![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > 9t9e81 | Structured version Unicode version |
Description: 9 times 9 equals 81. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
9t9e81 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9nn0 10690 |
. 2
![]() ![]() ![]() ![]() | |
2 | 8nn0 10689 |
. 2
![]() ![]() ![]() ![]() | |
3 | df-9 10474 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 9t8e72 10943 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 7nn0 10688 |
. . 3
![]() ![]() ![]() ![]() | |
6 | 2nn0 10683 |
. . 3
![]() ![]() ![]() ![]() | |
7 | eqid 2450 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 7p1e8 10538 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | 1nn0 10682 |
. . 3
![]() ![]() ![]() ![]() | |
10 | 9cn 10496 |
. . . 4
![]() ![]() ![]() ![]() | |
11 | 2cn 10479 |
. . . 4
![]() ![]() ![]() ![]() | |
12 | 9p2e11 10904 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
13 | 10, 11, 12 | addcomli 9648 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 5, 6, 1, 7, 8, 9, 13 | decaddci 10887 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 1, 2, 3, 4, 14 | 4t3lem 10913 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1592 ax-4 1603 ax-5 1671 ax-6 1709 ax-7 1729 ax-8 1759 ax-9 1761 ax-10 1776 ax-11 1781 ax-12 1793 ax-13 1944 ax-ext 2429 ax-sep 4497 ax-nul 4505 ax-pow 4554 ax-pr 4615 ax-un 6458 ax-resscn 9426 ax-1cn 9427 ax-icn 9428 ax-addcl 9429 ax-addrcl 9430 ax-mulcl 9431 ax-mulrcl 9432 ax-mulcom 9433 ax-addass 9434 ax-mulass 9435 ax-distr 9436 ax-i2m1 9437 ax-1ne0 9438 ax-1rid 9439 ax-rnegex 9440 ax-rrecex 9441 ax-cnre 9442 ax-pre-lttri 9443 ax-pre-lttrn 9444 ax-pre-ltadd 9445 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 966 df-3an 967 df-tru 1373 df-ex 1588 df-nf 1591 df-sb 1702 df-eu 2263 df-mo 2264 df-clab 2436 df-cleq 2442 df-clel 2445 df-nfc 2598 df-ne 2643 df-nel 2644 df-ral 2797 df-rex 2798 df-reu 2799 df-rab 2801 df-v 3056 df-sbc 3271 df-csb 3373 df-dif 3415 df-un 3417 df-in 3419 df-ss 3426 df-pss 3428 df-nul 3722 df-if 3876 df-pw 3946 df-sn 3962 df-pr 3964 df-tp 3966 df-op 3968 df-uni 4176 df-iun 4257 df-br 4377 df-opab 4435 df-mpt 4436 df-tr 4470 df-eprel 4716 df-id 4720 df-po 4725 df-so 4726 df-fr 4763 df-we 4765 df-ord 4806 df-on 4807 df-lim 4808 df-suc 4809 df-xp 4930 df-rel 4931 df-cnv 4932 df-co 4933 df-dm 4934 df-rn 4935 df-res 4936 df-ima 4937 df-iota 5465 df-fun 5504 df-fn 5505 df-f 5506 df-f1 5507 df-fo 5508 df-f1o 5509 df-fv 5510 df-riota 6137 df-ov 6179 df-oprab 6180 df-mpt2 6181 df-om 6563 df-recs 6918 df-rdg 6952 df-er 7187 df-en 7397 df-dom 7398 df-sdom 7399 df-pnf 9507 df-mnf 9508 df-ltxr 9510 df-sub 9684 df-nn 10410 df-2 10467 df-3 10468 df-4 10469 df-5 10470 df-6 10471 df-7 10472 df-8 10473 df-9 10474 df-10 10475 df-n0 10667 df-dec 10843 |
This theorem is referenced by: prmlem2 14235 2503lem2 14250 4001lem1 14253 4001lem2 14254 log2ublem3 22445 |
Copyright terms: Public domain | W3C validator |