MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  7p1e8 Structured version   Unicode version

Theorem 7p1e8 10566
Description: 7 + 1 = 8. (Contributed by Mario Carneiro, 18-Apr-2015.)
Assertion
Ref Expression
7p1e8  |-  ( 7  +  1 )  =  8

Proof of Theorem 7p1e8
StepHypRef Expression
1 df-8 10501 . 2  |-  8  =  ( 7  +  1 )
21eqcomi 2467 1  |-  ( 7  +  1 )  =  8
Colors of variables: wff setvar class
Syntax hints:    = wceq 1370  (class class class)co 6203   1c1 9398    + caddc 9400   7c7 10491   8c8 10492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-cleq 2446  df-8 10501
This theorem is referenced by:  7t4e28  10954  9t9e81  10972  s8len  12645  prmlem2  14269  83prm  14272  163prm  14274  317prm  14275  631prm  14276  2503lem2  14284  2503lem3  14285  4001lem2  14288  4001lem3  14289  4001prm  14291
  Copyright terms: Public domain W3C validator