Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aaitgo Structured version   Unicode version

Theorem aaitgo 35475
Description: The standard algebraic numbers  AA are generated by IntgOver. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Assertion
Ref Expression
aaitgo  |-  AA  =  (IntgOver `  QQ )

Proof of Theorem aaitgo
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabid 2984 . . 3  |-  ( a  e.  { a  e.  CC  |  E. b  e.  (Poly `  QQ )
( ( b `  a )  =  0  /\  ( (coeff `  b ) `  (deg `  b ) )  =  1 ) }  <->  ( a  e.  CC  /\  E. b  e.  (Poly `  QQ )
( ( b `  a )  =  0  /\  ( (coeff `  b ) `  (deg `  b ) )  =  1 ) ) )
2 qsscn 11238 . . . . 5  |-  QQ  C_  CC
3 itgoval 35474 . . . . 5  |-  ( QQ  C_  CC  ->  (IntgOver `  QQ )  =  { a  e.  CC  |  E. b  e.  (Poly `  QQ )
( ( b `  a )  =  0  /\  ( (coeff `  b ) `  (deg `  b ) )  =  1 ) } )
42, 3ax-mp 5 . . . 4  |-  (IntgOver `  QQ )  =  { a  e.  CC  |  E. b  e.  (Poly `  QQ )
( ( b `  a )  =  0  /\  ( (coeff `  b ) `  (deg `  b ) )  =  1 ) }
54eleq2i 2480 . . 3  |-  ( a  e.  (IntgOver `  QQ ) 
<->  a  e.  { a  e.  CC  |  E. b  e.  (Poly `  QQ ) ( ( b `
 a )  =  0  /\  ( (coeff `  b ) `  (deg `  b ) )  =  1 ) } )
6 aacn 23005 . . . . 5  |-  ( a  e.  AA  ->  a  e.  CC )
7 mpaacl 35466 . . . . . 6  |-  ( a  e.  AA  ->  (minPolyAA `  a )  e.  (Poly `  QQ ) )
8 mpaaroot 35468 . . . . . 6  |-  ( a  e.  AA  ->  (
(minPolyAA `  a ) `  a )  =  0 )
9 mpaadgr 35467 . . . . . . . 8  |-  ( a  e.  AA  ->  (deg `  (minPolyAA `  a )
)  =  (degAA `  a
) )
109fveq2d 5853 . . . . . . 7  |-  ( a  e.  AA  ->  (
(coeff `  (minPolyAA `  a
) ) `  (deg `  (minPolyAA `  a )
) )  =  ( (coeff `  (minPolyAA `  a
) ) `  (degAA `  a ) ) )
11 mpaamn 35469 . . . . . . 7  |-  ( a  e.  AA  ->  (
(coeff `  (minPolyAA `  a
) ) `  (degAA `  a ) )  =  1 )
1210, 11eqtrd 2443 . . . . . 6  |-  ( a  e.  AA  ->  (
(coeff `  (minPolyAA `  a
) ) `  (deg `  (minPolyAA `  a )
) )  =  1 )
13 fveq1 5848 . . . . . . . . 9  |-  ( b  =  (minPolyAA `  a
)  ->  ( b `  a )  =  ( (minPolyAA `  a ) `  a ) )
1413eqeq1d 2404 . . . . . . . 8  |-  ( b  =  (minPolyAA `  a
)  ->  ( (
b `  a )  =  0  <->  ( (minPolyAA `  a ) `  a
)  =  0 ) )
15 fveq2 5849 . . . . . . . . . 10  |-  ( b  =  (minPolyAA `  a
)  ->  (coeff `  b
)  =  (coeff `  (minPolyAA `  a ) ) )
16 fveq2 5849 . . . . . . . . . 10  |-  ( b  =  (minPolyAA `  a
)  ->  (deg `  b
)  =  (deg `  (minPolyAA `  a ) ) )
1715, 16fveq12d 5855 . . . . . . . . 9  |-  ( b  =  (minPolyAA `  a
)  ->  ( (coeff `  b ) `  (deg `  b ) )  =  ( (coeff `  (minPolyAA `  a ) ) `  (deg `  (minPolyAA `  a
) ) ) )
1817eqeq1d 2404 . . . . . . . 8  |-  ( b  =  (minPolyAA `  a
)  ->  ( (
(coeff `  b ) `  (deg `  b )
)  =  1  <->  (
(coeff `  (minPolyAA `  a
) ) `  (deg `  (minPolyAA `  a )
) )  =  1 ) )
1914, 18anbi12d 709 . . . . . . 7  |-  ( b  =  (minPolyAA `  a
)  ->  ( (
( b `  a
)  =  0  /\  ( (coeff `  b
) `  (deg `  b
) )  =  1 )  <->  ( ( (minPolyAA `  a ) `  a
)  =  0  /\  ( (coeff `  (minPolyAA `  a ) ) `  (deg `  (minPolyAA `  a
) ) )  =  1 ) ) )
2019rspcev 3160 . . . . . 6  |-  ( ( (minPolyAA `  a )  e.  (Poly `  QQ )  /\  ( ( (minPolyAA `  a
) `  a )  =  0  /\  (
(coeff `  (minPolyAA `  a
) ) `  (deg `  (minPolyAA `  a )
) )  =  1 ) )  ->  E. b  e.  (Poly `  QQ )
( ( b `  a )  =  0  /\  ( (coeff `  b ) `  (deg `  b ) )  =  1 ) )
217, 8, 12, 20syl12anc 1228 . . . . 5  |-  ( a  e.  AA  ->  E. b  e.  (Poly `  QQ )
( ( b `  a )  =  0  /\  ( (coeff `  b ) `  (deg `  b ) )  =  1 ) )
226, 21jca 530 . . . 4  |-  ( a  e.  AA  ->  (
a  e.  CC  /\  E. b  e.  (Poly `  QQ ) ( ( b `
 a )  =  0  /\  ( (coeff `  b ) `  (deg `  b ) )  =  1 ) ) )
23 simpl 455 . . . . . . . . 9  |-  ( ( b  e.  (Poly `  QQ )  /\  (
( b `  a
)  =  0  /\  ( (coeff `  b
) `  (deg `  b
) )  =  1 ) )  ->  b  e.  (Poly `  QQ )
)
24 coe0 22945 . . . . . . . . . . . . . . 15  |-  (coeff ` 
0p )  =  ( NN0  X.  {
0 } )
2524fveq1i 5850 . . . . . . . . . . . . . 14  |-  ( (coeff `  0p ) `
 (deg `  0p ) )  =  ( ( NN0  X.  { 0 } ) `
 (deg `  0p ) )
26 dgr0 22951 . . . . . . . . . . . . . . . 16  |-  (deg ` 
0p )  =  0
27 0nn0 10851 . . . . . . . . . . . . . . . 16  |-  0  e.  NN0
2826, 27eqeltri 2486 . . . . . . . . . . . . . . 15  |-  (deg ` 
0p )  e. 
NN0
29 c0ex 9620 . . . . . . . . . . . . . . . 16  |-  0  e.  _V
3029fvconst2 6107 . . . . . . . . . . . . . . 15  |-  ( (deg
`  0p )  e.  NN0  ->  ( ( NN0  X.  { 0 } ) `  (deg `  0p ) )  =  0 )
3128, 30ax-mp 5 . . . . . . . . . . . . . 14  |-  ( ( NN0  X.  { 0 } ) `  (deg `  0p ) )  =  0
3225, 31eqtri 2431 . . . . . . . . . . . . 13  |-  ( (coeff `  0p ) `
 (deg `  0p ) )  =  0
33 0ne1 10644 . . . . . . . . . . . . 13  |-  0  =/=  1
3432, 33eqnetri 2699 . . . . . . . . . . . 12  |-  ( (coeff `  0p ) `
 (deg `  0p ) )  =/=  1
35 fveq2 5849 . . . . . . . . . . . . . 14  |-  ( b  =  0p  -> 
(coeff `  b )  =  (coeff `  0p
) )
36 fveq2 5849 . . . . . . . . . . . . . 14  |-  ( b  =  0p  -> 
(deg `  b )  =  (deg `  0p
) )
3735, 36fveq12d 5855 . . . . . . . . . . . . 13  |-  ( b  =  0p  -> 
( (coeff `  b
) `  (deg `  b
) )  =  ( (coeff `  0p
) `  (deg `  0p ) ) )
3837neeq1d 2680 . . . . . . . . . . . 12  |-  ( b  =  0p  -> 
( ( (coeff `  b ) `  (deg `  b ) )  =/=  1  <->  ( (coeff ` 
0p ) `  (deg `  0p ) )  =/=  1 ) )
3934, 38mpbiri 233 . . . . . . . . . . 11  |-  ( b  =  0p  -> 
( (coeff `  b
) `  (deg `  b
) )  =/=  1
)
4039necon2i 2646 . . . . . . . . . 10  |-  ( ( (coeff `  b ) `  (deg `  b )
)  =  1  -> 
b  =/=  0p )
4140ad2antll 727 . . . . . . . . 9  |-  ( ( b  e.  (Poly `  QQ )  /\  (
( b `  a
)  =  0  /\  ( (coeff `  b
) `  (deg `  b
) )  =  1 ) )  ->  b  =/=  0p )
42 eldifsn 4097 . . . . . . . . 9  |-  ( b  e.  ( (Poly `  QQ )  \  { 0p } )  <->  ( b  e.  (Poly `  QQ )  /\  b  =/=  0p ) )
4323, 41, 42sylanbrc 662 . . . . . . . 8  |-  ( ( b  e.  (Poly `  QQ )  /\  (
( b `  a
)  =  0  /\  ( (coeff `  b
) `  (deg `  b
) )  =  1 ) )  ->  b  e.  ( (Poly `  QQ )  \  { 0p } ) )
44 simprl 756 . . . . . . . 8  |-  ( ( b  e.  (Poly `  QQ )  /\  (
( b `  a
)  =  0  /\  ( (coeff `  b
) `  (deg `  b
) )  =  1 ) )  ->  (
b `  a )  =  0 )
4543, 44jca 530 . . . . . . 7  |-  ( ( b  e.  (Poly `  QQ )  /\  (
( b `  a
)  =  0  /\  ( (coeff `  b
) `  (deg `  b
) )  =  1 ) )  ->  (
b  e.  ( (Poly `  QQ )  \  {
0p } )  /\  ( b `  a )  =  0 ) )
4645reximi2 2871 . . . . . 6  |-  ( E. b  e.  (Poly `  QQ ) ( ( b `
 a )  =  0  /\  ( (coeff `  b ) `  (deg `  b ) )  =  1 )  ->  E. b  e.  ( (Poly `  QQ )  \  { 0p } ) ( b `
 a )  =  0 )
4746anim2i 567 . . . . 5  |-  ( ( a  e.  CC  /\  E. b  e.  (Poly `  QQ ) ( ( b `
 a )  =  0  /\  ( (coeff `  b ) `  (deg `  b ) )  =  1 ) )  -> 
( a  e.  CC  /\ 
E. b  e.  ( (Poly `  QQ )  \  { 0p }
) ( b `  a )  =  0 ) )
48 elqaa 23010 . . . . 5  |-  ( a  e.  AA  <->  ( a  e.  CC  /\  E. b  e.  ( (Poly `  QQ )  \  { 0p } ) ( b `
 a )  =  0 ) )
4947, 48sylibr 212 . . . 4  |-  ( ( a  e.  CC  /\  E. b  e.  (Poly `  QQ ) ( ( b `
 a )  =  0  /\  ( (coeff `  b ) `  (deg `  b ) )  =  1 ) )  -> 
a  e.  AA )
5022, 49impbii 187 . . 3  |-  ( a  e.  AA  <->  ( a  e.  CC  /\  E. b  e.  (Poly `  QQ )
( ( b `  a )  =  0  /\  ( (coeff `  b ) `  (deg `  b ) )  =  1 ) ) )
511, 5, 503bitr4ri 278 . 2  |-  ( a  e.  AA  <->  a  e.  (IntgOver `  QQ ) )
5251eqriv 2398 1  |-  AA  =  (IntgOver `  QQ )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 367    = wceq 1405    e. wcel 1842    =/= wne 2598   E.wrex 2755   {crab 2758    \ cdif 3411    C_ wss 3414   {csn 3972    X. cxp 4821   ` cfv 5569   CCcc 9520   0cc0 9522   1c1 9523   NN0cn0 10836   QQcq 11227   0pc0p 22368  Polycply 22873  coeffccoe 22875  degcdgr 22876   AAcaa 23002  degAAcdgraa 35453  minPolyAAcmpaa 35454  IntgOvercitgo 35470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-inf2 8091  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599  ax-pre-sup 9600  ax-addf 9601
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-fal 1411  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-se 4783  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-isom 5578  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-of 6521  df-om 6684  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-oadd 7171  df-er 7348  df-map 7459  df-pm 7460  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-sup 7935  df-oi 7969  df-card 8352  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-div 10248  df-nn 10577  df-2 10635  df-3 10636  df-n0 10837  df-z 10906  df-uz 11128  df-q 11228  df-rp 11266  df-fz 11727  df-fzo 11855  df-fl 11966  df-mod 12035  df-seq 12152  df-exp 12211  df-hash 12453  df-cj 13081  df-re 13082  df-im 13083  df-sqrt 13217  df-abs 13218  df-clim 13460  df-rlim 13461  df-sum 13658  df-0p 22369  df-ply 22877  df-coe 22879  df-dgr 22880  df-aa 23003  df-dgraa 35455  df-mpaa 35456  df-itgo 35472
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator