MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  631prm Structured version   Unicode version

Theorem 631prm 14466
Description: 631 is a prime number. (Contributed by Mario Carneiro, 1-Mar-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.)
Assertion
Ref Expression
631prm  |- ;; 6 3 1  e.  Prime

Proof of Theorem 631prm
StepHypRef Expression
1 6nn0 10812 . . . 4  |-  6  e.  NN0
2 3nn0 10809 . . . 4  |-  3  e.  NN0
31, 2deccl 10986 . . 3  |- ; 6 3  e.  NN0
4 1nn 10543 . . 3  |-  1  e.  NN
53, 4decnncl 10985 . 2  |- ;; 6 3 1  e.  NN
6 8nn0 10814 . . . 4  |-  8  e.  NN0
7 4nn0 10810 . . . 4  |-  4  e.  NN0
86, 7deccl 10986 . . 3  |- ; 8 4  e.  NN0
9 1nn0 10807 . . 3  |-  1  e.  NN0
10 1lt10 10742 . . 3  |-  1  <  10
11 3lt10 10740 . . . 4  |-  3  <  10
12 6lt8 10720 . . . 4  |-  6  <  8
131, 6, 2, 7, 11, 12decltc 10994 . . 3  |- ; 6 3  < ; 8 4
143, 8, 9, 9, 10, 13decltc 10994 . 2  |- ;; 6 3 1  < ;; 8 4 1
15 3nn 10690 . . . 4  |-  3  e.  NN
161, 15decnncl 10985 . . 3  |- ; 6 3  e.  NN
1716, 9, 9, 10declti 10997 . 2  |-  1  < ;; 6 3 1
18 0nn0 10806 . . 3  |-  0  e.  NN0
19 2cn 10602 . . . 4  |-  2  e.  CC
2019mul02i 9764 . . 3  |-  ( 0  x.  2 )  =  0
21 1e0p1 11000 . . 3  |-  1  =  ( 0  +  1 )
223, 18, 20, 21dec2dvds 14404 . 2  |-  -.  2  || ;; 6 3 1
23 2nn0 10808 . . . . 5  |-  2  e.  NN0
2423, 9deccl 10986 . . . 4  |- ; 2 1  e.  NN0
2524, 18deccl 10986 . . 3  |- ;; 2 1 0  e.  NN0
26 eqid 2467 . . . 4  |- ;; 2 1 0  = ;; 2 1 0
279dec0h 10988 . . . 4  |-  1  = ; 0 1
28 eqid 2467 . . . . 5  |- ; 2 1  = ; 2 1
29 00id 9750 . . . . . 6  |-  ( 0  +  0 )  =  0
3018dec0h 10988 . . . . . 6  |-  0  = ; 0 0
3129, 30eqtri 2496 . . . . 5  |-  ( 0  +  0 )  = ; 0
0
32 3t2e6 10683 . . . . . . 7  |-  ( 3  x.  2 )  =  6
3332, 29oveq12i 6294 . . . . . 6  |-  ( ( 3  x.  2 )  +  ( 0  +  0 ) )  =  ( 6  +  0 )
34 6cn 10613 . . . . . . 7  |-  6  e.  CC
3534addid1i 9762 . . . . . 6  |-  ( 6  +  0 )  =  6
3633, 35eqtri 2496 . . . . 5  |-  ( ( 3  x.  2 )  +  ( 0  +  0 ) )  =  6
37 3t1e3 10682 . . . . . . 7  |-  ( 3  x.  1 )  =  3
3837oveq1i 6292 . . . . . 6  |-  ( ( 3  x.  1 )  +  0 )  =  ( 3  +  0 )
39 3cn 10606 . . . . . . 7  |-  3  e.  CC
4039addid1i 9762 . . . . . 6  |-  ( 3  +  0 )  =  3
412dec0h 10988 . . . . . 6  |-  3  = ; 0 3
4238, 40, 413eqtri 2500 . . . . 5  |-  ( ( 3  x.  1 )  +  0 )  = ; 0
3
4323, 9, 18, 18, 28, 31, 2, 2, 18, 36, 42decma2c 11012 . . . 4  |-  ( ( 3  x. ; 2 1 )  +  ( 0  +  0 ) )  = ; 6 3
4439mul01i 9765 . . . . . 6  |-  ( 3  x.  0 )  =  0
4544oveq1i 6292 . . . . 5  |-  ( ( 3  x.  0 )  +  1 )  =  ( 0  +  1 )
46 0p1e1 10643 . . . . 5  |-  ( 0  +  1 )  =  1
4745, 46, 273eqtri 2500 . . . 4  |-  ( ( 3  x.  0 )  +  1 )  = ; 0
1
4824, 18, 18, 9, 26, 27, 2, 9, 18, 43, 47decma2c 11012 . . 3  |-  ( ( 3  x. ;; 2 1 0 )  +  1 )  = ;; 6 3 1
49 1lt3 10700 . . 3  |-  1  <  3
5015, 25, 4, 48, 49ndvdsi 13923 . 2  |-  -.  3  || ;; 6 3 1
51 1lt5 10707 . . 3  |-  1  <  5
523, 4, 51dec5dvds 14405 . 2  |-  -.  5  || ;; 6 3 1
53 7nn 10694 . . 3  |-  7  e.  NN
54 9nn0 10815 . . . 4  |-  9  e.  NN0
5554, 18deccl 10986 . . 3  |- ; 9 0  e.  NN0
56 eqid 2467 . . . 4  |- ; 9 0  = ; 9 0
57 7nn0 10813 . . . 4  |-  7  e.  NN0
5829oveq2i 6293 . . . . 5  |-  ( ( 7  x.  9 )  +  ( 0  +  0 ) )  =  ( ( 7  x.  9 )  +  0 )
59 9cn 10619 . . . . . . 7  |-  9  e.  CC
60 7cn 10615 . . . . . . 7  |-  7  e.  CC
61 9t7e63 11072 . . . . . . 7  |-  ( 9  x.  7 )  = ; 6
3
6259, 60, 61mulcomli 9599 . . . . . 6  |-  ( 7  x.  9 )  = ; 6
3
6362oveq1i 6292 . . . . 5  |-  ( ( 7  x.  9 )  +  0 )  =  (; 6 3  +  0 )
643nn0cni 10803 . . . . . 6  |- ; 6 3  e.  CC
6564addid1i 9762 . . . . 5  |-  (; 6 3  +  0 )  = ; 6 3
6658, 63, 653eqtri 2500 . . . 4  |-  ( ( 7  x.  9 )  +  ( 0  +  0 ) )  = ; 6
3
6760mul01i 9765 . . . . . 6  |-  ( 7  x.  0 )  =  0
6867oveq1i 6292 . . . . 5  |-  ( ( 7  x.  0 )  +  1 )  =  ( 0  +  1 )
6968, 46, 273eqtri 2500 . . . 4  |-  ( ( 7  x.  0 )  +  1 )  = ; 0
1
7054, 18, 18, 9, 56, 27, 57, 9, 18, 66, 69decma2c 11012 . . 3  |-  ( ( 7  x. ; 9 0 )  +  1 )  = ;; 6 3 1
71 1lt7 10718 . . 3  |-  1  <  7
7253, 55, 4, 70, 71ndvdsi 13923 . 2  |-  -.  7  || ;; 6 3 1
739, 4decnncl 10985 . . 3  |- ; 1 1  e.  NN
74 5nn0 10811 . . . 4  |-  5  e.  NN0
7574, 57deccl 10986 . . 3  |- ; 5 7  e.  NN0
76 4nn 10691 . . 3  |-  4  e.  NN
77 eqid 2467 . . . 4  |- ; 5 7  = ; 5 7
787dec0h 10988 . . . 4  |-  4  = ; 0 4
799, 9deccl 10986 . . . 4  |- ; 1 1  e.  NN0
80 eqid 2467 . . . . 5  |- ; 1 1  = ; 1 1
81 8cn 10617 . . . . . . 7  |-  8  e.  CC
8281addid2i 9763 . . . . . 6  |-  ( 0  +  8 )  =  8
836dec0h 10988 . . . . . 6  |-  8  = ; 0 8
8482, 83eqtri 2496 . . . . 5  |-  ( 0  +  8 )  = ; 0
8
85 5cn 10611 . . . . . . . 8  |-  5  e.  CC
8685mulid2i 9595 . . . . . . 7  |-  ( 1  x.  5 )  =  5
8786, 46oveq12i 6294 . . . . . 6  |-  ( ( 1  x.  5 )  +  ( 0  +  1 ) )  =  ( 5  +  1 )
88 5p1e6 10659 . . . . . 6  |-  ( 5  +  1 )  =  6
8987, 88eqtri 2496 . . . . 5  |-  ( ( 1  x.  5 )  +  ( 0  +  1 ) )  =  6
9086oveq1i 6292 . . . . . 6  |-  ( ( 1  x.  5 )  +  8 )  =  ( 5  +  8 )
91 8p5e13 11030 . . . . . . 7  |-  ( 8  +  5 )  = ; 1
3
9281, 85, 91addcomli 9767 . . . . . 6  |-  ( 5  +  8 )  = ; 1
3
9390, 92eqtri 2496 . . . . 5  |-  ( ( 1  x.  5 )  +  8 )  = ; 1
3
949, 9, 18, 6, 80, 84, 74, 2, 9, 89, 93decmac 11011 . . . 4  |-  ( (; 1
1  x.  5 )  +  ( 0  +  8 ) )  = ; 6
3
9560mulid2i 9595 . . . . . . 7  |-  ( 1  x.  7 )  =  7
9695, 46oveq12i 6294 . . . . . 6  |-  ( ( 1  x.  7 )  +  ( 0  +  1 ) )  =  ( 7  +  1 )
97 7p1e8 10661 . . . . . 6  |-  ( 7  +  1 )  =  8
9896, 97eqtri 2496 . . . . 5  |-  ( ( 1  x.  7 )  +  ( 0  +  1 ) )  =  8
9995oveq1i 6292 . . . . . 6  |-  ( ( 1  x.  7 )  +  4 )  =  ( 7  +  4 )
100 7p4e11 11024 . . . . . 6  |-  ( 7  +  4 )  = ; 1
1
10199, 100eqtri 2496 . . . . 5  |-  ( ( 1  x.  7 )  +  4 )  = ; 1
1
1029, 9, 18, 7, 80, 78, 57, 9, 9, 98, 101decmac 11011 . . . 4  |-  ( (; 1
1  x.  7 )  +  4 )  = ; 8
1
10374, 57, 18, 7, 77, 78, 79, 9, 6, 94, 102decma2c 11012 . . 3  |-  ( (; 1
1  x. ; 5 7 )  +  4 )  = ;; 6 3 1
104 4lt10 10739 . . . 4  |-  4  <  10
1054, 9, 7, 104declti 10997 . . 3  |-  4  < ; 1
1
10673, 75, 76, 103, 105ndvdsi 13923 . 2  |-  -. ; 1 1  || ;; 6 3 1
1079, 15decnncl 10985 . . 3  |- ; 1 3  e.  NN
1087, 6deccl 10986 . . 3  |- ; 4 8  e.  NN0
109 eqid 2467 . . . 4  |- ; 4 8  = ; 4 8
11057dec0h 10988 . . . 4  |-  7  = ; 0 7
1119, 2deccl 10986 . . . 4  |- ; 1 3  e.  NN0
112 eqid 2467 . . . . 5  |- ; 1 3  = ; 1 3
11379nn0cni 10803 . . . . . 6  |- ; 1 1  e.  CC
114113addid2i 9763 . . . . 5  |-  ( 0  + ; 1 1 )  = ; 1
1
115 4cn 10609 . . . . . . . 8  |-  4  e.  CC
116115mulid2i 9595 . . . . . . 7  |-  ( 1  x.  4 )  =  4
117 1p1e2 10645 . . . . . . 7  |-  ( 1  +  1 )  =  2
118116, 117oveq12i 6294 . . . . . 6  |-  ( ( 1  x.  4 )  +  ( 1  +  1 ) )  =  ( 4  +  2 )
119 4p2e6 10666 . . . . . 6  |-  ( 4  +  2 )  =  6
120118, 119eqtri 2496 . . . . 5  |-  ( ( 1  x.  4 )  +  ( 1  +  1 ) )  =  6
121 4t3e12 11044 . . . . . . 7  |-  ( 4  x.  3 )  = ; 1
2
122115, 39, 121mulcomli 9599 . . . . . 6  |-  ( 3  x.  4 )  = ; 1
2
123 2p1e3 10655 . . . . . 6  |-  ( 2  +  1 )  =  3
1249, 23, 9, 122, 123decaddi 11016 . . . . 5  |-  ( ( 3  x.  4 )  +  1 )  = ; 1
3
1259, 2, 9, 9, 112, 114, 7, 2, 9, 120, 124decmac 11011 . . . 4  |-  ( (; 1
3  x.  4 )  +  ( 0  + ; 1
1 ) )  = ; 6
3
