MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  631prm Structured version   Unicode version

Theorem 631prm 14484
Description: 631 is a prime number. (Contributed by Mario Carneiro, 1-Mar-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.)
Assertion
Ref Expression
631prm  |- ;; 6 3 1  e.  Prime

Proof of Theorem 631prm
StepHypRef Expression
1 6nn0 10817 . . . 4  |-  6  e.  NN0
2 3nn0 10814 . . . 4  |-  3  e.  NN0
31, 2deccl 10993 . . 3  |- ; 6 3  e.  NN0
4 1nn 10548 . . 3  |-  1  e.  NN
53, 4decnncl 10992 . 2  |- ;; 6 3 1  e.  NN
6 8nn0 10819 . . . 4  |-  8  e.  NN0
7 4nn0 10815 . . . 4  |-  4  e.  NN0
86, 7deccl 10993 . . 3  |- ; 8 4  e.  NN0
9 1nn0 10812 . . 3  |-  1  e.  NN0
10 1lt10 10747 . . 3  |-  1  <  10
11 3lt10 10745 . . . 4  |-  3  <  10
12 6lt8 10725 . . . 4  |-  6  <  8
131, 6, 2, 7, 11, 12decltc 11001 . . 3  |- ; 6 3  < ; 8 4
143, 8, 9, 9, 10, 13decltc 11001 . 2  |- ;; 6 3 1  < ;; 8 4 1
15 3nn 10695 . . . 4  |-  3  e.  NN
161, 15decnncl 10992 . . 3  |- ; 6 3  e.  NN
1716, 9, 9, 10declti 11004 . 2  |-  1  < ;; 6 3 1
18 0nn0 10811 . . 3  |-  0  e.  NN0
19 2cn 10607 . . . 4  |-  2  e.  CC
2019mul02i 9767 . . 3  |-  ( 0  x.  2 )  =  0
21 1e0p1 11007 . . 3  |-  1  =  ( 0  +  1 )
223, 18, 20, 21dec2dvds 14421 . 2  |-  -.  2  || ;; 6 3 1
23 2nn0 10813 . . . . 5  |-  2  e.  NN0
2423, 9deccl 10993 . . . 4  |- ; 2 1  e.  NN0
2524, 18deccl 10993 . . 3  |- ;; 2 1 0  e.  NN0
26 eqid 2441 . . . 4  |- ;; 2 1 0  = ;; 2 1 0
279dec0h 10995 . . . 4  |-  1  = ; 0 1
28 eqid 2441 . . . . 5  |- ; 2 1  = ; 2 1
29 00id 9753 . . . . . 6  |-  ( 0  +  0 )  =  0
3018dec0h 10995 . . . . . 6  |-  0  = ; 0 0
3129, 30eqtri 2470 . . . . 5  |-  ( 0  +  0 )  = ; 0
0
32 3t2e6 10688 . . . . . . 7  |-  ( 3  x.  2 )  =  6
3332, 29oveq12i 6289 . . . . . 6  |-  ( ( 3  x.  2 )  +  ( 0  +  0 ) )  =  ( 6  +  0 )
34 6cn 10618 . . . . . . 7  |-  6  e.  CC
3534addid1i 9765 . . . . . 6  |-  ( 6  +  0 )  =  6
3633, 35eqtri 2470 . . . . 5  |-  ( ( 3  x.  2 )  +  ( 0  +  0 ) )  =  6
37 3t1e3 10687 . . . . . . 7  |-  ( 3  x.  1 )  =  3
3837oveq1i 6287 . . . . . 6  |-  ( ( 3  x.  1 )  +  0 )  =  ( 3  +  0 )
39 3cn 10611 . . . . . . 7  |-  3  e.  CC
4039addid1i 9765 . . . . . 6  |-  ( 3  +  0 )  =  3
412dec0h 10995 . . . . . 6  |-  3  = ; 0 3
4238, 40, 413eqtri 2474 . . . . 5  |-  ( ( 3  x.  1 )  +  0 )  = ; 0
3
4323, 9, 18, 18, 28, 31, 2, 2, 18, 36, 42decma2c 11019 . . . 4  |-  ( ( 3  x. ; 2 1 )  +  ( 0  +  0 ) )  = ; 6 3
4439mul01i 9768 . . . . . 6  |-  ( 3  x.  0 )  =  0
