HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  5oalem6 Structured version   Unicode version

Theorem 5oalem6 26281
Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 4-May-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
5oalem5.1  |-  A  e.  SH
5oalem5.2  |-  B  e.  SH
5oalem5.3  |-  C  e.  SH
5oalem5.4  |-  D  e.  SH
5oalem5.5  |-  F  e.  SH
5oalem5.6  |-  G  e.  SH
5oalem5.7  |-  R  e.  SH
5oalem5.8  |-  S  e.  SH
Assertion
Ref Expression
5oalem6  |-  ( ( ( ( ( x  e.  A  /\  y  e.  B )  /\  h  =  ( x  +h  y ) )  /\  ( ( z  e.  C  /\  w  e.  D )  /\  h  =  ( z  +h  w ) ) )  /\  ( ( ( f  e.  F  /\  g  e.  G )  /\  h  =  (
f  +h  g ) )  /\  ( ( v  e.  R  /\  u  e.  S )  /\  h  =  (
v  +h  u ) ) ) )  ->  h  e.  ( B  +H  ( A  i^i  ( C  +H  ( ( ( ( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) ) ) ) )

Proof of Theorem 5oalem6
StepHypRef Expression
1 an4 822 . . . 4  |-  ( ( ( ( x  e.  A  /\  y  e.  B )  /\  h  =  ( x  +h  y ) )  /\  ( ( z  e.  C  /\  w  e.  D )  /\  h  =  ( z  +h  w ) ) )  <-> 
( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( h  =  ( x  +h  y )  /\  h  =  ( z  +h  w ) ) ) )
2 an4 822 . . . 4  |-  ( ( ( ( f  e.  F  /\  g  e.  G )  /\  h  =  ( f  +h  g ) )  /\  ( ( v  e.  R  /\  u  e.  S )  /\  h  =  ( v  +h  u ) ) )  <-> 
( ( ( f  e.  F  /\  g  e.  G )  /\  (
v  e.  R  /\  u  e.  S )
)  /\  ( h  =  ( f  +h  g )  /\  h  =  ( v  +h  u ) ) ) )
3 eqeq1 2471 . . . . . . . . . . 11  |-  ( h  =  ( x  +h  y )  ->  (
h  =  ( v  +h  u )  <->  ( x  +h  y )  =  ( v  +h  u ) ) )
43biimpcd 224 . . . . . . . . . 10  |-  ( h  =  ( v  +h  u )  ->  (
h  =  ( x  +h  y )  -> 
( x  +h  y
)  =  ( v  +h  u ) ) )
5 eqeq1 2471 . . . . . . . . . . 11  |-  ( h  =  ( z  +h  w )  ->  (
h  =  ( v  +h  u )  <->  ( z  +h  w )  =  ( v  +h  u ) ) )
65biimpcd 224 . . . . . . . . . 10  |-  ( h  =  ( v  +h  u )  ->  (
h  =  ( z  +h  w )  -> 
( z  +h  w
)  =  ( v  +h  u ) ) )
74, 6anim12d 563 . . . . . . . . 9  |-  ( h  =  ( v  +h  u )  ->  (
( h  =  ( x  +h  y )  /\  h  =  ( z  +h  w ) )  ->  ( (
x  +h  y )  =  ( v  +h  u )  /\  (
z  +h  w )  =  ( v  +h  u ) ) ) )
8 eqeq1 2471 . . . . . . . . . 10  |-  ( h  =  ( f  +h  g )  ->  (
h  =  ( v  +h  u )  <->  ( f  +h  g )  =  ( v  +h  u ) ) )
98biimpcd 224 . . . . . . . . 9  |-  ( h  =  ( v  +h  u )  ->  (
h  =  ( f  +h  g )  -> 
( f  +h  g
)  =  ( v  +h  u ) ) )
107, 9anim12d 563 . . . . . . . 8  |-  ( h  =  ( v  +h  u )  ->  (
( ( h  =  ( x  +h  y
)  /\  h  =  ( z  +h  w
) )  /\  h  =  ( f  +h  g ) )  -> 
( ( ( x  +h  y )  =  ( v  +h  u
)  /\  ( z  +h  w )  =  ( v  +h  u ) )  /\  ( f  +h  g )  =  ( v  +h  u
) ) ) )
1110expdcom 439 . . . . . . 7  |-  ( ( h  =  ( x  +h  y )  /\  h  =  ( z  +h  w ) )  -> 
( h  =  ( f  +h  g )  ->  ( h  =  ( v  +h  u
)  ->  ( (
( x  +h  y
)  =  ( v  +h  u )  /\  ( z  +h  w
)  =  ( v  +h  u ) )  /\  ( f  +h  g )  =  ( v  +h  u ) ) ) ) )
1211imp32 433 . . . . . 6  |-  ( ( ( h  =  ( x  +h  y )  /\  h  =  ( z  +h  w ) )  /\  ( h  =  ( f  +h  g )  /\  h  =  ( v  +h  u ) ) )  ->  ( ( ( x  +h  y )  =  ( v  +h  u )  /\  (
