MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  9p1e10 Structured version   Unicode version

Theorem 9p1e10 10667
Description: 9 + 1 = 10. (Contributed by Mario Carneiro, 18-Apr-2015.)
Assertion
Ref Expression
9p1e10  |-  ( 9  +  1 )  =  10

Proof of Theorem 9p1e10
StepHypRef Expression
1 df-10 10602 . 2  |-  10  =  ( 9  +  1 )
21eqcomi 2480 1  |-  ( 9  +  1 )  =  10
Colors of variables: wff setvar class
Syntax hints:    = wceq 1379  (class class class)co 6284   1c1 9493    + caddc 9495   9c9 10592   10c10 10593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-cleq 2459  df-10 10602
This theorem is referenced by:  1259lem2  14472  1259lem3  14473  1259lem4  14474  2503lem2  14478  4001lem1  14481  4001lem2  14482  4001lem4  14484
  Copyright terms: Public domain W3C validator