4544oveq1i 6287 . . . . 5  |-  ( ( 3  x.  0 )  +  1 )  =  ( 0  +  1 )
46 0p1e1 10648 . . . . 5  |-  ( 0  +  1 )  =  1
4745, 46, 273eqtri 2474 . . . 4  |-  ( ( 3  x.  0 )  +  1 )  = ; 0
1
4824, 18, 18, 9, 26, 27, 2, 9, 18, 43, 47decma2c 11019 . . 3  |-  ( ( 3  x. ;; 2 1 0 )  +  1 )  = ;; 6 3 1
49 1lt3 10705 . . 3  |-  1  <  3
5015, 25, 4, 48, 49ndvdsi 13940 . 2  |-  -.  3  || ;; 6 3 1
51 1lt5 10712 . . 3  |-  1  <  5
523, 4, 51dec5dvds 14422 . 2  |-  -.  5  || ;; 6 3 1
53 7nn 10699 . . 3  |-  7  e.  NN
54 9nn0 10820 . . . 4  |-  9  e.  NN0
5554, 18deccl 10993 . . 3  |- ; 9 0  e.  NN0
56 eqid 2441 . . . 4  |- ; 9 0  = ; 9 0
57 7nn0 10818 . . . 4  |-  7  e.  NN0
5829oveq2i 6288 . . . . 5  |-  ( ( 7  x.  9 )  +  ( 0  +  0 ) )  =  ( ( 7  x.  9 )  +  0 )
59 9cn 10624 . . . . . . 7  |-  9  e.  CC
60 7cn 10620 . . . . . . 7  |-  7  e.  CC
61 9t7e63 11079 . . . . . . 7  |-  ( 9  x.  7 )  = ; 6
3
6259, 60, 61mulcomli 9601 . . . . . 6  |-  ( 7  x.  9 )  = ; 6
3
6362oveq1i 6287 . . . . 5  |-  ( ( 7  x.  9 )  +  0 )  =  (; 6 3  +  0 )
643nn0cni 10808 . . . . . 6  |- ; 6 3  e.  CC
6564addid1i 9765 . . . . 5  |-  (; 6 3  +  0 )  = ; 6 3
6658, 63, 653eqtri 2474 . . . 4  |-  ( ( 7  x.  9 )  +  ( 0  +  0 ) )  = ; 6
3
6760mul01i 9768 . . . . . 6  |-  ( 7  x.  0 )  =  0
6867oveq1i 6287 . . . . 5  |-  ( ( 7  x.  0 )  +  1 )  =  ( 0  +  1 )
6968, 46, 273eqtri 2474 . . . 4  |-  ( ( 7  x.  0 )  +  1 )  = ; 0
1
7054, 18, 18, 9, 56, 27, 57, 9, 18, 66, 69decma2c 11019 . . 3  |-  ( ( 7  x. ; 9 0 )  +  1 )  = ;; 6 3 1
71 1lt7 10723 . . 3  |-  1  <  7
7253, 55, 4, 70, 71ndvdsi 13940 . 2  |-  -.  7  || ;; 6 3 1
739, 4decnncl 10992 . . 3  |- ; 1 1  e.  NN
74 5nn0 10816 . . . 4  |-  5  e.  NN0
7574, 57deccl 10993 . . 3  |- ; 5 7  e.  NN0
76 4nn 10696 . . 3  |-  4  e.  NN
77 eqid 2441 . . . 4  |- ; 5 7  = ; 5 7
787dec0h 10995 . . . 4  |-  4  = ; 0 4
799, 9deccl 10993 . . . 4  |- ; 1 1  e.  NN0
80 eqid 2441 . . . . 5  |- ; 1 1  = ; 1 1
81 8cn 10622 . . . . . . 7  |-  8  e.  CC
8281addid2i 9766 . . . . . 6  |-  ( 0  +  8 )  =  8
836dec0h 10995 . . . . . 6  |-  8  = ; 0 8
8482, 83eqtri 2470 . . . . 5  |-  ( 0  +  8 )  = ; 0
8
85 5cn 10616 . . . . . . . 8  |-  5  e.  CC
8685mulid2i 9597 . . . . . . 7  |-  ( 1  x.  5 )  =  5
8786, 46oveq12i 6289 . . . . . 6  |-  ( ( 1  x.  5 )  +  ( 0  +  1 ) )  =  ( 5  +  1 )
88 5p1e6 10664 . . . . . 6  |-  ( 5  +  1 )  =  6
8987, 88eqtri 2470 . . . . 5  |-  ( ( 1  x.  5 )  +  ( 0  +  1 ) )  =  6
9086oveq1i 6287 . . . . . 6  |-  ( ( 1  x.  5 )  +  8 )  =  ( 5  +  8 )