12681mulid2i 9595 . . . . . . 7  |-  ( 1  x.  8 )  =  8
12739addid2i 9763 . . . . . . 7  |-  ( 0  +  3 )  =  3
128126, 127oveq12i 6294 . . . . . 6  |-  ( ( 1  x.  8 )  +  ( 0  +  3 ) )  =  ( 8  +  3 )
129 8p3e11 11028 . . . . . 6  |-  ( 8  +  3 )  = ; 1
1
130128, 129eqtri 2496 . . . . 5  |-  ( ( 1  x.  8 )  +  ( 0  +  3 ) )  = ; 1
1
131 8t3e24 11061 . . . . . . 7  |-  ( 8  x.  3 )  = ; 2
4
13281, 39, 131mulcomli 9599 . . . . . 6  |-  ( 3  x.  8 )  = ; 2
4
13360, 115, 100addcomli 9767 . . . . . 6  |-  ( 4  +  7 )  = ; 1
1
13423, 7, 57, 132, 123, 9, 133decaddci 11017 . . . . 5  |-  ( ( 3  x.  8 )  +  7 )  = ; 3
1
1359, 2, 18, 57, 112, 110, 6, 9, 2, 130, 134decmac 11011 . . . 4  |-  ( (; 1
3  x.  8 )  +  7 )  = ;; 1 1 1
1367, 6, 18, 57, 109, 110, 111, 9, 79, 125, 135decma2c 11012 . . 3  |-  ( (; 1
3  x. ; 4 8 )  +  7 )  = ;; 6 3 1
137 7lt10 10736 . . . 4  |-  7  <  10
1384, 2, 57, 137declti 10997 . . 3  |-  7  < ; 1
3
139107, 108, 53, 136, 138ndvdsi 13923 . 2  |-  -. ; 1 3  || ;; 6 3 1
1409, 53decnncl 10985 . . 3  |- ; 1 7  e.  NN
1412, 57deccl 10986 . . 3  |- ; 3 7  e.  NN0
142 2nn 10689 . . 3  |-  2  e.  NN
143 eqid 2467 . . . 4  |- ; 3 7  = ; 3 7
14423dec0h 10988 . . . 4  |-  2  = ; 0 2
1459, 57deccl 10986 . . . 4  |- ; 1 7  e.  NN0
1469, 23deccl 10986 . . . 4  |- ; 1 2  e.  NN0
147 eqid 2467 . . . . 5  |- ; 1 7  = ; 1 7
148146nn0cni 10803 . . . . . 6  |- ; 1 2  e.  CC
149148addid2i 9763 . . . . 5  |-  ( 0  + ; 1 2 )  = ; 1
2
15039mulid2i 9595 . . . . . . 7  |-  ( 1  x.  3 )  =  3
151 1p2e3 10656 . . . . . . 7  |-  ( 1  +  2 )  =  3
152150, 151oveq12i 6294 . . . . . 6  |-  ( ( 1  x.  3 )  +  ( 1  +  2 ) )  =  ( 3  +  3 )
153 3p3e6 10665 . . . . . 6  |-  ( 3  +  3 )  =  6
154152, 153eqtri 2496 . . . . 5  |-  ( ( 1  x.  3 )  +  ( 1  +  2 ) )  =  6
155 7t3e21 11055 . . . . . 6  |-  ( 7  x.  3 )  = ; 2
1
15623, 9, 23, 155, 151decaddi 11016 . . . . 5  |-  ( ( 7  x.  3 )  +  2 )  = ; 2
3
1579, 57, 9, 23, 147, 149, 2, 2, 23, 154, 156decmac 11011 . . . 4  |-  ( (; 1
7  x.  3 )  +  ( 0  + ; 1
2 ) )  = ; 6
3
15885addid2i 9763 . . . . . . 7  |-  ( 0  +  5 )  =  5
15995, 158oveq12i 6294 . . . . . 6  |-  ( ( 1  x.  7 )  +  ( 0  +  5 ) )  =  ( 7  +  5 )
160 7p5e12 11025 . . . . . 6  |-  ( 7  +  5 )  = ; 1
2
161159, 160eqtri 2496 . . . . 5  |-  ( ( 1  x.  7 )  +  ( 0  +  5 ) )  = ; 1
2
162 7t7e49 11059 . . . . . 6  |-  ( 7  x.  7 )  = ; 4
9
163 4p1e5 10658 . . . . . 6  |-  ( 4  +  1 )  =  5
164 9p2e11 11034 . . . . . 6  |-  ( 9  +  2 )  = ; 1
1
1657, 54, 23, 162, 163, 9, 164decaddci 11017 . . . . 5  |-  ( ( 7  x.  7 )  +  2 )  = ; 5
1
1669, 57, 18, 23, 147, 144, 57, 9, 74, 161, 165decmac 11011 . . . 4  |-  ( (; 1
7  x.  7 )  +  2 )  = ;; 1 2 1
1672, 57, 18, 23, 143, 144, 145, 9, 146, 157, 166decma2c 11012 . . 3  |-  ( (; 1
7  x. ; 3 7 )  +  2 )  = ;; 6 3 1
168 2lt10 10741 . . . 4  |-  2  <  10
1694, 57, 23, 168declti 10997 . . 3  |-  2  < ; 1
7
170140, 141, 142, 167, 169ndvdsi 13923 . 2  |-  -. ; 1 7  || ;; 6 3 1
171 9nn 10696 . . . 4  |-  9  e.  NN
1729, 171decnncl 10985 . . 3  |- ; 1 9  e.  NN
1732, 2deccl 10986 . . 3  |- ; 3 3  e.  NN0
174 eqid 2467 . . . 4  |- ; 3 3  = ; 3 3
1759, 54deccl 10986 . . . 4  |- ; 1 9  e.  NN0
176 eqid 2467 . . . . 5  |- ; 1 9  = ; 1 9
17734addid2i 9763 . . . . . 6  |-  ( 0  +  6 )  =  6
1781dec0h 10988 . . . . . 6  |-  6  = ; 0 6
179177, 178eqtri 2496 . . . . 5  |-  ( 0  +  6 )  = ; 0
6
180150, 127oveq12i 6294 . . . . . 6  |-  ( ( 1  x.  3 )  +  ( 0  +  3 ) )  =  ( 3  +  3 )
181180, 153eqtri 2496 . . . . 5  |-  ( ( 1  x.  3 )  +  ( 0  +  3 ) )  =  6
182 9t3e27 11068 . . . . . 6  |-  ( 9  x.  3 )  = ; 2
7
183 7p6e13 11026 . . . . . 6  |-  ( 7  +  6 )  = ; 1
3
18423, 57, 1, 182, 123, 2, 183decaddci 11017 . . . . 5  |-  ( ( 9  x.  3 )  +  6 )  = ; 3
3
1859, 54, 18, 1, 176, 179, 2, 2, 2, 181, 184decmac 11011 . . . 4  |-  ( (; 1
9  x.  3 )  +  ( 0  +  6 ) )  = ; 6
3
18623, 57, 7, 182, 123, 9, 100decaddci 11017 . . . . 5  |-  ( ( 9  x.  3 )  +  4 )  = ; 3
1
1879, 54, 18, 7, 176, 78, 2, 9, 2, 181, 186decmac 11011 . . . 4  |-  ( (; 1
9  x.  3 )  +  4 )  = ; 6
1
1882, 2, 18, 7, 174, 78, 175, 9, 1, 185, 187decma2c 11012 . . 3  |-  ( (; 1
9  x. ; 3 3 )  +  4 )  = ;; 6 3 1
1894, 54, 7, 104declti 10997 . . 3  |-  4  < ; 1
9
190172, 173, 76, 188, 189ndvdsi 13923 . 2  |-  -. ; 1 9  || ;; 6 3 1
19123, 15decnncl 10985 . . 3  |- ; 2 3  e.  NN
19223, 57deccl 10986 . . 3  |- ; 2 7  e.  NN0
193 10nn 10697 . . 3  |-  10  e.  NN
194 eqid 2467 . . . 4  |- ; 2 7  = ; 2 7
195 dec10 11002 . . . 4  |-  10  = ; 1 0
19623, 2deccl 10986 . . . 4  |- ; 2 3  e.  NN0
1979, 1deccl 10986 . . . 4  |- ; 1 6  e.  NN0
198 eqid 2467 . . . . 5  |- ; 2 3  = ; 2 3
199 eqid 2467 . . . . . 6  |- ; 1 6  = ; 1 6
200 ax-1cn 9546 . . . . . . 7  |-  1  e.  CC
201 6p1e7 10660 . . . . . . 7  |-  ( 6  +  1 )  =  7
20234, 200, 201addcomli 9767 . . . . . 6  |-  ( 1  +  6 )  =  7
20318, 9, 9, 1, 27, 199, 46, 202decadd 11013 . . . . 5  |-  ( 1  + ; 1 6 )  = ; 1
7
204 2t2e4 10681 . . . . . . 7  |-  ( 2  x.  2 )  =  4
205204, 117oveq12i 6294 . . . . . 6  |-  ( ( 2  x.  2 )  +  ( 1  +  1 ) )  =  ( 4  +  2 )
206205, 119eqtri 2496 . . . . 5  |-  ( ( 2  x.  2 )  +  ( 1  +  1 ) )  =  6
20732oveq1i 6292 . . . . . 6  |-  ( ( 3  x.  2 )  +  7 )  =  ( 6  +  7 )
20860, 34, 183addcomli 9767 . . . . . 6  |-  ( 6  +  7 )  = ; 1
3
209207, 208eqtri 2496 . . . . 5  |-  ( ( 3  x.  2 )  +  7 )  = ; 1
3
21023, 2, 9, 57, 198, 203, 23, 2, 9, 206, 209decmac 11011 . . . 4  |-  ( (; 2
3  x.  2 )  +  ( 1  + ; 1
6 ) )  = ; 6
3
211 7t2e14 11054 . . . . . . . . 9  |-  ( 7  x.  2 )  = ; 1
4
21260, 19, 211mulcomli 9599 . . . . . . . 8  |-  ( 2  x.  7 )  = ; 1
4
2139, 7, 23, 212, 119decaddi 11016 . . . . . . 7  |-  ( ( 2  x.  7 )  +  2 )  = ; 1
6
21460, 39, 155mulcomli 9599 . . . . . . 7  |-  ( 3  x.  7 )  = ; 2
1
21557, 23, 2, 198, 9, 23, 213, 214decmul1c 11019 . . . . . 6  |-  (; 2 3  x.  7 )  = ;; 1 6 1
216215oveq1i 6292 . . . . 5  |-  ( (; 2
3  x.  7 )  +  0 )  =  (;; 1 6 1  +  0 )
217197, 9deccl 10986 . . . . . . 7  |- ;; 1 6 1  e.  NN0
218217nn0cni 10803 . . . . . 6  |- ;; 1 6 1  e.  CC
219218addid1i 9762 . . . . 5  |-  (;; 1 6 1  +  0 )  = ;; 1 6 1
220216, 219eqtri 2496 . . . 4  |-  ( (; 2
3  x.  7 )  +  0 )  = ;; 1 6 1
22123, 57, 9, 18, 194, 195, 196, 9, 197, 210, 220decma2c 11012 . . 3  |-  ( (; 2
3  x. ; 2 7 )  +  10 )  = ;; 6 3 1
222 10pos 10634 . . . . 5  |-  0  <  10
223 1lt2 10698 . . . . 5  |-  1  <  2
2249, 23, 18, 2, 222, 223decltc 10994 . . . 4  |- ; 1 0  < ; 2 3
225195, 224eqbrtri 4466 . . 3  |-  10  < ; 2 3
226191, 192, 193, 221, 225ndvdsi 13923 . 2  |-  -. ; 2 3  || ;; 6 3 1
2275, 14, 17, 22, 50, 52, 72, 106, 139, 170, 190, 226prmlem2 14459 1  |- ;; 6 3 1  e.  Prime
Colors of variables: wff setvar class
Syntax hints:    e. wcel 1767  (class class class)co 6282   0cc0 9488   1c1 9489    + caddc 9491    x. cmul 9493    < clt 9624   2c2 10581   3c3 10582   4c4 10583   5c5 10584   6c6 10585   7c7 10586   8c8 10587   9c9 10588   10c10 10589  ;cdc 10972   Primecprime 14072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-sup 7897  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-rp 11217  df-fz 11669  df-seq 12072  df-exp 12131  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-dvds 13844  df-prm 14073
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator