HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  5oai Structured version   Unicode version

Theorem 5oai 26696
Description: Orthoarguesian law 5OA. This 8-variable inference is called 5OA because it can be converted to a 5-variable equation (see Quantum Logic Explorer). (Contributed by NM, 5-May-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
5oa.1  |-  A  e. 
CH
5oa.2  |-  B  e. 
CH
5oa.3  |-  C  e. 
CH
5oa.4  |-  D  e. 
CH
5oa.5  |-  F  e. 
CH
5oa.6  |-  G  e. 
CH
5oa.7  |-  R  e. 
CH
5oa.8  |-  S  e. 
CH
5oa.9  |-  A  C_  ( _|_ `  B )
5oa.10  |-  C  C_  ( _|_ `  D )
5oa.11  |-  F  C_  ( _|_ `  G )
5oa.12  |-  R  C_  ( _|_ `  S )
Assertion
Ref Expression
5oai  |-  ( ( ( A  vH  B
)  i^i  ( C  vH  D ) )  i^i  ( ( F  vH  G )  i^i  ( R  vH  S ) ) )  C_  ( B  vH  ( A  i^i  ( C  vH  ( ( ( ( A  vH  C
)  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) )  i^i  ( ( ( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )  vH  (
( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) ) ) ) ) ) )

Proof of Theorem 5oai
StepHypRef Expression
1 5oa.9 . . . . . 6  |-  A  C_  ( _|_ `  B )
2 5oa.1 . . . . . . 7  |-  A  e. 
CH
3 5oa.2 . . . . . . 7  |-  B  e. 
CH
42, 3osumi 26677 . . . . . 6  |-  ( A 
C_  ( _|_ `  B
)  ->  ( A  +H  B )  =  ( A  vH  B ) )
51, 4ax-mp 5 . . . . 5  |-  ( A  +H  B )  =  ( A  vH  B
)
6 5oa.10 . . . . . 6  |-  C  C_  ( _|_ `  D )
7 5oa.3 . . . . . . 7  |-  C  e. 
CH
8 5oa.4 . . . . . . 7  |-  D  e. 
CH
97, 8osumi 26677 . . . . . 6  |-  ( C 
C_  ( _|_ `  D
)  ->  ( C  +H  D )  =  ( C  vH  D ) )
106, 9ax-mp 5 . . . . 5  |-  ( C  +H  D )  =  ( C  vH  D
)
115, 10ineq12i 3612 . . . 4  |-  ( ( A  +H  B )  i^i  ( C  +H  D ) )  =  ( ( A  vH  B )  i^i  ( C  vH  D ) )
12 5oa.11 . . . . . 6  |-  F  C_  ( _|_ `  G )
13 5oa.5 . . . . . . 7  |-  F  e. 
CH
14 5oa.6 . . . . . . 7  |-  G  e. 
CH
1513, 14osumi 26677 . . . . . 6  |-  ( F 
C_  ( _|_ `  G
)  ->  ( F  +H  G )  =  ( F  vH  G ) )
1612, 15ax-mp 5 . . . . 5  |-  ( F  +H  G )  =  ( F  vH  G
)
17 5oa.12 . . . . . 6  |-  R  C_  ( _|_ `  S )
18 5oa.7 . . . . . . 7  |-  R  e. 
CH
19 5oa.8 . . . . . . 7  |-  S  e. 