91 8p5e13 11037 . . . . . . 7  |-  ( 8  +  5 )  = ; 1
3
9281, 85, 91addcomli 9770 . . . . . 6  |-  ( 5  +  8 )  = ; 1
3
9390, 92eqtri 2470 . . . . 5  |-  ( ( 1  x.  5 )  +  8 )  = ; 1
3
949, 9, 18, 6, 80, 84, 74, 2, 9, 89, 93decmac 11018 . . . 4  |-  ( (; 1
1  x.  5 )  +  ( 0  +  8 ) )  = ; 6
3
9560mulid2i 9597 . . . . . . 7  |-  ( 1  x.  7 )  =  7
9695, 46oveq12i 6289 . . . . . 6  |-  ( ( 1  x.  7 )  +  ( 0  +  1 ) )  =  ( 7  +  1 )
97 7p1e8 10666 . . . . . 6  |-  ( 7  +  1 )  =  8
9896, 97eqtri 2470 . . . . 5  |-  ( ( 1  x.  7 )  +  ( 0  +  1 ) )  =  8
9995oveq1i 6287 . . . . . 6  |-  ( ( 1  x.  7 )  +  4 )  =  ( 7  +  4 )
100 7p4e11 11031 . . . . . 6  |-  ( 7  +  4 )  = ; 1
1
10199, 100eqtri 2470 . . . . 5  |-  ( ( 1  x.  7 )  +  4 )  = ; 1
1
1029, 9, 18, 7, 80, 78, 57, 9, 9, 98, 101decmac 11018 . . . 4  |-  ( (; 1
1  x.  7 )  +  4 )  = ; 8
1
10374, 57, 18, 7, 77, 78, 79, 9, 6, 94, 102decma2c 11019 . . 3  |-  ( (; 1
1  x. ; 5 7 )  +  4 )  = ;; 6 3 1
104 4lt10 10744 . . . 4  |-  4  <  10
1054, 9, 7, 104declti 11004 . . 3  |-  4  < ; 1
1
10673, 75, 76, 103, 105ndvdsi 13940 . 2  |-  -. ; 1 1  || ;; 6 3 1
1079, 15decnncl 10992 . . 3  |- ; 1 3  e.  NN
1087, 6deccl 10993 . . 3  |- ; 4 8  e.  NN0
109 eqid 2441 . . . 4  |- ; 4 8  = ; 4 8
11057dec0h 10995 . . . 4  |-  7  = ; 0 7
1119, 2deccl 10993 . . . 4  |- ; 1 3  e.  NN0
112 eqid 2441 . . . . 5  |- ; 1 3  = ; 1 3
11379nn0cni 10808 . . . . . 6  |- ; 1 1  e.  CC
114113addid2i 9766 . . . . 5  |-  ( 0  + ; 1 1 )  = ; 1
1
115 4cn 10614 . . . . . . . 8  |-  4  e.  CC
116115mulid2i 9597 . . . . . . 7  |-  ( 1  x.  4 )  =  4
117 1p1e2 10650 . . . . . . 7  |-  ( 1  +  1 )  =  2
118116, 117oveq12i 6289 . . . . . 6  |-  ( ( 1  x.  4 )  +  ( 1  +  1 ) )  =  ( 4  +  2 )
119 4p2e6 10671 . . . . . 6  |-  ( 4  +  2 )  =  6
120118, 119eqtri 2470 . . . . 5  |-  ( ( 1  x.  4 )  +  ( 1  +  1 ) )  =  6
121 4t3e12 11051 . . . . . . 7  |-  ( 4  x.  3 )  = ; 1
2
122115, 39, 121mulcomli 9601 . . . . . 6  |-  ( 3  x.  4 )  = ; 1
2
123 2p1e3 10660 . . . . . 6  |-  ( 2  +  1 )  =  3
1249, 23, 9, 122, 123decaddi 11023 . . . . 5  |-  ( ( 3  x.  4 )  +  1 )  = ; 1
3
1259, 2, 9, 9, 112, 114, 7, 2, 9, 120, 124decmac 11018 . . . 4  |-  ( (; 1
3  x.  4 )  +  ( 0  + ; 1
1 ) )  = ; 6
3
12681mulid2i 9597 . . . . . . 7  |-  ( 1  x.  8 )  =  8
12739addid2i 9766 . . . . . . 7  |-  ( 0  +  3 )  =  3
128126, 127oveq12i 6289 . . . . . 6  |-  ( ( 1  x.  8 )  +  ( 0  +  3 ) )  =  ( 8  +  3 )
129 8p3e11 11035 . . . . . 6  |-  ( 8  +  3 )  = ; 1
1
130128, 129eqtri 2470 . . . . 5  |-  ( ( 1  x.  8 )  +  ( 0  +  3 ) )  = ; 1
1
131 8t3e24 11068 . . . . . . 7  |-  ( 8  x.  3 )  = ; 2
4
13281, 39, 131mulcomli 9601 . . . . . 6  |-  ( 3  x.  8 )  = ; 2
4
13360, 115, 100addcomli 9770 . . . . . 6  |-  ( 4  +  7 )  = ; 1
1
13423, 7, 57, 132, 123, 9, 133decaddci 11024 . . . . 5  |-  ( ( 3  x.  8 )  +  7 )  = ; 3
1
1359, 2, 18, 57, 112, 110, 6, 9, 2, 130, 134decmac 11018 . . . 4  |-  ( (; 1
3  x.  8 )  +  7 )  = ;; 1 1 1
1367, 6, 18, 57, 109, 110, 111, 9, 79, 125, 135decma2c 11019 . . 3  |-  ( (; 1
3  x. ; 4 8 )  +  7 )  = ;; 6 3 1
137 7lt10 10741 . . . 4  |-  7  <  10
1384, 2, 57, 137declti 11004 . . 3  |-  7  < ; 1
3
139107, 108, 53, 136, 138ndvdsi 13940 . 2  |-  -. ; 1 3  || ;; 6 3 1
1409, 53decnncl 10992 . . 3  |- ; 1 7  e.  NN
1412, 57deccl 10993 . . 3  |- ; 3 7  e.  NN0
142 2nn 10694 . . 3  |-  2  e.  NN
143 eqid 2441 . . . 4  |- ; 3 7  = ; 3 7
14423dec0h 10995 . . . 4  |-  2  = ; 0 2
1459, 57deccl 10993 . . . 4  |- ; 1 7  e.  NN0
1469, 23deccl 10993 . . . 4  |- ; 1 2  e.  NN0
147 eqid 2441 . . . . 5  |- ; 1 7  = ; 1 7
148146nn0cni 10808 . . . . . 6  |- ; 1 2  e.  CC
149148addid2i 9766 . . . . 5  |-  ( 0  + ; 1 2 )  = ; 1
2
15039mulid2i 9597 . . . . . . 7  |-  ( 1  x.  3 )  =  3
151 1p2e3 10661 . . . . . . 7  |-  ( 1  +  2 )  =  3
152150, 151oveq12i 6289 . . . . . 6  |-  ( ( 1  x.  3 )  +  ( 1  +  2 ) )  =  ( 3  +  3 )
153 3p3e6 10670 . . . . . 6  |-  ( 3  +  3 )  =  6
154152, 153eqtri 2470 . . . . 5  |-  ( ( 1  x.  3 )  +  ( 1  +  2 ) )  =  6
155 7t3e21 11062 . . . . . 6  |-  ( 7  x.  3 )  = ; 2
1
15623, 9, 23, 155, 151decaddi 11023 . . . . 5  |-  ( ( 7  x.  3 )  +  2 )  = ; 2
3
1579, 57, 9, 23, 147, 149, 2, 2, 23, 154, 156decmac 11018 . . . 4  |-  ( (; 1
7  x.  3 )  +  ( 0  + ; 1
2 ) )  = ; 6
3
15885addid2i 9766 . . . . . . 7  |-  ( 0  +  5 )  =  5
15995, 158oveq12i 6289 . . . . . 6  |-  ( ( 1  x.  7 )  +  ( 0  +  5 ) )  =  ( 7  +  5 )
160 7p5e12 11032 . . . . . 6  |-  ( 7  +  5 )  = ; 1
2
161159, 160eqtri 2470 . . . . 5  |-  ( ( 1  x.  7 )  +  ( 0  +  5 ) )  = ; 1
2
162 7t7e49 11066 . . . . . 6  |-  ( 7  x.  7 )  = ; 4
9
163 4p1e5 10663 . . . . . 6  |-  ( 4  +  1 )  =  5
164 9p2e11 11041 . . . . . 6  |-  ( 9  +  2 )  = ; 1
1
1657, 54, 23, 162, 163, 9, 164decaddci 11024 . . . . 5  |-  ( ( 7  x.  7 )  +  2 )  = ; 5
1
1669, 57, 18, 23, 147, 144, 57, 9, 74, 161, 165decmac 11018 . . . 4  |-  ( (; 1
7  x.  7 )  +  2 )  = ;; 1 2 1
1672, 57, 18, 23, 143, 144, 145, 9, 146, 157, 166decma2c 11019 . . 3  |-  ( (; 1
7  x. ; 3 7 )  +  2 )  = ;; 6 3 1
