  ( ! `  a )  =  ( ! `  b ) )
1817negeqd 9600 . . . . . . . . 9  |-  ( a  =  b  ->  -u ( ! `  a )  =  -u ( ! `  b ) )
1918oveq2d 6106 . . . . . . . 8  |-  ( a  =  b  ->  (
2 ^ -u ( ! `  a )
)  =  ( 2 ^ -u ( ! `
 b ) ) )
20 aaliou3lem.c . . . . . . . 8  |-  F  =  ( a  e.  NN  |->  ( 2 ^ -u ( ! `  a )
) )
21 ovex 6115 . . . . . . . 8  |-  ( 2 ^ -u ( ! `
 b ) )  e.  _V
2219, 20, 21fvmpt 5771 . . . . . . 7  |-  ( b  e.  NN  ->  ( F `  b )  =  ( 2 ^
-u ( ! `  b ) ) )
2316, 22syl 16 . . . . . 6  |-  ( b  e.  ( 1 ... A )  ->  ( F `  b )  =  ( 2 ^
-u ( ! `  b ) ) )
2423adantl 463 . . . . 5  |-  ( ( A  e.  NN  /\  b  e.  ( 1 ... A ) )  ->  ( F `  b )  =  ( 2 ^ -u ( ! `  b )
) )
2516adantl 463 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  b  e.  ( 1 ... A ) )  ->  b  e.  NN )
2625nnnn0d 10632 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  b  e.  ( 1 ... A ) )  ->  b  e.  NN0 )
27 faccl 12057 . . . . . . . . . 10  |-  ( b  e.  NN0  ->  ( ! `
 b )  e.  NN )
2826, 27syl 16 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  b  e.  ( 1 ... A ) )  ->  ( ! `  b )  e.  NN )
2928nnzd 10742 . . . . . . . 8  |-  ( ( A  e.  NN  /\  b  e.  ( 1 ... A ) )  ->  ( ! `  b )  e.  ZZ )
3029znegcld 10745 . . . . . . 7  |-  ( ( A  e.  NN  /\  b  e.  ( 1 ... A ) )  ->  -u ( ! `  b )  e.  ZZ )
31 rpexpcl 11880 . . . . . . 7  |-  ( ( 2  e.  RR+  /\  -u ( ! `  b )  e.  ZZ )  ->  (
2 ^ -u ( ! `  b )
)  e.  RR+ )
328, 30, 31sylancr 658 . . . . . 6  |-  ( ( A  e.  NN  /\  b  e.  ( 1 ... A ) )  ->  ( 2 ^
-u ( ! `  b ) )  e.  RR+ )
3332rpcnd 11025 . . . . 5  |-  ( ( A  e.  NN  /\  b  e.  ( 1 ... A ) )  ->  ( 2 ^
-u ( ! `  b ) )  e.  CC )
3424, 33eqeltrd 2515 . . . 4  |-  ( ( A  e.  NN  /\  b  e.  ( 1 ... A ) )  ->  ( F `  b )  e.  CC )
357, 15, 34fsummulc1 13248 . . 3  |-  ( A  e.  NN  ->  ( sum_ b  e.  ( 1 ... A ) ( F `  b )  x.  ( 2 ^ ( ! `  A
) ) )  = 
sum_ b  e.  ( 1 ... A ) ( ( F `  b )  x.  (
2 ^ ( ! `
 A ) ) ) )
3624oveq1d 6105 . . . . 5  |-  ( ( A  e.  NN  /\  b  e.  ( 1 ... A ) )  ->  ( ( F `
 b )  x.  ( 2 ^ ( ! `  A )
) )  =  ( ( 2 ^ -u ( ! `  b )
)  x.  ( 2 ^ ( ! `  A ) ) ) )
3712adantr 462 . . . . . . 7  |-  ( ( A  e.  NN  /\  b  e.  ( 1 ... A ) )  ->  ( ! `  A )  e.  ZZ )
38 2cnne0 10532 . . . . . . . 8  |-  ( 2  e.  CC  /\  2  =/=  0 )
39 expaddz 11904 . . . . . . . 8  |-  ( ( ( 2  e.  CC  /\  2  =/=  0 )  /\  ( -u ( ! `  b )  e.  ZZ  /\  ( ! `
 A )  e.  ZZ ) )  -> 
( 2 ^ ( -u ( ! `  b
)  +  ( ! `
 A ) ) )  =  ( ( 2 ^ -u ( ! `  b )
)  x.  ( 2 ^ ( ! `  A ) ) ) )
4038, 39mpan 665 . . . . . . 7  |-  ( (
-u ( ! `  b )  e.  ZZ  /\  ( ! `  A
)  e.  ZZ )  ->  ( 2 ^ ( -u ( ! `
 b )  +  ( ! `  A
) ) )  =  ( ( 2 ^
-u ( ! `  b ) )  x.  ( 2 ^ ( ! `  A )
) ) )
4130, 37, 40syl2anc 656 . . . . . 6  |-  ( ( A  e.  NN  /\  b  e.  ( 1 ... A ) )  ->  ( 2 ^ ( -u ( ! `
 b )  +  ( ! `  A
) ) )  =  ( ( 2 ^
-u ( ! `  b ) )  x.  ( 2 ^ ( ! `  A )
) ) )
42 2z 10674 . . . . . . 7  |-  2  e.  ZZ
4330zcnd 10744 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  b  e.  ( 1 ... A ) )  ->  -u ( ! `  b )  e.  CC )
4437zcnd 10744 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  b  e.  ( 1 ... A ) )  ->  ( ! `  A )  e.  CC )
4543, 44addcomd 9567 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  b  e.  ( 1 ... A ) )  ->  ( -u ( ! `  b )  +  ( ! `  A ) )  =  ( ( ! `  A )  +  -u ( ! `  b ) ) )
4628nncnd 10334 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  b  e.  ( 1 ... A ) )  ->  ( ! `  b )  e.  CC )
4744, 46negsubd 9721 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  b  e.  ( 1 ... A ) )  ->  ( ( ! `
 A )  + 
-u ( ! `  b ) )  =  ( ( ! `  A )  -  ( ! `  b )
) )
4845, 47eqtrd 2473 . . . . . . . 8  |-  ( ( A  e.  NN  /\  b  e.  ( 1 ... A ) )  ->  ( -u ( ! `  b )  +  ( ! `  A ) )  =  ( ( ! `  A )  -  ( ! `  b )
) )
499adantr 462 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  b  e.  ( 1 ... A ) )  ->  A  e.  NN0 )
50 elfzle2 11451 . . . . . . . . . . 11  |-  ( b  e.  ( 1 ... A )  ->  b  <_  A )
5150adantl 463 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  b  e.  ( 1 ... A ) )  ->  b  <_  A
)
52 facwordi 12061 . . . . . . . . . 10  |-  ( ( b  e.  NN0  /\  A  e.  NN0  /\  b  <_  A )  ->  ( ! `  b )  <_  ( ! `  A
) )
5326, 49, 51, 52syl3anc 1213 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  b  e.  ( 1 ... A ) )  ->  ( ! `  b )  <_  ( ! `  A )
)
5428nnnn0d 10632 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  b  e.  ( 1 ... A ) )  ->  ( ! `  b )  e.  NN0 )
5549, 10syl 16 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  b  e.  ( 1 ... A ) )  ->  ( ! `  A )  e.  NN )
5655nnnn0d 10632 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  b  e.  ( 1 ... A ) )  ->  ( ! `  A )  e.  NN0 )
57 nn0sub 10626 . . . . . . . . . 10  |-  ( ( ( ! `  b
)  e.  NN0  /\  ( ! `  A )  e.  NN0 )  -> 
( ( ! `  b )  <_  ( ! `  A )  <->  ( ( ! `  A
)  -  ( ! `
 b ) )  e.  NN0 ) )
5854, 56, 57syl2anc 656 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  b  e.  ( 1 ... A ) )  ->  ( ( ! `
 b )  <_ 
( ! `  A
)  <->  ( ( ! `
 A )  -  ( ! `  b ) )  e.  NN0 )
)
5953, 58mpbid 210 . . . . . . . 8  |-  ( ( A  e.  NN  /\  b  e.  ( 1 ... A ) )  ->  ( ( ! `
 A )  -  ( ! `  b ) )  e.  NN0 )
6048, 59eqeltrd 2515 . . . . . . 7  |-  ( ( A  e.  NN  /\  b  e.  ( 1 ... A ) )  ->  ( -u ( ! `  b )  +  ( ! `  A ) )  e. 
NN0 )
61 zexpcl 11876 . . . . . . 7  |-  ( ( 2  e.  ZZ  /\  ( -u ( ! `  b )  +  ( ! `  A ) )  e.  NN0 )  ->  ( 2 ^ ( -u ( ! `  b
)  +  ( ! `
 A ) ) )  e.  ZZ )
6242, 60, 61sylancr 658 . . . . . 6  |-  ( ( A  e.  NN  /\  b  e.  ( 1 ... A ) )  ->  ( 2 ^ ( -u ( ! `
 b )  +  ( ! `  A
) ) )  e.  ZZ )
6341, 62eqeltrrd 2516 . . . . 5  |-  ( ( A  e.  NN  /\  b  e.  ( 1 ... A ) )  ->  ( ( 2 ^ -u ( ! `
 b ) )  x.  ( 2 ^ ( ! `  A
) ) )  e.  ZZ )
6436, 63eqeltrd 2515 . . . 4  |-  ( ( A  e.  NN  /\  b  e.  ( 1 ... A ) )  ->  ( ( F `
 b )  x.  ( 2 ^ ( ! `  A )
) )  e.  ZZ )
657, 64fsumzcl 13208 . . 3  |-  ( A  e.  NN  ->  sum_ b  e.  ( 1 ... A
) ( ( F `
 b )  x.  ( 2 ^ ( ! `  A )
) )  e.  ZZ )
6635, 65eqeltrd 2515 . 2  |-  ( A  e.  NN  ->  ( sum_ b  e.  ( 1 ... A ) ( F `  b )  x.  ( 2 ^ ( ! `  A
) ) )  e.  ZZ )
676, 66eqeltrd 2515 1  |-  ( A  e.  NN  ->  (
( H `  A
)  x.  ( 2 ^ ( ! `  A ) ) )  e.  ZZ )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761    =/= wne 2604   class class class wbr 4289    e. cmpt 4347   ` cfv 5415  (class class class)co 6090   CCcc 9276   0cc0 9278   1c1 9279    + caddc 9281    x. cmul 9283    <_ cle 9415    - cmin 9591   -ucneg 9592   NNcn 10318   2c2 10367   NN0cn0 10575   ZZcz 10642   RR+crp 10987   ...cfz 11433   ^cexp 11861   !cfa 12047   sum_csu 13159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-sup 7687  df-oi 7720  df-card 8105  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-n0 10576  df-z 10643  df-uz 10858  df-rp 10988  df-fz 11434  df-fzo 11545  df-seq 11803  df-exp 11862  df-fac 12048  df-hash 12100  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-clim 12962  df-sum 13160
This theorem is referenced by:  aaliou3lem9  21775
  Copyright terms: Public domain W3C validator