z  +h  w )  =  ( v  +h  u ) )  /\  ( f  +h  g
)  =  ( v  +h  u ) ) )
1312anim2i 569 . . . . 5  |-  ( ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( (
f  e.  F  /\  g  e.  G )  /\  ( v  e.  R  /\  u  e.  S
) ) )  /\  ( ( h  =  ( x  +h  y
)  /\  h  =  ( z  +h  w
) )  /\  (
h  =  ( f  +h  g )  /\  h  =  ( v  +h  u ) ) ) )  ->  ( (
( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( (
f  e.  F  /\  g  e.  G )  /\  ( v  e.  R  /\  u  e.  S
) ) )  /\  ( ( ( x  +h  y )  =  ( v  +h  u
)  /\  ( z  +h  w )  =  ( v  +h  u ) )  /\  ( f  +h  g )  =  ( v  +h  u
) ) ) )
1413an4s 824 . . . 4  |-  ( ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( h  =  ( x  +h  y )  /\  h  =  ( z  +h  w ) ) )  /\  ( ( ( f  e.  F  /\  g  e.  G )  /\  ( v  e.  R  /\  u  e.  S
) )  /\  (
h  =  ( f  +h  g )  /\  h  =  ( v  +h  u ) ) ) )  ->  ( (
( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( (
f  e.  F  /\  g  e.  G )  /\  ( v  e.  R  /\  u  e.  S
) ) )  /\  ( ( ( x  +h  y )  =  ( v  +h  u
)  /\  ( z  +h  w )  =  ( v  +h  u ) )  /\  ( f  +h  g )  =  ( v  +h  u
) ) ) )
151, 2, 14syl2anb 479 . . 3  |-  ( ( ( ( ( x  e.  A  /\  y  e.  B )  /\  h  =  ( x  +h  y ) )  /\  ( ( z  e.  C  /\  w  e.  D )  /\  h  =  ( z  +h  w ) ) )  /\  ( ( ( f  e.  F  /\  g  e.  G )  /\  h  =  (
f  +h  g ) )  /\  ( ( v  e.  R  /\  u  e.  S )  /\  h  =  (
v  +h  u ) ) ) )  -> 
( ( ( ( x  e.  A  /\  y  e.  B )  /\  ( z  e.  C  /\  w  e.  D
) )  /\  (
( f  e.  F  /\  g  e.  G
)  /\  ( v  e.  R  /\  u  e.  S ) ) )  /\  ( ( ( x  +h  y )  =  ( v  +h  u )  /\  (
z  +h  w )  =  ( v  +h  u ) )  /\  ( f  +h  g
)  =  ( v  +h  u ) ) ) )
16 5oalem5.1 . . . 4  |-  A  e.  SH
17 5oalem5.2 . . . 4  |-  B  e.  SH
18 5oalem5.3 . . . 4  |-  C  e.  SH
19 5oalem5.4 . . . 4  |-  D  e.  SH
20 5oalem5.5 . . . 4  |-  F  e.  SH
21 5oalem5.6 . . . 4  |-  G  e.  SH
22 5oalem5.7 . . . 4  |-  R  e.  SH
23 5oalem5.8 . . . 4  |-  S  e.  SH
2416, 17, 18, 19, 20, 21, 22, 235oalem5 26280 . . 3  |-  ( ( ( ( ( x  e.  A  /\  y  e.  B )  /\  (
z  e.  C  /\  w  e.  D )
)  /\  ( (
f  e.  F  /\  g  e.  G )  /\  ( v  e.  R  /\  u  e.  S
) ) )  /\  ( ( ( x  +h  y )  =  ( v  +h  u
)  /\  ( z  +h  w )  =  ( v  +h  u ) )  /\  ( f  +h  g )  =  ( v  +h  u
) ) )  -> 
( x  -h  z
)  e.  ( ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S ) ) ) )  i^i  (
( ( ( A  +H  F )  i^i  ( B  +H  G
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S
) ) ) )  +H  ( ( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) ) )
2515, 24syl 16 . 2  |-  ( ( ( ( ( x  e.  A  /\  y  e.  B )  /\  h  =  ( x  +h  y ) )  /\  ( ( z  e.  C  /\  w  e.  D )  /\  h  =  ( z  +h  w ) ) )  /\  ( ( ( f  e.  F  /\  g  e.  G )  /\  h  =  (
f  +h  g ) )  /\  ( ( v  e.  R  /\  u  e.  S )  /\  h  =  (
v  +h  u ) ) ) )  -> 
( x  -h  z
)  e.  ( ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S ) ) ) )  i^i  (
( ( ( A  +H  F )  i^i  ( B  +H  G
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S
) ) ) )  +H  ( ( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) ) )
2616, 18shscli 25939 . . . . . . . . . 10  |-  ( A  +H  C )  e.  SH
