MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  a1tru Structured version   Unicode version

Theorem a1tru 1399
Description: Anything implies T.. (Contributed by FL, 20-Mar-2011.) (Proof shortened by Anthony Hart, 1-Aug-2011.)
Assertion
Ref Expression
a1tru  |-  ( ph  -> T.  )

Proof of Theorem a1tru
StepHypRef Expression
1 tru 1387 . 2  |- T.
21a1i 11 1  |-  ( ph  -> T.  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   T. wtru 1384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-tru 1386
This theorem is referenced by:  truanOLD  1401  disjprg  4433  euotd  4738  elabrex  6140  riota5f  6267  ac6s6  30555  elabrexg  31384  lhpexle1  35472
  Copyright terms: Public domain W3C validator