168 2lt10 10746 . . . 4  |-  2  <  10
1694, 57, 23, 168declti 11004 . . 3  |-  2  < ; 1
7
170140, 141, 142, 167, 169ndvdsi 13940 . 2  |-  -. ; 1 7  || ;; 6 3 1
171 9nn 10701 . . . 4  |-  9  e.  NN
1729, 171decnncl 10992 . . 3  |- ; 1 9  e.  NN
1732, 2deccl 10993 . . 3  |- ; 3 3  e.  NN0
174 eqid 2441 . . . 4  |- ; 3 3  = ; 3 3
1759, 54deccl 10993 . . . 4  |- ; 1 9  e.  NN0
176 eqid 2441 . . . . 5  |- ; 1 9  = ; 1 9
17734addid2i 9766 . . . . . 6  |-  ( 0  +  6 )  =  6
1781dec0h 10995 . . . . . 6  |-  6  = ; 0 6
179177, 178eqtri 2470 . . . . 5  |-  ( 0  +  6 )  = ; 0
6
180150, 127oveq12i 6289 . . . . . 6  |-  ( ( 1  x.  3 )  +  ( 0  +  3 ) )  =  ( 3  +  3 )
181180, 153eqtri 2470 . . . . 5  |-  ( ( 1  x.  3 )  +  ( 0  +  3 ) )  =  6
182 9t3e27 11075 . . . . . 6  |-  ( 9  x.  3 )  = ; 2
7
183 7p6e13 11033 . . . . . 6  |-  ( 7  +  6 )  = ; 1
3
18423, 57, 1, 182, 123, 2, 183decaddci 11024 . . . . 5  |-  ( ( 9  x.  3 )  +  6 )  = ; 3
3
1859, 54, 18, 1, 176, 179, 2, 2, 2, 181, 184decmac 11018 . . . 4  |-  ( (; 1
9  x.  3 )  +  ( 0  +  6 ) )  = ; 6
3
18623, 57, 7, 182, 123, 9, 100decaddci 11024 . . . . 5  |-  ( ( 9  x.  3 )  +  4 )  = ; 3
1
1879, 54, 18, 7, 176, 78, 2, 9, 2, 181, 186decmac 11018 . . . 4  |-  ( (; 1
9  x.  3 )  +  4 )  = ; 6
1
1882, 2, 18, 7, 174, 78, 175, 9, 1, 185, 187decma2c 11019 . . 3  |-  ( (; 1
9  x. ; 3 3 )  +  4 )  = ;; 6 3 1
1894, 54, 7, 104declti 11004 . . 3  |-  4  < ; 1
9
190172, 173, 76, 188, 189ndvdsi 13940 . 2  |-  -. ; 1 9  || ;; 6 3 1
19123, 15decnncl 10992 . . 3  |- ; 2 3  e.  NN
19223, 57deccl 10993 . . 3  |- ; 2 7  e.  NN0
193 10nn 10702 . . 3  |-  10  e.  NN
194 eqid 2441 . . . 4  |- ; 2 7  = ; 2 7
195 dec10 11009 . . . 4  |-  10  = ; 1 0
19623, 2deccl 10993 . . . 4  |- ; 2 3  e.  NN0
1979, 1deccl 10993 . . . 4  |- ; 1 6  e.  NN0
198 eqid 2441 . . . . 5  |- ; 2 3  = ; 2 3
199 eqid 2441 . . . . . 6  |- ; 1 6  = ; 1 6
200 ax-1cn 9548 . . . . . . 7  |-  1  e.  CC
201 6p1e7 10665 . . . . . . 7  |-  ( 6  +  1 )  =  7
20234, 200, 201addcomli 9770 . . . . . 6  |-  ( 1  +  6 )  =  7
20318, 9, 9, 1, 27, 199, 46, 202decadd 11020 . . . . 5  |-  ( 1  + ; 1 6 )  = ; 1
7
204 2t2e4 10686 . . . . . . 7  |-  ( 2  x.  2 )  =  4
205204, 117oveq12i 6289 . . . . . 6  |-  ( ( 2  x.  2 )  +  ( 1  +  1 ) )  =  ( 4  +  2 )
206205, 119eqtri 2470 . . . . 5  |-  ( ( 2  x.  2 )  +  ( 1  +  1 ) )  =  6
20732oveq1i 6287 . . . . . 6  |-  ( ( 3  x.  2 )  +  7 )  =  ( 6  +  7 )
20860, 34, 183addcomli 9770 . . . . . 6  |-  ( 6  +  7 )  = ; 1
3
