MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou2b Structured version   Unicode version

Theorem aaliou2b 21807
Description: Liouville's approximation theorem extended to complex  A. (Contributed by Stefan O'Rear, 20-Nov-2014.)
Assertion
Ref Expression
aaliou2b  |-  ( A  e.  AA  ->  E. k  e.  NN  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q )  \/  ( x  /  (
q ^ k ) )  <  ( abs `  ( A  -  (
p  /  q ) ) ) ) )
Distinct variable group:    A, k, x, p, q

Proof of Theorem aaliou2b
StepHypRef Expression
1 elin 3539 . . 3  |-  ( A  e.  ( AA  i^i  RR )  <->  ( A  e.  AA  /\  A  e.  RR ) )
2 aaliou2 21806 . . 3  |-  ( A  e.  ( AA  i^i  RR )  ->  E. k  e.  NN  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q )  \/  ( x  /  (
q ^ k ) )  <  ( abs `  ( A  -  (
p  /  q ) ) ) ) )
31, 2sylbir 213 . 2  |-  ( ( A  e.  AA  /\  A  e.  RR )  ->  E. k  e.  NN  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( x  /  ( q ^
k ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) )
4 1nn 10333 . . . 4  |-  1  e.  NN
54a1i 11 . . 3  |-  ( ( A  e.  AA  /\  -.  A  e.  RR )  ->  1  e.  NN )
6 aacn 21783 . . . . . . . 8  |-  ( A  e.  AA  ->  A  e.  CC )
76adantr 465 . . . . . . 7  |-  ( ( A  e.  AA  /\  -.  A  e.  RR )  ->  A  e.  CC )
87imcld 12684 . . . . . 6  |-  ( ( A  e.  AA  /\  -.  A  e.  RR )  ->  ( Im `  A )  e.  RR )
98recnd 9412 . . . . 5  |-  ( ( A  e.  AA  /\  -.  A  e.  RR )  ->  ( Im `  A )  e.  CC )
10 reim0b 12608 . . . . . . . 8  |-  ( A  e.  CC  ->  ( A  e.  RR  <->  ( Im `  A )  =  0 ) )
116, 10syl 16 . . . . . . 7  |-  ( A  e.  AA  ->  ( A  e.  RR  <->  ( Im `  A )  =  0 ) )
1211necon3bbid 2642 . . . . . 6  |-  ( A  e.  AA  ->  ( -.  A  e.  RR  <->  ( Im `  A )  =/=  0 ) )
1312biimpa 484 . . . . 5  |-  ( ( A  e.  AA  /\  -.  A  e.  RR )  ->  ( Im `  A )  =/=  0
)
149, 13absrpcld 12934 . . . 4  |-  ( ( A  e.  AA  /\  -.  A  e.  RR )  ->  ( abs `  (
Im `  A )
)  e.  RR+ )
1514rphalfcld 11039 . . 3  |-  ( ( A  e.  AA  /\  -.  A  e.  RR )  ->  ( ( abs `  ( Im `  A
) )  /  2
)  e.  RR+ )
1615adantr 465 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( ( abs `  (
Im `  A )
)  /  2 )  e.  RR+ )
17 1nn0 10595 . . . . . . . . . . 11  |-  1  e.  NN0
18 nnexpcl 11878 . . . . . . . . . . 11  |-  ( ( q  e.  NN  /\  1  e.  NN0 )  -> 
( q ^ 1 )  e.  NN )
1917, 18mpan2 671 . . . . . . . . . 10  |-  ( q  e.  NN  ->  (
q ^ 1 )  e.  NN )
2019ad2antll 728 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( q ^ 1 )  e.  NN )
2120nnrpd 11026 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( q ^ 1 )  e.  RR+ )
2216, 21rpdivcld 11044 . . . . . . 7  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( ( ( abs `  ( Im `  A
) )  /  2
)  /  ( q ^ 1 ) )  e.  RR+ )
2322rpred 11027 . . . . . 6  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( ( ( abs `  ( Im `  A
) )  /  2
)  /  ( q ^ 1 ) )  e.  RR )
2416rpred 11027 . . . . . 6  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( ( abs `  (
Im `  A )
)  /  2 )  e.  RR )
257adantr 465 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  ->  A  e.  CC )
26 znq 10957 . . . . . . . . . . 11  |-  ( ( p  e.  ZZ  /\  q  e.  NN )  ->  ( p  /  q
)  e.  QQ )
2726adantl 466 . . . . . . . . . 10  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( p  /  q
)  e.  QQ )
28 qre 10958 . . . . . . . . . 10  |-  ( ( p  /  q )  e.  QQ  ->  (
p  /  q )  e.  RR )
2927, 28syl 16 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( p  /  q
)  e.  RR )
3029recnd 9412 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( p  /  q
