MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  6p5lem Structured version   Unicode version

Theorem 6p5lem 11016
Description: Lemma for 6p5e11 11017 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015.)
Hypotheses
Ref Expression
6p5lem.1  |-  A  e. 
NN0
6p5lem.2  |-  D  e. 
NN0
6p5lem.3  |-  E  e. 
NN0
6p5lem.4  |-  B  =  ( D  +  1 )
6p5lem.5  |-  C  =  ( E  +  1 )
6p5lem.6  |-  ( A  +  D )  = ; 1 E
Assertion
Ref Expression
6p5lem  |-  ( A  +  B )  = ; 1 C

Proof of Theorem 6p5lem
StepHypRef Expression
1 6p5lem.4 . . 3  |-  B  =  ( D  +  1 )
21oveq2i 6288 . 2  |-  ( A  +  B )  =  ( A  +  ( D  +  1 ) )
3 6p5lem.1 . . . 4  |-  A  e. 
NN0
43nn0cni 10798 . . 3  |-  A  e.  CC
5 6p5lem.2 . . . 4  |-  D  e. 
NN0
65nn0cni 10798 . . 3  |-  D  e.  CC
7 ax-1cn 9541 . . 3  |-  1  e.  CC
84, 6, 7addassi 9595 . 2  |-  ( ( A  +  D )  +  1 )  =  ( A  +  ( D  +  1 ) )
9 1nn0 10802 . . 3  |-  1  e.  NN0
10 6p5lem.3 . . 3  |-  E  e. 
NN0
11 6p5lem.5 . . . 4  |-  C  =  ( E  +  1 )
1211eqcomi 2475 . . 3  |-  ( E  +  1 )  =  C
13 6p5lem.6 . . 3  |-  ( A  +  D )  = ; 1 E
149, 10, 12, 13decsuc 10990 . 2  |-  ( ( A  +  D )  +  1 )  = ; 1 C
152, 8, 143eqtr2i 2497 1  |-  ( A  +  B )  = ; 1 C
Colors of variables: wff setvar class
Syntax hints:    = wceq 1374    e. wcel 1762  (class class class)co 6277   1c1 9484    + caddc 9486   NN0cn0 10786  ;cdc 10967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-ov 6280  df-om 6674  df-recs 7034  df-rdg 7068  df-er 7303  df-en 7509  df-dom 7510  df-sdom 7511  df-pnf 9621  df-mnf 9622  df-ltxr 9624  df-nn 10528  df-2 10585  df-3 10586  df-4 10587  df-5 10588  df-6 10589  df-7 10590  df-8 10591  df-9 10592  df-10 10593  df-n0 10787  df-dec 10968
This theorem is referenced by:  6p5e11  11017  6p6e12  11018  7p4e11  11019  7p5e12  11020  7p6e13  11021  7p7e14  11022  8p3e11  11023  8p4e12  11024  8p5e13  11025  8p6e14  11026  8p7e15  11027  8p8e16  11028  9p2e11  11029  9p3e12  11030  9p4e13  11031  9p5e14  11032  9p6e15  11033  9p7e16  11034  9p8e17  11035  9p9e18  11036
  Copyright terms: Public domain W3C validator