209207, 208eqtri 2470 . . . . 5  |-  ( ( 3  x.  2 )  +  7 )  = ; 1
3
21023, 2, 9, 57, 198, 203, 23, 2, 9, 206, 209decmac 11018 . . . 4  |-  ( (; 2
3  x.  2 )  +  ( 1  + ; 1
6 ) )  = ; 6
3
211 7t2e14 11061 . . . . . . . . 9  |-  ( 7  x.  2 )  = ; 1
4
21260, 19, 211mulcomli 9601 . . . . . . . 8  |-  ( 2  x.  7 )  = ; 1
4
2139, 7, 23, 212, 119decaddi 11023 . . . . . . 7  |-  ( ( 2  x.  7 )  +  2 )  = ; 1
6
21460, 39, 155mulcomli 9601 . . . . . . 7  |-  ( 3  x.  7 )  = ; 2
1
21557, 23, 2, 198, 9, 23, 213, 214decmul1c 11026 . . . . . 6  |-  (; 2 3  x.  7 )  = ;; 1 6 1
216215oveq1i 6287 . . . . 5  |-  ( (; 2
3  x.  7 )  +  0 )  =  (;; 1 6 1  +  0 )
217197, 9deccl 10993 . . . . . . 7  |- ;; 1 6 1  e.  NN0
218217nn0cni 10808 . . . . . 6  |- ;; 1 6 1  e.  CC
219218addid1i 9765 . . . . 5  |-  (;; 1 6 1  +  0 )  = ;; 1 6 1
220216, 219eqtri 2470 . . . 4  |-  ( (; 2
3  x.  7 )  +  0 )  = ;; 1 6 1
22123, 57, 9, 18, 194, 195, 196, 9, 197, 210, 220decma2c 11019 . . 3  |-  ( (; 2
3  x. ; 2 7 )  +  10 )  = ;; 6 3 1
222 10pos 10639 . . . . 5  |-  0  <  10
223 1lt2 10703 . . . . 5  |-  1  <  2
2249, 23, 18, 2, 222, 223decltc 11001 . . . 4  |- ; 1 0  < ; 2 3
225195, 224eqbrtri 4452 . . 3  |-  10  < ; 2 3
226191, 192, 193, 221, 225ndvdsi 13940 . 2  |-  -. ; 2 3  || ;; 6 3 1
2275, 14, 17, 22, 50, 52, 72, 106, 139, 170, 190, 226prmlem2 14477 1  |- ;; 6 3 1  e.  Prime
Colors of variables: wff setvar class
Syntax hints:    e. wcel 1802  (class class class)co 6277   0cc0 9490   1c1 9491    + caddc 9493    x. cmul 9495    < clt 9626   2c2 10586   3c3 10587   4c4 10588   5c5 10589   6c6 10590   7c7 10591   8c8 10592   9c9 10593   10c10 10594  ;cdc 10979   Primecprime 14089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567  ax-pre-sup 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-int 4268  df-iun 4313  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6682  df-1st 6781  df-2nd 6782  df-recs 7040  df-rdg 7074  df-1o 7128  df-2o 7129  df-oadd 7132  df-er 7309  df-en 7515  df-dom 7516  df-sdom 7517  df-fin 7518  df-sup 7899  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9807  df-neg 9808  df-div 10208  df-nn 10538  df-2 10595  df-3 10596  df-4 10597  df-5 10598  df-6 10599  df-7 10600  df-8 10601  df-9 10602  df-10 10603  df-n0 10797  df-z 10866  df-dec 10980  df-uz 11086  df-rp 11225  df-fz 11677  df-seq 12082  df-exp 12141  df-cj 12906  df-re 12907  df-im 12908  df-sqrt 13042  df-abs 13043  df-dvds 13859  df-prm 14090
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator