MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou2b Structured version   Unicode version

Theorem aaliou2b 22499
Description: Liouville's approximation theorem extended to complex  A. (Contributed by Stefan O'Rear, 20-Nov-2014.)
Assertion
Ref Expression
aaliou2b  |-  ( A  e.  AA  ->  E. k  e.  NN  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q )  \/  ( x  /  (
q ^ k ) )  <  ( abs `  ( A  -  (
p  /  q ) ) ) ) )
Distinct variable group:    A, k, x, p, q

Proof of Theorem aaliou2b
StepHypRef Expression
1 elin 3687 . . 3  |-  ( A  e.  ( AA  i^i  RR )  <->  ( A  e.  AA  /\  A  e.  RR ) )
2 aaliou2 22498 . . 3  |-  ( A  e.  ( AA  i^i  RR )  ->  E. k  e.  NN  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q )  \/  ( x  /  (
q ^ k ) )  <  ( abs `  ( A  -  (
p  /  q ) ) ) ) )
31, 2sylbir 213 . 2  |-  ( ( A  e.  AA  /\  A  e.  RR )  ->  E. k  e.  NN  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( x  /  ( q ^
k ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) )
4 1nn 10547 . . . 4  |-  1  e.  NN
54a1i 11 . . 3  |-  ( ( A  e.  AA  /\  -.  A  e.  RR )  ->  1  e.  NN )
6 aacn 22475 . . . . . . . 8  |-  ( A  e.  AA  ->  A  e.  CC )
76adantr 465 . . . . . . 7  |-  ( ( A  e.  AA  /\  -.  A  e.  RR )  ->  A  e.  CC )
87imcld 12991 . . . . . 6  |-  ( ( A  e.  AA  /\  -.  A  e.  RR )  ->  ( Im `  A )  e.  RR )
98recnd 9622 . . . . 5  |-  ( ( A  e.  AA  /\  -.  A  e.  RR )  ->  ( Im `  A )  e.  CC )
10 reim0b 12915 . . . . . . . 8  |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( Im `  A )  =  0 ) )
116, 10syl 16 . . . . . . 7  |-  ( A  e.  AA  ->  ( A  e.  RR  <->  ( Im `  A )  =  0 ) )
1211necon3bbid 2714 . . . . . 6  |-  ( A  e.  AA  ->  ( -.  A  e.  RR  <->  ( Im `  A )  =/=  0 ) )
1312biimpa 484 . . . . 5  |-  ( ( A  e.  AA  /\  -.  A  e.  RR )  ->  ( Im `  A )  =/=  0
)
149, 13absrpcld 13242 . . . 4  |-  ( ( A  e.  AA  /\  -.  A  e.  RR )  ->  ( abs `  (
Im `  A )
)  e.  RR+ )
1514rphalfcld 11268 . . 3  |-  ( ( A  e.  AA  /\  -.  A  e.  RR )  ->  ( ( abs `  ( Im `  A
) )  /  2
)  e.  RR+ )
1615adantr 465 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( ( abs `  (
Im `  A )
)  /  2 )  e.  RR+ )
17 1nn0 10811 . . . . . . . . . . 11  |-  1  e.  NN0
18 nnexpcl 12147 . . . . . . . . . . 11  |-  ( ( q  e.  NN  /\  1  e.  NN0 )  -> 
( q ^ 1 )  e.  NN )
1917, 18mpan2 671 . . . . . . . . . 10  |-  ( q  e.  NN  ->  (
q ^ 1 )  e.  NN )
2019ad2antll 728 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( q ^ 1 )  e.  NN )
2120nnrpd 11255 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( q ^ 1 )  e.  RR+ )
2216, 21rpdivcld 11273 . . . . . . 7  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( ( ( abs `  ( Im `  A
) )  /  2
)  /  ( q ^ 1 ) )  e.  RR+ )
2322rpred 11256 . . . . . 6  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( ( ( abs `  ( Im `  A
) )  /  2
)  /  ( q ^ 1 ) )  e.  RR )
2416rpred 11256 . . . . . 6  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( ( abs `  (
Im `  A )
)  /  2 )  e.  RR )
257adantr 465 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  ->  A  e.  CC )
26 znq 11186 . . . . . . . . . . 11  |-  ( ( p  e.  ZZ  /\  q  e.  NN )  ->  ( p  /  q
)  e.  QQ )
2726adantl 466 . . . . . . . . . 10  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( p  /  q
)  e.  QQ )
28 qre 11187 . . . . . . . . . 10  |-  ( ( p  /  q )  e.  QQ  ->  (
p  /  q )  e.  RR )