CH
2018, 19osumi 26677 . . . . . 6  |-  ( R 
C_  ( _|_ `  S
)  ->  ( R  +H  S )  =  ( R  vH  S ) )
2117, 20ax-mp 5 . . . . 5  |-  ( R  +H  S )  =  ( R  vH  S
)
2216, 21ineq12i 3612 . . . 4  |-  ( ( F  +H  G )  i^i  ( R  +H  S ) )  =  ( ( F  vH  G )  i^i  ( R  vH  S ) )
2311, 22ineq12i 3612 . . 3  |-  ( ( ( A  +H  B
)  i^i  ( C  +H  D ) )  i^i  ( ( F  +H  G )  i^i  ( R  +H  S ) ) )  =  ( ( ( A  vH  B
)  i^i  ( C  vH  D ) )  i^i  ( ( F  vH  G )  i^i  ( R  vH  S ) ) )
242chshii 26262 . . . 4  |-  A  e.  SH
253chshii 26262 . . . 4  |-  B  e.  SH
267chshii 26262 . . . 4  |-  C  e.  SH
278chshii 26262 . . . 4  |-  D  e.  SH
2813chshii 26262 . . . 4  |-  F  e.  SH
2914chshii 26262 . . . 4  |-  G  e.  SH
3018chshii 26262 . . . 4  |-  R  e.  SH
3119chshii 26262 . . . 4  |-  S  e.  SH
3224, 25, 26, 27, 28, 29, 30, 315oalem7 26695 . . 3  |-  ( ( ( A  +H  B
)  i^i  ( C  +H  D ) )  i^i  ( ( F  +H  G )  i^i  ( R  +H  S ) ) )  C_  ( B  +H  ( A  i^i  ( C  +H  ( ( ( ( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) ) ) )
3323, 32eqsstr3i 3448 . 2  |-  ( ( ( A  vH  B
)  i^i  ( C  vH  D ) )  i^i  ( ( F  vH  G )  i^i  ( R  vH  S ) ) )  C_  ( B  +H  ( A  i^i  ( C  +H  ( ( ( ( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) ) ) )
3424, 26shscli 26352 . . . . . . . . 9  |-  ( A  +H  C )  e.  SH
3525, 27shscli 26352 . . . . . . . . 9  |-  ( B  +H  D )  e.  SH
3634, 35shincli 26397 . . . . . . . 8  |-  ( ( A  +H  C )  i^i  ( B  +H  D ) )  e.  SH
3724, 30shscli 26352 . . . . . . . . . 10  |-  ( A  +H  R )  e.  SH
3825, 31shscli 26352 . . . . . . . . . 10  |-  ( B  +H  S )  e.  SH
3937, 38shincli 26397 . . . . . . . . 9  |-  ( ( A  +H  R )  i^i  ( B  +H  S ) )  e.  SH
4026, 30shscli 26352 . . . . . . . . . 10  |-  ( C  +H  R )  e.  SH
4127, 31shscli 26352 . . . . . . . . . 10  |-  ( D  +H  S )  e.  SH
4240, 41shincli 26397 . . . . . . . . 9  |-  ( ( C  +H  R )  i^i  ( D  +H  S ) )  e.  SH
4339, 42shscli 26352 . . . . . . . 8  |-  ( ( ( A  +H  R
)  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S ) ) )  e.  SH
4436, 43shincli 26397 . . . . . . 7  |-  ( ( ( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  e.  SH
4524, 28shscli 26352 . . . . . . . . . 10  |-  ( A  +H  F )  e.  SH
4625, 29shscli 26352 . . . . . . . . . 10  |-  ( B  +H  G )  e.  SH
4745, 46shincli 26397 . . . . . . . . 9  |-  ( ( A  +H  F )  i^i  ( B  +H  G ) )  e.  SH
4828, 30shscli 26352 . . . . . . . . . . 11  |-  ( F  +H  R )  e.  SH
4929, 31shscli 26352 . . . . . . . . . . 11  |-  ( G  +H  S )  e.  SH
5048, 49shincli 26397 . . . . . . . . . 10  |-  ( ( F  +H  R )  i^i  ( G  +H  S ) )  e.  SH
5139, 50shscli 26352 . . . . . . . . 9  |-  ( ( ( A  +H  R
)  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) )  e.  SH
5247, 51shincli 26397 . . . . . . . 8  |-  ( ( ( A  +H  F
)  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  e.  SH
5326, 28shscli 26352 . . . . . . . . . 10  |-  ( C  +H  F )  e.  SH
5427, 29shscli 26352 . . . . . . . . . 10  |-  ( D  +H  G )  e.  SH
5553, 54shincli 26397 . . . . . . . . 9  |-  ( ( C  +H  F )  i^i  ( D  +H  G ) )  e.  SH
5642, 50shscli 26352 . . . . . . . . 9  |-  ( ( ( C  +H  R
)  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) )  e.  SH
5755, 56shincli 26397 . . . . . . . 8  |-  ( ( ( C  +H  F
)  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  e.  SH
