![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > a1ddd | Structured version Visualization version Unicode version |
Description: Triple deduction introducing an antecedent to a wff. Deduction associated with a1dd 47. Double deduction associated with a1d 26. Triple deduction associated with ax-1 6 and a1i 11. (Contributed by Jeff Hankins, 4-Aug-2009.) |
Ref | Expression |
---|---|
a1ddd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
a1ddd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a1ddd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ax-1 6 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl8 72 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: ad4ant123 1244 ad5ant13 1251 ad5ant14 1252 ad5ant15 1253 ad5ant23 1254 ad5ant24 1255 ad5ant25 1256 ad5ant245 1257 ad5ant234 1258 ad5ant235 1259 ad5ant123 1260 ad5ant124 1261 ad5ant125 1262 ad5ant134 1263 ad5ant135 1264 ad5ant145 1265 |
Copyright terms: Public domain | W3C validator |