2927, 28syl 16 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( p  /  q
)  e.  RR )
3029recnd 9622 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( p  /  q
)  e.  CC )
3125, 30subcld 9930 . . . . . . 7  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( A  -  (
p  /  q ) )  e.  CC )
3231abscld 13230 . . . . . 6  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( abs `  ( A  -  ( p  /  q ) ) )  e.  RR )
3320nnge1d 10578 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
1  <_  ( q ^ 1 ) )
34 1rp 11224 . . . . . . . . . 10  |-  1  e.  RR+
35 rpregt0 11233 . . . . . . . . . 10  |-  ( 1  e.  RR+  ->  ( 1  e.  RR  /\  0  <  1 ) )
3634, 35mp1i 12 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( 1  e.  RR  /\  0  <  1 ) )
3721rpregt0d 11262 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( ( q ^
1 )  e.  RR  /\  0  <  ( q ^ 1 ) ) )
3816rpregt0d 11262 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( ( ( abs `  ( Im `  A
) )  /  2
)  e.  RR  /\  0  <  ( ( abs `  ( Im `  A
) )  /  2
) ) )
39 lediv2 10435 . . . . . . . . 9  |-  ( ( ( 1  e.  RR  /\  0  <  1 )  /\  ( ( q ^ 1 )  e.  RR  /\  0  < 
( q ^ 1 ) )  /\  (
( ( abs `  (
Im `  A )
)  /  2 )  e.  RR  /\  0  <  ( ( abs `  (
Im `  A )
)  /  2 ) ) )  ->  (
1  <_  ( q ^ 1 )  <->  ( (
( abs `  (
Im `  A )
)  /  2 )  /  ( q ^
1 ) )  <_ 
( ( ( abs `  ( Im `  A
) )  /  2
)  /  1 ) ) )
4036, 37, 38, 39syl3anc 1228 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( 1  <_  (
q ^ 1 )  <-> 
( ( ( abs `  ( Im `  A
) )  /  2
)  /  ( q ^ 1 ) )  <_  ( ( ( abs `  ( Im
`  A ) )  /  2 )  / 
1 ) ) )
4133, 40mpbid 210 . . . . . . 7  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( ( ( abs `  ( Im `  A
) )  /  2
)  /  ( q ^ 1 ) )  <_  ( ( ( abs `  ( Im
`  A ) )  /  2 )  / 
1 ) )
4216rpcnd 11258 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( ( abs `  (
Im `  A )
)  /  2 )  e.  CC )
4342div1d 10312 . . . . . . 7  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( ( ( abs `  ( Im `  A
) )  /  2
)  /  1 )  =  ( ( abs `  ( Im `  A
) )  /  2
) )
4441, 43breqtrd 4471 . . . . . 6  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( ( ( abs `  ( Im `  A
) )  /  2
)  /  ( q ^ 1 ) )  <_  ( ( abs `  ( Im `  A
) )  /  2
) )
4514adantr 465 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( abs `  (
Im `  A )
)  e.  RR+ )
4645rpred 11256 . . . . . . 7  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( abs `  (
Im `  A )
)  e.  RR )
47 rphalflt 11246 . . . . . . . 8  |-  ( ( abs `  ( Im
`  A ) )  e.  RR+  ->  ( ( abs `  ( Im
`  A ) )  /  2 )  < 
( abs `  (
Im `  A )
) )
4845, 47syl 16 . . . . . . 7  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( ( abs `  (
Im `  A )
)  /  2 )  <  ( abs `  (
Im `  A )
) )
4925, 30imsubd 13013 . . . . . . . . . 10  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( Im `  ( A  -  ( p  /  q ) ) )  =  ( ( Im `  A )  -  ( Im `  ( p  /  q
) ) ) )
5029reim0d 13021 . . . . . . . . . . 11  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( Im `  (
p  /  q ) )  =  0 )
5150oveq2d 6300 . . . . . . . . . 10  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( ( Im `  A )  -  (
Im `  ( p  /  q ) ) )  =  ( ( Im `  A )  -  0 ) )
529adantr 465 . . . . . . . . . . 11  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( Im `  A
)  e.  CC )
5352subid1d 9919 . . . . . . . . . 10  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( ( Im `  A )  -  0 )  =  ( Im
`  A ) )
5449, 51, 533eqtrd 2512 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( Im `  ( A  -  ( p  /  q ) ) )  =  ( Im
`  A ) )
5554fveq2d 5870 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( abs `  (
Im `  ( A  -  ( p  / 
q ) ) ) )  =  ( abs `  ( Im `  A
) ) )
56 absimle 13105 . . . . . . . . 9  |-  ( ( A  -  ( p  /  q ) )  e.  CC  ->  ( abs `  ( Im `  ( A  -  (
p  /  q ) ) ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )
5731, 56syl 16 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( abs `  (
Im `  ( A  -  ( p  / 
q ) ) ) )  <_  ( abs `  ( A  -  (
p  /  q ) ) ) )
5855, 57eqbrtrrd 4469 . . . . . . 7  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( abs `  (
Im `  A )
)  <_  ( abs `  ( A  -  (
p  /  q ) ) ) )
5924, 46, 32, 48, 58ltletrd 9741 . . . . . 6  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( ( abs `  (
Im `  A )
)  /  2 )  <  ( abs `  ( A  -  ( p  /  q ) ) ) )
6023, 24, 32, 44, 59lelttrd 9739 . . . . 5  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( ( ( abs `  ( Im `  A
) )  /  2
)  /  ( q ^ 1 ) )  <  ( abs `  ( A  -  ( p  /  q ) ) ) )
6160olcd 393 . . . 4  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( A  =  ( p  /  q )  \/  ( ( ( abs `  ( Im
`  A ) )  /  2 )  / 
( q ^ 1 ) )  <  ( abs `  ( A  -  ( p  /  q
) ) ) ) )
6261ralrimivva 2885 . . 3  |-  ( ( A  e.  AA  /\  -.  A  e.  RR )  ->  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q )  \/  ( ( ( abs `  ( Im `  A
) )  /  2
)  /  ( q ^ 1 ) )  <  ( abs `  ( A  -  ( p  /  q ) ) ) ) )
63 oveq2 6292 . . . . . . . 8  |-  ( k  =  1  ->  (
q ^ k )  =  ( q ^
1 ) )
6463oveq2d 6300 . . . . . . 7  |-  ( k  =  1  ->  (
x  /  ( q ^ k ) )  =  ( x  / 
( q ^ 1 ) ) )
6564breq1d 4457 . . . . . 6  |-  ( k  =  1  ->  (
( x  /  (
q ^ k ) )  <  ( abs `  ( A  -  (
p  /  q ) ) )  <->  ( x  /  ( q ^
1 ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) )
6665orbi2d 701 . . . . 5  |-  ( k  =  1  ->  (
( A  =  ( p  /  q )  \/  ( x  / 
( q ^ k
) )  <  ( abs `  ( A  -  ( p  /  q
) ) ) )  <-> 
( A  =  ( p  /  q )  \/  ( x  / 
( q ^ 1 ) )  <  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
67662ralbidv 2908 . . . 4  |-  ( k  =  1  ->  ( A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q )  \/  ( x  /  (
q ^ k ) )  <  ( abs `  ( A  -  (
p  /  q ) ) ) )  <->  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( x  /  ( q ^
1 ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
68 oveq1 6291 . . . . . . 7  |-  ( x  =  ( ( abs `  ( Im `  A
) )  /  2
)  ->  ( x  /  ( q ^
1 ) )  =  ( ( ( abs `  ( Im `  A
) )  /  2
)  /  ( q ^ 1 ) ) )
6968breq1d 4457 . . . . . 6  |-  ( x  =  ( ( abs `  ( Im `  A
) )  /  2
)  ->  ( (
x  /  ( q ^ 1 ) )  <  ( abs `  ( A  -  ( p  /  q ) ) )  <->  ( ( ( abs `  ( Im
`  A ) )  /  2 )  / 
( q ^ 1 ) )  <  ( abs `  ( A  -  ( p  /  q
) ) ) ) )
7069orbi2d 701 . . . . 5  |-  ( x  =  ( ( abs `  ( Im `  A
) )  /  2
)  ->  ( ( A  =  ( p  /  q )  \/  ( x  /  (
q ^ 1 ) )  <  ( abs `  ( A  -  (
p  /  q ) ) ) )  <->  ( A  =  ( p  / 
q )  \/  (
( ( abs `  (
Im `  A )
)  /  2 )  /  ( q ^
1 ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
71702ralbidv 2908 . . . 4  |-  ( x  =  ( ( abs `  ( Im `  A
) )  /  2
)  ->  ( A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( x  /  ( q ^
1 ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) )  <->  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( ( ( abs `  (
Im `  A )
)  /  2 )  /  ( q ^
1 ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
7267, 71rspc2ev 3225 . . 3  |-  ( ( 1  e.  NN  /\  ( ( abs `  (
Im `  A )
)  /  2 )  e.  RR+  /\  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( ( ( abs `  (
Im `  A )
)  /  2 )  /  ( q ^
1 ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) )  ->  E. k  e.  NN  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( x  /  ( q ^
k ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) )
735, 15, 62, 72syl3anc 1228 . 2  |-  ( ( A  e.  AA  /\  -.  A  e.  RR )  ->  E. k  e.  NN  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( x  /  ( q ^
k ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) )
743, 73pm2.61dan 789 1  |-  ( A  e.  AA  ->  E. k  e.  NN  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q )  \/  ( x  /  (
q ^ k ) )  <  ( abs `  ( A  -  (
p  /  q ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815    i^i cin 3475   class class class wbr 4447   ` cfv 5588  (class class class)co 6284   CCcc 9490   RRcr 9491   0cc0 9492   1c1 9493    < clt 9628    <_ cle 9629    - cmin 9805    / cdiv 10206   NNcn 10536   2c2 10585   NN0cn0 10795   ZZcz 10864   QQcq 11182   RR+crp 11220   ^cexp 12134   Imcim 12894   abscabs 13030   AAcaa 22472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570  ax-addf 9571  ax-mulf 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-of 6524  df-om 6685  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7830  df-fi 7871  df-sup 7901  df-oi 7935  df-card 8320  df-cda 8548  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-4 10596  df-5 10597  df-6 10598  df-7 10599  df-8 10600  df-9 10601  df-10 10602  df-n0 10796  df-z 10865  df-dec 10977  df-uz 11083  df-q 11183  df-rp 11221  df-xneg 11318  df-xadd 11319  df-xmul 11320  df-ioo 11533  df-ico 11535  df-icc 11536  df-fz 11673  df-fzo 11793  df-fl 11897  df-seq 12076  df-exp 12135  df-hash 12374  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-clim 13274  df-rlim 13275  df-sum 13472  df-struct 14492  df-ndx 14493  df-slot 14494  df-base 14495  df-sets 14496  df-ress 14497  df-plusg 14568  df-mulr 14569  df-starv 14570  df-sca 14571  df-vsca 14572  df-ip 14573  df-tset 14574  df-ple 14575  df-ds 14577  df-unif 14578  df-hom 14579  df-cco 14580  df-rest 14678  df-topn 14679  df-0g 14697  df-gsum 14698  df-topgen 14699  df-pt 14700  df-prds 14703  df-xrs 14757  df-qtop 14762  df-imas 14763  df-xps 14765  df-mre 14841  df-mrc 14842  df-acs 14844  df-mnd 15732  df-submnd 15787  df-grp 15867  df-minusg 15868  df-mulg 15870  df-subg 16003  df-cntz 16160  df-cmn 16606  df-mgp 16944  df-ur 16956  df-rng 17002  df-cring 17003  df-subrg 17227  df-psmet 18210  df-xmet 18211  df-met 18212  df-bl 18213  df-mopn 18214  df-fbas 18215  df-fg 18216  df-cnfld 18220  df-top 19194  df-bases 19196  df-topon 19197  df-topsp 19198  df-cld 19314  df-ntr 19315  df-cls 19316  df-nei 19393  df-lp 19431  df-perf 19432  df-cn 19522  df-cnp 19523  df-haus 19610  df-cmp 19681  df-tx 19826  df-hmeo 20019  df-fil 20110  df-fm 20202  df-flim 20203  df-flf 20204  df-xms 20586  df-ms 20587  df-tms 20588  df-cncf 21145  df-0p 21840  df-limc 22033  df-dv 22034  df-dvn 22035  df-cpn 22036  df-ply 22348  df-idp 22349  df-coe 22350  df-dgr 22351  df-quot 22449  df-aa 22473
This theorem is referenced by:  aaliou3lem9  22508
  Copyright terms: Public domain W3C validator