5852, 57shscli 26352 . . . . . . 7  |-  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) )  e.  SH
5944, 58shincli 26397 . . . . . 6  |-  ( ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S ) ) ) )  i^i  (
( ( ( A  +H  F )  i^i  ( B  +H  G
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S
) ) ) )  +H  ( ( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) )  e.  SH
6026, 59shscli 26352 . . . . 5  |-  ( C  +H  ( ( ( ( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) )  e.  SH
6124, 60shincli 26397 . . . 4  |-  ( A  i^i  ( C  +H  ( ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) ) )  e.  SH
6225, 61shsleji 26405 . . 3  |-  ( B  +H  ( A  i^i  ( C  +H  (
( ( ( A  +H  C )  i^i  ( B  +H  D
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S
) ) ) )  i^i  ( ( ( ( A  +H  F
)  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  +H  ( ( ( C  +H  F
)  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) ) ) ) )  C_  ( B  vH  ( A  i^i  ( C  +H  (
( ( ( A  +H  C )  i^i  ( B  +H  D
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S
) ) ) )  i^i  ( ( ( ( A  +H  F
)  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  +H  ( ( ( C  +H  F
)  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) ) ) ) )
6326, 59shsleji 26405 . . . . . 6  |-  ( C  +H  ( ( ( ( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) )  C_  ( C  vH  ( ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) )
642, 7chsleji 26493 . . . . . . . . . 10  |-  ( A  +H  C )  C_  ( A  vH  C )
653, 8chsleji 26493 . . . . . . . . . 10  |-  ( B  +H  D )  C_  ( B  vH  D )
66 ss2in 3639 . . . . . . . . . 10  |-  ( ( ( A  +H  C
)  C_  ( A  vH  C )  /\  ( B  +H  D )  C_  ( B  vH  D ) )  ->  ( ( A  +H  C )  i^i  ( B  +H  D
) )  C_  (
( A  vH  C
)  i^i  ( B  vH  D ) ) )
6764, 65, 66mp2an 670 . . . . . . . . 9  |-  ( ( A  +H  C )  i^i  ( B  +H  D ) )  C_  ( ( A  vH  C )  i^i  ( B  vH  D ) )
6839, 42shsleji 26405 . . . . . . . . . 10  |-  ( ( ( A  +H  R
)  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S ) ) )  C_  ( (
( A  +H  R
)  i^i  ( B  +H  S ) )  vH  ( ( C  +H  R )  i^i  ( D  +H  S ) ) )
697, 18chsleji 26493 . . . . . . . . . . . . 13  |-  ( C  +H  R )  C_  ( C  vH  R )
708, 19chsleji 26493 . . . . . . . . . . . . 13  |-  ( D  +H  S )  C_  ( D  vH  S )
71 ss2in 3639 . . . . . . . . . . . . 13  |-  ( ( ( C  +H  R
)  C_  ( C  vH  R )  /\  ( D  +H  S )  C_  ( D  vH  S ) )  ->  ( ( C  +H  R )  i^i  ( D  +H  S
) )  C_  (
( C  vH  R
)  i^i  ( D  vH  S ) ) )
7269, 70, 71mp2an 670 . . . . . . . . . . . 12  |-  ( ( C  +H  R )  i^i  ( D  +H  S ) )  C_  ( ( C  vH  R )  i^i  ( D  vH  S ) )
7326, 30shjshcli 26411 . . . . . . . . . . . . . 14  |-  ( C  vH  R )  e.  SH
7427, 31shjshcli 26411 . . . . . . . . . . . . . 14  |-  ( D  vH  S )  e.  SH
7573, 74shincli 26397 . . . . . . . . . . . . 13  |-  ( ( C  vH  R )  i^i  ( D  vH  S ) )  e.  SH
7642, 75, 39shlej2i 26414 . . . . . . . . . . . 12  |-  ( ( ( C  +H  R
)  i^i  ( D  +H  S ) )  C_  ( ( C  vH  R )  i^i  ( D  vH  S ) )  ->  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  vH  ( ( C  +H  R )  i^i  ( D  +H  S ) ) )  C_  ( (
( A  +H  R
)  i^i  ( B  +H  S ) )  vH  ( ( C  vH  R )  i^i  ( D  vH  S ) ) ) )
7772, 76ax-mp 5 . . . . . . . . . . 11  |-  ( ( ( A  +H  R
