MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  6p5lem Structured version   Unicode version

Theorem 6p5lem 11102
Description: Lemma for 6p5e11 11103 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.)
Hypotheses
Ref Expression
6p5lem.1  |-  A  e. 
NN0
6p5lem.2  |-  D  e. 
NN0
6p5lem.3  |-  E  e. 
NN0
6p5lem.4  |-  B  =  ( D  +  1 )
6p5lem.5  |-  C  =  ( E  +  1 )
6p5lem.6  |-  ( A  +  D )  = ; 1 E
Assertion
Ref Expression
6p5lem  |-  ( A  +  B )  = ; 1 C

Proof of Theorem 6p5lem
StepHypRef Expression
1 6p5lem.4 . . 3  |-  B  =  ( D  +  1 )
21oveq2i 6314 . 2  |-  ( A  +  B )  =  ( A  +  ( D  +  1 ) )
3 6p5lem.1 . . . 4  |-  A  e. 
NN0
43nn0cni 10883 . . 3  |-  A  e.  CC
5 6p5lem.2 . . . 4  |-  D  e. 
NN0
65nn0cni 10883 . . 3  |-  D  e.  CC
7 ax-1cn 9599 . . 3  |-  1  e.  CC
84, 6, 7addassi 9653 . 2  |-  ( ( A  +  D )  +  1 )  =  ( A  +  ( D  +  1 ) )
9 1nn0 10887 . . 3  |-  1  e.  NN0
10 6p5lem.3 . . 3  |-  E  e. 
NN0
11 6p5lem.5 . . . 4  |-  C  =  ( E  +  1 )
1211eqcomi 2436 . . 3  |-  ( E  +  1 )  =  C
13 6p5lem.6 . . 3  |-  ( A  +  D )  = ; 1 E
149, 10, 12, 13decsuc 11076 . 2  |-  ( ( A  +  D )  +  1 )  = ; 1 C
152, 8, 143eqtr2i 2458 1  |-  ( A  +  B )  = ; 1 C
Colors of variables: wff setvar class
Syntax hints:    = wceq 1438    e. wcel 1869  (class class class)co 6303   1c1 9542    + caddc 9544   NN0cn0 10871  ;cdc 11053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595  ax-resscn 9598  ax-1cn 9599  ax-icn 9600  ax-addcl 9601  ax-addrcl 9602  ax-mulcl 9603  ax-mulrcl 9604  ax-mulcom 9605  ax-addass 9606  ax-mulass 9607  ax-distr 9608  ax-i2m1 9609  ax-1ne0 9610  ax-1rid 9611  ax-rnegex 9612  ax-rrecex 9613  ax-cnre 9614  ax-pre-lttri 9615  ax-pre-lttrn 9616  ax-pre-ltadd 9617
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-ov 6306  df-om 6705  df-wrecs 7034  df-recs 7096  df-rdg 7134  df-er 7369  df-en 7576  df-dom 7577  df-sdom 7578  df-pnf 9679  df-mnf 9680  df-ltxr 9682  df-nn 10612  df-2 10670  df-3 10671  df-4 10672  df-5 10673  df-6 10674  df-7 10675  df-8 10676  df-9 10677  df-10 10678  df-n0 10872  df-dec 11054
This theorem is referenced by:  6p5e11  11103  6p6e12  11104  7p4e11  11105  7p5e12  11106  7p6e13  11107  7p7e14  11108  8p3e11  11109  8p4e12  11110  8p5e13  11111  8p6e14  11112  8p7e15  11113  8p8e16  11114  9p2e11  11115  9p3e12  11116  9p4e13  11117  9p5e14  11118  9p6e15  11119  9p7e16  11120  9p8e17  11121  9p9e18  11122
  Copyright terms: Public domain W3C validator