)  e.  CC )
3125, 30subcld 9719 . . . . . . 7  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( A  -  (
p  /  q ) )  e.  CC )
3231abscld 12922 . . . . . 6  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( abs `  ( A  -  ( p  /  q ) ) )  e.  RR )
3320nnge1d 10364 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
1  <_  ( q ^ 1 ) )
34 1rp 10995 . . . . . . . . . 10  |-  1  e.  RR+
35 rpregt0 11004 . . . . . . . . . 10  |-  ( 1  e.  RR+  ->  ( 1  e.  RR  /\  0  <  1 ) )
3634, 35mp1i 12 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( 1  e.  RR  /\  0  <  1 ) )
3721rpregt0d 11033 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( ( q ^
1 )  e.  RR  /\  0  <  ( q ^ 1 ) ) )
3816rpregt0d 11033 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( ( ( abs `  ( Im `  A
) )  /  2
)  e.  RR  /\  0  <  ( ( abs `  ( Im `  A
) )  /  2
) ) )
39 lediv2 10222 . . . . . . . . 9  |-  ( ( ( 1  e.  RR  /\  0  <  1 )  /\  ( ( q ^ 1 )  e.  RR  /\  0  < 
( q ^ 1 ) )  /\  (
( ( abs `  (
Im `  A )
)  /  2 )  e.  RR  /\  0  <  ( ( abs `  (
Im `  A )
)  /  2 ) ) )  ->  (
1  <_  ( q ^ 1 )  <->  ( (
( abs `  (
Im `  A )
)  /  2 )  /  ( q ^
1 ) )  <_ 
( ( ( abs `  ( Im `  A
) )  /  2
)  /  1 ) ) )
4036, 37, 38, 39syl3anc 1218 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( 1  <_  (
q ^ 1 )  <-> 
( ( ( abs `  ( Im `  A
) )  /  2
)  /  ( q ^ 1 ) )  <_  ( ( ( abs `  ( Im
`  A ) )  /  2 )  / 
1 ) ) )
4133, 40mpbid 210 . . . . . . 7  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( ( ( abs `  ( Im `  A
) )  /  2
)  /  ( q ^ 1 ) )  <_  ( ( ( abs `  ( Im
`  A ) )  /  2 )  / 
1 ) )
4216rpcnd 11029 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( ( abs `  (
Im `  A )
)  /  2 )  e.  CC )
4342div1d 10099 . . . . . . 7  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( ( ( abs `  ( Im `  A
) )  /  2
)  /  1 )  =  ( ( abs `  ( Im `  A
) )  /  2
) )
4441, 43breqtrd 4316 . . . . . 6  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( ( ( abs `  ( Im `  A
) )  /  2
)  /  ( q ^ 1 ) )  <_  ( ( abs `  ( Im `  A
) )  /  2
) )
4514adantr 465 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( abs `  (
Im `  A )
)  e.  RR+ )
4645rpred 11027 . . . . . . 7  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( abs `  (
Im `  A )
)  e.  RR )
47 rphalflt 11017 . . . . . . . 8  |-  ( ( abs `  ( Im
`  A ) )  e.  RR+  ->  ( ( abs `  ( Im
`  A ) )  /  2 )  < 
( abs `  (
Im `  A )
) )
4845, 47syl 16 . . . . . . 7  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( ( abs `  (
Im `  A )
)  /  2 )  <  ( abs `  (
Im `  A )
) )
4925, 30imsubd 12706 . . . . . . . . . 10  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( Im `  ( A  -  ( p  /  q ) ) )  =  ( ( Im `  A )  -  ( Im `  ( p  /  q
) ) ) )
5029reim0d 12714 . . . . . . . . . . 11  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( Im `  (
p  /  q ) )  =  0 )
5150oveq2d 6107 . . . . . . . . . 10  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( ( Im `  A )  -  (
Im `  ( p  /  q ) ) )  =  ( ( Im `  A )  -  0 ) )
529adantr 465 . . . . . . . . . . 11  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( Im `  A
)  e.  CC )
5352subid1d 9708 . . . . . . . . . 10  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( ( Im `  A )  -  0 )  =  ( Im
`  A ) )
5449, 51, 533eqtrd 2479 . . . . . . . . 9  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( Im `  ( A  -  ( p  /  q ) ) )  =  ( Im
`  A ) )
5554fveq2d 5695 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( abs `  (
Im `  ( A  -  ( p  / 
q ) ) ) )  =  ( abs `  ( Im `  A
) ) )
56 absimle 12798 . . . . . . . . 9  |-  ( ( A  -  ( p  /  q ) )  e.  CC  ->  ( abs `  ( Im `  ( A  -  (
p  /  q ) ) ) )  <_ 
( abs `  ( A  -  ( p  /  q ) ) ) )
5731, 56syl 16 . . . . . . . 8  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( abs `  (
Im `  ( A  -  ( p  / 
q ) ) ) )  <_  ( abs `  ( A  -  (
p  /  q ) ) ) )
5855, 57eqbrtrrd 4314 . . . . . . 7  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( abs `  (
Im `  A )
)  <_  ( abs `  ( A  -  (
p  /  q ) ) ) )
5924, 46, 32, 48, 58ltletrd 9531 . . . . . 6  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( ( abs `  (
Im `  A )
)  /  2 )  <  ( abs `  ( A  -  ( p  /  q ) ) ) )
6023, 24, 32, 44, 59lelttrd 9529 . . . . 5  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( ( ( abs `  ( Im `  A
) )  /  2
)  /  ( q ^ 1 ) )  <  ( abs `  ( A  -  ( p  /  q ) ) ) )
6160olcd 393 . . . 4  |-  ( ( ( A  e.  AA  /\ 
-.  A  e.  RR )  /\  ( p  e.  ZZ  /\  q  e.  NN ) )  -> 
( A  =  ( p  /  q )  \/  ( ( ( abs `  ( Im
`  A ) )  /  2 )  / 
( q ^ 1 ) )  <  ( abs `  ( A  -  ( p  /  q
) ) ) ) )
6261ralrimivva 2808 . . 3  |-  ( ( A  e.  AA  /\  -.  A  e.  RR )  ->  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q )  \/  ( ( ( abs `  ( Im `  A
) )  /  2
)  /  ( q ^ 1 ) )  <  ( abs `  ( A  -  ( p  /  q ) ) ) ) )
63 oveq2 6099 . . . . . . . 8  |-  ( k  =  1  ->  (
q ^ k )  =  ( q ^
1 ) )
6463oveq2d 6107 . . . . . . 7  |-  ( k  =  1  ->  (
x  /  ( q ^ k ) )  =  ( x  / 
( q ^ 1 ) ) )
6564breq1d 4302 . . . . . 6  |-  ( k  =  1  ->  (
( x  /  (
q ^ k ) )  <  ( abs `  ( A  -  (
p  /  q ) ) )  <->  ( x  /  ( q ^
1 ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) )
6665orbi2d 701 . . . . 5  |-  ( k  =  1  ->  (
( A  =  ( p  /  q )  \/  ( x  / 
( q ^ k
) )  <  ( abs `  ( A  -  ( p  /  q
) ) ) )  <-> 
( A  =  ( p  /  q )  \/  ( x  / 
( q ^ 1 ) )  <  ( abs `  ( A  -  ( p  /  q
) ) ) ) ) )
67662ralbidv 2757 . . . 4  |-  ( k  =  1  ->  ( A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q )  \/  ( x  /  (
q ^ k ) )  <  ( abs `  ( A  -  (
p  /  q ) ) ) )  <->  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( x  /  ( q ^
1 ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
68 oveq1 6098 . . . . . . 7  |-  ( x  =  ( ( abs `  ( Im `  A
) )  /  2
)  ->  ( x  /  ( q ^
1 ) )  =  ( ( ( abs `  ( Im `  A
) )  /  2
)  /  ( q ^ 1 ) ) )
6968breq1d 4302 . . . . . 6  |-  ( x  =  ( ( abs `  ( Im `  A
) )  /  2
)  ->  ( (
x  /  ( q ^ 1 ) )  <  ( abs `  ( A  -  ( p  /  q ) ) )  <->  ( ( ( abs `  ( Im
`  A ) )  /  2 )  / 
( q ^ 1 ) )  <  ( abs `  ( A  -  ( p  /  q
) ) ) ) )
7069orbi2d 701 . . . . 5  |-  ( x  =  ( ( abs `  ( Im `  A
) )  /  2
)  ->  ( ( A  =  ( p  /  q )  \/  ( x  /  (
q ^ 1 ) )  <  ( abs `  ( A  -  (
p  /  q ) ) ) )  <->  ( A  =  ( p  / 
q )  \/  (
( ( abs `  (
Im `  A )
)  /  2 )  /  ( q ^
1 ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
71702ralbidv 2757 . . . 4  |-  ( x  =  ( ( abs `  ( Im `  A
) )  /  2
)  ->  ( A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( x  /  ( q ^
1 ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) )  <->  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( ( ( abs `  (
Im `  A )
)  /  2 )  /  ( q ^
1 ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) ) )
7267, 71rspc2ev 3081 . . 3  |-  ( ( 1  e.  NN  /\  ( ( abs `  (
Im `  A )
)  /  2 )  e.  RR+  /\  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( ( ( abs `  (
Im `  A )
)  /  2 )  /  ( q ^
1 ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) )  ->  E. k  e.  NN  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( x  /  ( q ^
k ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) )
735, 15, 62, 72syl3anc 1218 . 2  |-  ( ( A  e.  AA  /\  -.  A  e.  RR )  ->  E. k  e.  NN  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q
)  \/  ( x  /  ( q ^
k ) )  < 
( abs `  ( A  -  ( p  /  q ) ) ) ) )
743, 73pm2.61dan 789 1  |-  ( A  e.  AA  ->  E. k  e.  NN  E. x  e.  RR+  A. p  e.  ZZ  A. q  e.  NN  ( A  =  ( p  /  q )  \/  ( x  /  (
q ^ k ) )  <  ( abs `  ( A  -  (
p  /  q ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2606   A.wral 2715   E.wrex 2716    i^i cin 3327   class class class wbr 4292   ` cfv 5418  (class class class)co 6091   CCcc 9280   RRcr 9281   0cc0 9282   1c1 9283    < clt 9418    <_ cle 9419    - cmin 9595    / cdiv 9993   NNcn 10322   2c2 10371   NN0cn0 10579   ZZcz 10646   QQcq 10953   RR+crp 10991   ^cexp 11865   Imcim 12587   abscabs 12723   AAcaa 21780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-inf2 7847  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-pre-sup 9360  ax-addf 9361  ax-mulf 9362
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-iin 4174  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-se 4680  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-isom 5427  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-of 6320  df-om 6477  df-1st 6577  df-2nd 6578  df-supp 6691  df-recs 6832  df-rdg 6866  df-1o 6920  df-2o 6921  df-oadd 6924  df-er 7101  df-map 7216  df-pm 7217  df-ixp 7264  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-fsupp 7621  df-fi 7661  df-sup 7691  df-oi 7724  df-card 8109  df-cda 8337  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-3 10381  df-4 10382  df-5 10383  df-6 10384  df-7 10385  df-8 10386  df-9 10387  df-10 10388  df-n0 10580  df-z 10647  df-dec 10756  df-uz 10862  df-q 10954  df-rp 10992  df-xneg 11089  df-xadd 11090  df-xmul 11091  df-ioo 11304  df-ico 11306  df-icc 11307  df-fz 11438  df-fzo 11549  df-fl 11642  df-seq 11807  df-exp 11866  df-hash 12104  df-cj 12588  df-re 12589  df-im 12590  df-sqr 12724  df-abs 12725  df-clim 12966  df-rlim 12967  df-sum 13164  df-struct 14176  df-ndx 14177  df-slot 14178  df-base 14179  df-sets 14180  df-ress 14181  df-plusg 14251  df-mulr 14252  df-starv 14253  df-sca 14254  df-vsca 14255  df-ip 14256  df-tset 14257  df-ple 14258  df-ds 14260  df-unif 14261  df-hom 14262  df-cco 14263  df-rest 14361  df-topn 14362  df-0g 14380  df-gsum 14381  df-topgen 14382  df-pt 14383  df-prds 14386  df-xrs 14440  df-qtop 14445  df-imas 14446  df-xps 14448  df-mre 14524  df-mrc 14525  df-acs 14527  df-mnd 15415  df-submnd 15465  df-grp 15545  df-minusg 15546  df-mulg 15548  df-subg 15678  df-cntz 15835  df-cmn 16279  df-mgp 16592  df-ur 16604  df-rng 16647  df-cring 16648  df-subrg 16863  df-psmet 17809  df-xmet 17810  df-met 17811  df-bl 17812  df-mopn 17813  df-fbas 17814  df-fg 17815  df-cnfld 17819  df-top 18503  df-bases 18505  df-topon 18506  df-topsp 18507  df-cld 18623  df-ntr 18624  df-cls 18625  df-nei 18702  df-lp 18740  df-perf 18741  df-cn 18831  df-cnp 18832  df-haus 18919  df-cmp 18990  df-tx 19135  df-hmeo 19328  df-fil 19419  df-fm 19511  df-flim 19512  df-flf 19513  df-xms 19895  df-ms 19896  df-tms 19897  df-cncf 20454  df-0p 21148  df-limc 21341  df-dv 21342  df-dvn 21343  df-cpn 21344  df-ply 21656  df-idp 21657  df-coe 21658  df-dgr 21659  df-quot 21757  df-aa 21781
This theorem is referenced by:  aaliou3lem9  21816
  Copyright terms: Public domain W3C validator