)  i^i  ( B  +H  S ) )  vH  ( ( C  +H  R )  i^i  ( D  +H  S ) ) )  C_  ( (
( A  +H  R
)  i^i  ( B  +H  S ) )  vH  ( ( C  vH  R )  i^i  ( D  vH  S ) ) )
782, 18chsleji 26493 . . . . . . . . . . . . 13  |-  ( A  +H  R )  C_  ( A  vH  R )
793, 19chsleji 26493 . . . . . . . . . . . . 13  |-  ( B  +H  S )  C_  ( B  vH  S )
80 ss2in 3639 . . . . . . . . . . . . 13  |-  ( ( ( A  +H  R
)  C_  ( A  vH  R )  /\  ( B  +H  S )  C_  ( B  vH  S ) )  ->  ( ( A  +H  R )  i^i  ( B  +H  S
) )  C_  (
( A  vH  R
)  i^i  ( B  vH  S ) ) )
8178, 79, 80mp2an 670 . . . . . . . . . . . 12  |-  ( ( A  +H  R )  i^i  ( B  +H  S ) )  C_  ( ( A  vH  R )  i^i  ( B  vH  S ) )
8224, 30shjshcli 26411 . . . . . . . . . . . . . 14  |-  ( A  vH  R )  e.  SH
8325, 31shjshcli 26411 . . . . . . . . . . . . . 14  |-  ( B  vH  S )  e.  SH
8482, 83shincli 26397 . . . . . . . . . . . . 13  |-  ( ( A  vH  R )  i^i  ( B  vH  S ) )  e.  SH
8539, 84, 75shlej1i 26413 . . . . . . . . . . . 12  |-  ( ( ( A  +H  R
)  i^i  ( B  +H  S ) )  C_  ( ( A  vH  R )  i^i  ( B  vH  S ) )  ->  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  vH  ( ( C  vH  R )  i^i  ( D  vH  S ) ) )  C_  ( (
( A  vH  R
)  i^i  ( B  vH  S ) )  vH  ( ( C  vH  R )  i^i  ( D  vH  S ) ) ) )
8681, 85ax-mp 5 . . . . . . . . . . 11  |-  ( ( ( A  +H  R
)  i^i  ( B  +H  S ) )  vH  ( ( C  vH  R )  i^i  ( D  vH  S ) ) )  C_  ( (
( A  vH  R
)  i^i  ( B  vH  S ) )  vH  ( ( C  vH  R )  i^i  ( D  vH  S ) ) )
8777, 86sstri 3426 . . . . . . . . . 10  |-  ( ( ( A  +H  R
)  i^i  ( B  +H  S ) )  vH  ( ( C  +H  R )  i^i  ( D  +H  S ) ) )  C_  ( (
( A  vH  R
)  i^i  ( B  vH  S ) )  vH  ( ( C  vH  R )  i^i  ( D  vH  S ) ) )
8868, 87sstri 3426 . . . . . . . . 9  |-  ( ( ( A  +H  R
)  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S ) ) )  C_  ( (
( A  vH  R
)  i^i  ( B  vH  S ) )  vH  ( ( C  vH  R )  i^i  ( D  vH  S ) ) )
89 ss2in 3639 . . . . . . . . 9  |-  ( ( ( ( A  +H  C )  i^i  ( B  +H  D ) ) 
C_  ( ( A  vH  C )  i^i  ( B  vH  D
) )  /\  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S
) ) )  C_  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) )  ->  ( (
( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  C_  ( (
( A  vH  C
)  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) ) )
9067, 88, 89mp2an 670 . . . . . . . 8  |-  ( ( ( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  C_  ( (
( A  vH  C
)  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) )
9152, 57shsleji 26405 . . . . . . . . 9  |-  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) )  C_  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  vH  ( ( ( C  +H  F
)  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) )
927, 13chsleji 26493 . . . . . . . . . . . . 13  |-  ( C  +H  F )  C_  ( C  vH  F )
938, 14chsleji 26493 . . . . . . . . . . . . 13  |-  ( D  +H  G )  C_  ( D  vH  G )
94 ss2in 3639 . . . . . . . . . . . . 13  |-  ( ( ( C  +H  F
)  C_  ( C  vH  F )  /\  ( D  +H  G )  C_  ( D  vH  G ) )  ->  ( ( C  +H  F )  i^i  ( D  +H  G
) )  C_  (
( C  vH  F
)  i^i  ( D  vH  G ) ) )
9592, 93, 94mp2an 670 . . . . . . . . . . . 12  |-  ( ( C  +H  F )  i^i  ( D  +H  G ) )  C_  ( ( C  vH  F )  i^i  ( D  vH  G ) )
9642, 50shsleji 26405 . . . . . . . . . . . . 13  |-  ( ( ( C  +H  R
)  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) )  C_  ( (