2717, 19shscli 25939 . . . . . . . . . 10  |-  ( B  +H  D )  e.  SH
2826, 27shincli 25984 . . . . . . . . 9  |-  ( ( A  +H  C )  i^i  ( B  +H  D ) )  e.  SH
2916, 22shscli 25939 . . . . . . . . . . 11  |-  ( A  +H  R )  e.  SH
3017, 23shscli 25939 . . . . . . . . . . 11  |-  ( B  +H  S )  e.  SH
3129, 30shincli 25984 . . . . . . . . . 10  |-  ( ( A  +H  R )  i^i  ( B  +H  S ) )  e.  SH
3218, 22shscli 25939 . . . . . . . . . . 11  |-  ( C  +H  R )  e.  SH
3319, 23shscli 25939 . . . . . . . . . . 11  |-  ( D  +H  S )  e.  SH
3432, 33shincli 25984 . . . . . . . . . 10  |-  ( ( C  +H  R )  i^i  ( D  +H  S ) )  e.  SH
3531, 34shscli 25939 . . . . . . . . 9  |-  ( ( ( A  +H  R
)  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S ) ) )  e.  SH
3628, 35shincli 25984 . . . . . . . 8  |-  ( ( ( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  e.  SH
3716, 20shscli 25939 . . . . . . . . . . 11  |-  ( A  +H  F )  e.  SH
3817, 21shscli 25939 . . . . . . . . . . 11  |-  ( B  +H  G )  e.  SH
3937, 38shincli 25984 . . . . . . . . . 10  |-  ( ( A  +H  F )  i^i  ( B  +H  G ) )  e.  SH
4020, 22shscli 25939 . . . . . . . . . . . 12  |-  ( F  +H  R )  e.  SH
4121, 23shscli 25939 . . . . . . . . . . . 12  |-  ( G  +H  S )  e.  SH
4240, 41shincli 25984 . . . . . . . . . . 11  |-  ( ( F  +H  R )  i^i  ( G  +H  S ) )  e.  SH
4331, 42shscli 25939 . . . . . . . . . 10  |-  ( ( ( A  +H  R
)  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) )  e.  SH
4439, 43shincli 25984 . . . . . . . . 9  |-  ( ( ( A  +H  F
)  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  e.  SH
4518, 20shscli 25939 . . . . . . . . . . 11  |-  ( C  +H  F )  e.  SH
4619, 21shscli 25939 . . . . . . . . . . 11  |-  ( D  +H  G )  e.  SH
4745, 46shincli 25984 . . . . . . . . . 10  |-  ( ( C  +H  F )  i^i  ( D  +H  G ) )  e.  SH
4834, 42shscli 25939 . . . . . . . . . 10  |-  ( ( ( C  +H  R
)  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) )  e.  SH
4947, 48shincli 25984 . . . . . . . . 9  |-  ( ( ( C  +H  F
)  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  e.  SH
5044, 49shscli 25939 . . . . . . . 8  |-  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) )  e.  SH
5136, 50shincli 25984 . . . . . . 7  |-  ( ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S ) ) ) )  i^i  (
( ( ( A  +H  F )  i^i  ( B  +H  G
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S
) ) ) )  +H  ( ( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) )  e.  SH
5216, 17, 18, 515oalem1 26276 . . . . . 6  |-  ( ( ( ( x  e.  A  /\  y  e.  B )  /\  h  =  ( x  +h  y ) )  /\  ( z  e.  C  /\  ( x  -h  z
)  e.  ( ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S ) ) ) )  i^i  (
( ( ( A  +H  F )  i^i  ( B  +H  G
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S
) ) ) )  +H  ( ( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) ) ) )  ->  h  e.  ( B  +H  ( A  i^i  ( C  +H  ( ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) ) ) ) )
5352expr 615 . . . . 5  |-  ( ( ( ( x  e.  A  /\  y  e.  B )  /\  h  =  ( x  +h  y ) )  /\  z  e.  C )  ->  ( ( x  -h  z )  e.  ( ( ( ( A  +H  C )  i^i  ( B  +H  D
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S
) ) ) )  i^i  ( ( ( ( A  +H  F
)  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  +H  ( ( ( C  +H  F
)  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) )  ->  h  e.  ( B  +H  ( A  i^i  ( C  +H  ( ( ( ( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) ) ) ) ) )
5453adantrr 716 . . . 4  |-  ( ( ( ( x  e.  A  /\  y  e.  B )  /\  h  =  ( x  +h  y ) )  /\  ( z  e.  C  /\  w  e.  D
) )  ->  (
( x  -h  z
)  e.  ( ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S ) ) ) )  i^i  (
( ( ( A  +H  F )  i^i  ( B  +H  G
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S
) ) ) )  +H  ( ( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) )  ->  h  e.  ( B  +H  ( A  i^i  ( C  +H  ( ( ( ( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) ) ) ) ) )
5554adantrr 716 . . 3  |-  ( ( ( ( x  e.  A  /\  y  e.  B )  /\  h  =  ( x  +h  y ) )  /\  ( ( z  e.  C  /\  w  e.  D )  /\  h  =  ( z  +h  w ) ) )  ->  ( ( x  -h  z )  e.  ( ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) )  ->  h  e.  ( B  +H  ( A  i^i  ( C  +H  ( ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) ) ) ) ) )
5655adantr 465 . 2  |-  ( ( ( ( ( x  e.  A  /\  y  e.  B )  /\  h  =  ( x  +h  y ) )  /\  ( ( z  e.  C  /\  w  e.  D )  /\  h  =  ( z  +h  w ) ) )  /\  ( ( ( f  e.  F  /\  g  e.  G )  /\  h  =  (
f  +h  g ) )  /\  ( ( v  e.  R  /\  u  e.  S )  /\  h  =  (
v  +h  u ) ) ) )  -> 
( ( x  -h  z )  e.  ( ( ( ( A  +H  C )  i^i  ( B  +H  D
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S
) ) ) )  i^i  ( ( ( ( A  +H  F
)  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  +H  ( ( ( C  +H  F
)  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) )  ->  h  e.  ( B  +H  ( A  i^i  ( C  +H  ( ( ( ( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) ) ) ) ) )
5725, 56mpd 15 1  |-  ( ( ( ( ( x  e.  A  /\  y  e.  B )  /\  h  =  ( x  +h  y ) )  /\  ( ( z  e.  C  /\  w  e.  D )  /\  h  =  ( z  +h  w ) ) )  /\  ( ( ( f  e.  F  /\  g  e.  G )  /\  h  =  (
f  +h  g ) )  /\  ( ( v  e.  R  /\  u  e.  S )  /\  h  =  (
v  +h  u ) ) ) )  ->  h  e.  ( B  +H  ( A  i^i  ( C  +H  ( ( ( ( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767    i^i cin 3475  (class class class)co 6284    +h cva 25541    -h cmv 25546   SHcsh 25549    +H cph 25552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-hilex 25620  ax-hfvadd 25621  ax-hvcom 25622  ax-hvass 25623  ax-hv0cl 25624  ax-hvaddid 25625  ax-hfvmul 25626  ax-hvmulid 25627  ax-hvmulass 25628  ax-hvdistr1 25629  ax-hvdistr2 25630  ax-hvmul0 25631
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-recs 7042  df-rdg 7076  df-er 7311  df-map 7422  df-en 7517  df-dom 7518  df-sdom 7519  df-pnf 9630  df-mnf 9631  df-ltxr 9633  df-sub 9807  df-neg 9808  df-nn 10537  df-grpo 24897  df-ablo 24988  df-hvsub 25592  df-hlim 25593  df-sh 25828  df-ch 25843  df-shs 25930
This theorem is referenced by:  5oalem7  26282
  Copyright terms: Public domain W3C validator