( C  +H  R
)  i^i  ( D  +H  S ) )  vH  ( ( F  +H  R )  i^i  ( G  +H  S ) ) )
9713, 18chsleji 26493 . . . . . . . . . . . . . . . 16  |-  ( F  +H  R )  C_  ( F  vH  R )
9814, 19chsleji 26493 . . . . . . . . . . . . . . . 16  |-  ( G  +H  S )  C_  ( G  vH  S )
99 ss2in 3639 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  +H  R
)  C_  ( F  vH  R )  /\  ( G  +H  S )  C_  ( G  vH  S ) )  ->  ( ( F  +H  R )  i^i  ( G  +H  S
) )  C_  (
( F  vH  R
)  i^i  ( G  vH  S ) ) )
10097, 98, 99mp2an 670 . . . . . . . . . . . . . . 15  |-  ( ( F  +H  R )  i^i  ( G  +H  S ) )  C_  ( ( F  vH  R )  i^i  ( G  vH  S ) )
10128, 30shjshcli 26411 . . . . . . . . . . . . . . . . 17  |-  ( F  vH  R )  e.  SH
10229, 31shjshcli 26411 . . . . . . . . . . . . . . . . 17  |-  ( G  vH  S )  e.  SH
103101, 102shincli 26397 . . . . . . . . . . . . . . . 16  |-  ( ( F  vH  R )  i^i  ( G  vH  S ) )  e.  SH
10450, 103, 42shlej2i 26414 . . . . . . . . . . . . . . 15  |-  ( ( ( F  +H  R
)  i^i  ( G  +H  S ) )  C_  ( ( F  vH  R )  i^i  ( G  vH  S ) )  ->  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  vH  ( ( F  +H  R )  i^i  ( G  +H  S ) ) )  C_  ( (
( C  +H  R
)  i^i  ( D  +H  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )
105100, 104ax-mp 5 . . . . . . . . . . . . . 14  |-  ( ( ( C  +H  R
)  i^i  ( D  +H  S ) )  vH  ( ( F  +H  R )  i^i  ( G  +H  S ) ) )  C_  ( (
( C  +H  R
)  i^i  ( D  +H  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) )
10642, 75, 103shlej1i 26413 . . . . . . . . . . . . . . 15  |-  ( ( ( C  +H  R
)  i^i  ( D  +H  S ) )  C_  ( ( C  vH  R )  i^i  ( D  vH  S ) )  ->  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) )  C_  ( (
( C  vH  R
)  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )
10772, 106ax-mp 5 . . . . . . . . . . . . . 14  |-  ( ( ( C  +H  R
)  i^i  ( D  +H  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) )  C_  ( (
( C  vH  R
)  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) )
108105, 107sstri 3426 . . . . . . . . . . . . 13  |-  ( ( ( C  +H  R
)  i^i  ( D  +H  S ) )  vH  ( ( F  +H  R )  i^i  ( G  +H  S ) ) )  C_  ( (
( C  vH  R
)  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) )
10996, 108sstri 3426 . . . . . . . . . . . 12  |-  ( ( ( C  +H  R
)  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) )  C_  ( (
( C  vH  R
)  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) )
110 ss2in 3639 . . . . . . . . . . . 12  |-  ( ( ( ( C  +H  F )  i^i  ( D  +H  G ) ) 
C_  ( ( C  vH  F )  i^i  ( D  vH  G
) )  /\  (
( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S
) ) )  C_  ( ( ( C  vH  R )  i^i  ( D  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) )  ->  ( (
( C  +H  F
)  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  C_  ( (
( C  vH  F
)  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) ) )
11195, 109, 110mp2an 670 . . . . . . . . . . 11  |-  ( ( ( C  +H  F
)  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  C_  ( (
( C  vH  F
)  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) )
1127, 13chjcli 26492 . . . . . . . . . . . . . . 15  |-  ( C  vH  F )  e. 
CH
1138, 14chjcli 26492 . . . . . . . . . . . . . . 15  |-  ( D  vH  G )  e. 
CH
114112, 113chincli 26495 . . . . . . . . . . . . . 14  |-  ( ( C  vH  F )  i^i  ( D  vH  G ) )  e. 
CH
115114chshii 26262 . . . . . . . . . . . . 13  |-  ( ( C  vH  F )  i^i  ( D  vH  G ) )  e.  SH
11675, 103shjshcli 26411 . . . . . . . . . . . . 13  |-  ( ( ( C  vH  R
)  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) )  e.  SH
117115, 116shincli 26397 . . . . . . . . . . . 12  |-  ( ( ( C  vH  F
)  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) )  e.  SH
11857, 117, 52shlej2i 26414 . . . . . . . . . . 11  |-  ( ( ( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  C_  (
( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )  ->  (
( ( ( A  +H  F )  i^i  ( B  +H  G
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S
) ) ) )  vH  ( ( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) )  C_  (
( ( ( A  +H  F )  i^i  ( B  +H  G
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S
) ) ) )  vH  ( ( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) ) ) )
119111, 118ax-mp 5 . . . . . . . . . 10  |-  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  vH  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) )  C_  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  vH  ( ( ( C  vH  F
)  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) ) )
1202, 13chsleji 26493 . . . . . . . . . . . . 13  |-  ( A  +H  F )  C_  ( A  vH  F )
1213, 14chsleji 26493 . . . . . . . . . . . . 13  |-  ( B  +H  G )  C_  ( B  vH  G )
122 ss2in 3639 . . . . . . . . . . . . 13  |-  ( ( ( A  +H  F
)  C_  ( A  vH  F )  /\  ( B  +H  G )  C_  ( B  vH  G ) )  ->  ( ( A  +H  F )  i^i  ( B  +H  G
) )  C_  (
( A  vH  F
)  i^i  ( B  vH  G ) ) )
123120, 121, 122mp2an 670 . . . . . . . . . . . 12  |-  ( ( A  +H  F )  i^i  ( B  +H  G ) )  C_  ( ( A  vH  F )  i^i  ( B  vH  G ) )
12439, 50shsleji 26405 . . . . . . . . . . . . 13  |-  ( ( ( A  +H  R
)  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) )  C_  ( (
( A  +H  R
)  i^i  ( B  +H  S ) )  vH  ( ( F  +H  R )  i^i  ( G  +H  S ) ) )
12550, 103, 39shlej2i 26414 . . . . . . . . . . . . . . 15  |-  ( ( ( F  +H  R
)  i^i  ( G  +H  S ) )  C_  ( ( F  vH  R )  i^i  ( G  vH  S ) )  ->  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  vH  ( ( F  +H  R )  i^i  ( G  +H  S ) ) )  C_  ( (
( A  +H  R
)  i^i  ( B  +H  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )
126100, 125ax-mp 5 . . . . . . . . . . . . . 14  |-  ( ( ( A  +H  R
)  i^i  ( B  +H  S ) )  vH  ( ( F  +H  R )  i^i  ( G  +H  S ) ) )  C_  ( (
( A  +H  R
)  i^i  ( B  +H  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) )
12739, 84, 103shlej1i 26413 . . . . . . . . . . . . . . 15  |-  ( ( ( A  +H  R
)  i^i  ( B  +H  S ) )  C_  ( ( A  vH  R )  i^i  ( B  vH  S ) )  ->  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) )  C_  ( (
( A  vH  R
)  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )
12881, 127ax-mp 5 . . . . . . . . . . . . . 14  |-  ( ( ( A  +H  R
)  i^i  ( B  +H  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) )  C_  ( (
( A  vH  R
)  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) )
129126, 128sstri 3426 . . . . . . . . . . . . 13  |-  ( ( ( A  +H  R
)  i^i  ( B  +H  S ) )  vH  ( ( F  +H  R )  i^i  ( G  +H  S ) ) )  C_  ( (
( A  vH  R
)  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) )
130124, 129sstri 3426 . . . . . . . . . . . 12  |-  ( ( ( A  +H  R
)  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) )  C_  ( (
( A  vH  R
)  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) )
131 ss2in 3639 . . . . . . . . . . . 12  |-  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) ) 
C_  ( ( A  vH  F )  i^i  ( B  vH  G
) )  /\  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S
) ) )  C_  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) )  ->  ( (
( A  +H  F
)  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  C_  ( (
( A  vH  F
)  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) ) )
132123, 130, 131mp2an 670 . . . . . . . . . . 11  |-  ( ( ( A  +H  F
)  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  C_  ( (
( A  vH  F
)  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) )
1332, 13chjcli 26492 . . . . . . . . . . . . . . 15  |-  ( A  vH  F )  e. 
CH
1343, 14chjcli 26492 . . . . . . . . . . . . . . 15  |-  ( B  vH  G )  e. 
CH
135133, 134chincli 26495 . . . . . . . . . . . . . 14  |-  ( ( A  vH  F )  i^i  ( B  vH  G ) )  e. 
CH
136135chshii 26262 . . . . . . . . . . . . 13  |-  ( ( A  vH  F )  i^i  ( B  vH  G ) )  e.  SH
13784, 103shjshcli 26411 . . . . . . . . . . . . 13  |-  ( ( ( A  vH  R
)  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) )  e.  SH
138136, 137shincli 26397 . . . . . . . . . . . 12  |-  ( ( ( A  vH  F
)  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) )  e.  SH
13952, 138, 117shlej1i 26413 . . . . . . . . . . 11  |-  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  C_  (
( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )  ->  (
( ( ( A  +H  F )  i^i  ( B  +H  G
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S
) ) ) )  vH  ( ( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) ) )  C_  (
( ( ( A  vH  F )  i^i  ( B  vH  G
) )  i^i  (
( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S
) ) ) )  vH  ( ( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) ) ) )
140132, 139ax-mp 5 . . . . . . . . . 10  |-  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  vH  (
( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) ) )  C_  ( ( ( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) )  vH  ( ( ( C  vH  F
)  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) ) )
141119, 140sstri 3426 . . . . . . . . 9  |-  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  vH  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) )  C_  ( ( ( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) )  vH  ( ( ( C  vH  F
)  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) ) )
14291, 141sstri 3426 . . . . . . . 8  |-  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) )  C_  ( ( ( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) )  vH  ( ( ( C  vH  F
)  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) ) )
143 ss2in 3639 . . . . . . . 8  |-  ( ( ( ( ( A  +H  C )  i^i  ( B  +H  D
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S
) ) ) ) 
C_  ( ( ( A  vH  C )  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) )  /\  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) )  C_  ( ( ( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) )  vH  ( ( ( C  vH  F
)  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) ) ) )  -> 
( ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) 
C_  ( ( ( ( A  vH  C
)  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) )  i^i  ( ( ( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )  vH  (
( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) ) ) ) )
14490, 142, 143mp2an 670 . . . . . . 7  |-  ( ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S ) ) ) )  i^i  (
( ( ( A  +H  F )  i^i  ( B  +H  G
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S
) ) ) )  +H  ( ( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) )  C_  ( ( ( ( A  vH  C )  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) )  i^i  ( ( ( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )  vH  (
( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) ) ) )
1452, 7chjcli 26492 . . . . . . . . . . . 12  |-  ( A  vH  C )  e. 
CH
1463, 8chjcli 26492 . . . . . . . . . . . 12  |-  ( B  vH  D )  e. 
CH
147145, 146chincli 26495 . . . . . . . . . . 11  |-  ( ( A  vH  C )  i^i  ( B  vH  D ) )  e. 
CH
14884, 75shjcli 26410 . . . . . . . . . . 11  |-  ( ( ( A  vH  R
)  i^i  ( B  vH  S ) )  vH  ( ( C  vH  R )  i^i  ( D  vH  S ) ) )  e.  CH
149147, 148chincli 26495 . . . . . . . . . 10  |-  ( ( ( A  vH  C
)  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) )  e.  CH
150149chshii 26262 . . . . . . . . 9  |-  ( ( ( A  vH  C
)  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) )  e.  SH
151138, 117shjshcli 26411 . . . . . . . . 9  |-  ( ( ( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )  vH  (
( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) ) )  e.  SH
152150, 151shincli 26397 . . . . . . . 8  |-  ( ( ( ( A  vH  C )  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( C  vH  R )  i^i  ( D  vH  S ) ) ) )  i^i  (
( ( ( A  vH  F )  i^i  ( B  vH  G
) )  i^i  (
( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S
) ) ) )  vH  ( ( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) ) ) )  e.  SH
15359, 152, 26shlej2i 26414 . . . . . . 7  |-  ( ( ( ( ( A  +H  C )  i^i  ( B  +H  D
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S
) ) ) )  i^i  ( ( ( ( A  +H  F
)  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  +H  ( ( ( C  +H  F
)  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) )  C_  ( ( ( ( A  vH  C )  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) )  i^i  ( ( ( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )  vH  (
( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) ) ) )  ->  ( C  vH  ( ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) )  C_  ( C  vH  ( ( ( ( A  vH  C )  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) )  i^i  ( ( ( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )  vH  (
( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) ) ) ) ) )
154144, 153ax-mp 5 . . . . . 6  |-  ( C  vH  ( ( ( ( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) )  C_  ( C  vH  ( ( ( ( A  vH  C )  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) )  i^i  ( ( ( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )  vH  (
( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) ) ) ) )
15563, 154sstri 3426 . . . . 5  |-  ( C  +H  ( ( ( ( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) )  C_  ( C  vH  ( ( ( ( A  vH  C )  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) )  i^i  ( ( ( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )  vH  (
( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) ) ) ) )
156 sslin 3638 . . . . 5  |-  ( ( C  +H  ( ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S ) ) ) )  i^i  (
( ( ( A  +H  F )  i^i  ( B  +H  G
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S
) ) ) )  +H  ( ( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) ) ) 
C_  ( C  vH  ( ( ( ( A  vH  C )  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) )  i^i  ( ( ( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )  vH  (
( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) ) ) ) )  ->  ( A  i^i  ( C  +H  (
( ( ( A  +H  C )  i^i  ( B  +H  D
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S
) ) ) )  i^i  ( ( ( ( A  +H  F
)  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  +H  ( ( ( C  +H  F
)  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) ) ) )  C_  ( A  i^i  ( C  vH  (
( ( ( A  vH  C )  i^i  ( B  vH  D
) )  i^i  (
( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( C  vH  R )  i^i  ( D  vH  S
) ) ) )  i^i  ( ( ( ( A  vH  F
)  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) )  vH  ( ( ( C  vH  F
)  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) ) ) ) ) ) )
157155, 156ax-mp 5 . . . 4  |-  ( A  i^i  ( C  +H  ( ( ( ( A  +H  C )  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) ) )  C_  ( A  i^i  ( C  vH  ( ( ( ( A  vH  C )  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) )  i^i  ( ( ( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )  vH  (
( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) ) ) ) ) )
15826, 152shjshcli 26411 . . . . . 6  |-  ( C  vH  ( ( ( ( A  vH  C
)  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) )  i^i  ( ( ( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )  vH  (
( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) ) ) ) )  e.  SH
15924, 158shincli 26397 . . . . 5  |-  ( A  i^i  ( C  vH  ( ( ( ( A  vH  C )  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) )  i^i  ( ( ( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )  vH  (
( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) ) ) ) ) )  e.  SH
16061, 159, 25shlej2i 26414 . . . 4  |-  ( ( A  i^i  ( C  +H  ( ( ( ( A  +H  C
)  i^i  ( B  +H  D ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( C  +H  R
)  i^i  ( D  +H  S ) ) ) )  i^i  ( ( ( ( A  +H  F )  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) )  +H  (
( ( C  +H  F )  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S ) )  +H  ( ( F  +H  R )  i^i  ( G  +H  S ) ) ) ) ) ) ) )  C_  ( A  i^i  ( C  vH  ( ( ( ( A  vH  C )  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) )  i^i  ( ( ( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )  vH  (
( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) ) ) ) ) )  ->  ( B  vH  ( A  i^i  ( C  +H  (
( ( ( A  +H  C )  i^i  ( B  +H  D
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S
) ) ) )  i^i  ( ( ( ( A  +H  F
)  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  +H  ( ( ( C  +H  F
)  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) ) ) ) )  C_  ( B  vH  ( A  i^i  ( C  vH  (
( ( ( A  vH  C )  i^i  ( B  vH  D
) )  i^i  (
( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( C  vH  R )  i^i  ( D  vH  S
) ) ) )  i^i  ( ( ( ( A  vH  F
)  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) )  vH  ( ( ( C  vH  F
)  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) ) ) ) ) ) ) )
161157, 160ax-mp 5 . . 3  |-  ( B  vH  ( A  i^i  ( C  +H  (
( ( ( A  +H  C )  i^i  ( B  +H  D
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S
) ) ) )  i^i  ( ( ( ( A  +H  F
)  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  +H  ( ( ( C  +H  F
)  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) ) ) ) )  C_  ( B  vH  ( A  i^i  ( C  vH  (
( ( ( A  vH  C )  i^i  ( B  vH  D
) )  i^i  (
( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( C  vH  R )  i^i  ( D  vH  S
) ) ) )  i^i  ( ( ( ( A  vH  F
)  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) )  vH  ( ( ( C  vH  F
)  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) ) ) ) ) ) )
16262, 161sstri 3426 . 2  |-  ( B  +H  ( A  i^i  ( C  +H  (
( ( ( A  +H  C )  i^i  ( B  +H  D
) )  i^i  (
( ( A  +H  R )  i^i  ( B  +H  S ) )  +H  ( ( C  +H  R )  i^i  ( D  +H  S
) ) ) )  i^i  ( ( ( ( A  +H  F
)  i^i  ( B  +H  G ) )  i^i  ( ( ( A  +H  R )  i^i  ( B  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) )  +H  ( ( ( C  +H  F
)  i^i  ( D  +H  G ) )  i^i  ( ( ( C  +H  R )  i^i  ( D  +H  S
) )  +H  (
( F  +H  R
)  i^i  ( G  +H  S ) ) ) ) ) ) ) ) )  C_  ( B  vH  ( A  i^i  ( C  vH  (
( ( ( A  vH  C )  i^i  ( B  vH  D
) )  i^i  (
( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( C  vH  R )  i^i  ( D  vH  S
) ) ) )  i^i  ( ( ( ( A  vH  F
)  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) )  vH  ( ( ( C  vH  F
)  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S
) )  vH  (
( F  vH  R
)  i^i  ( G  vH  S ) ) ) ) ) ) ) ) )
16333, 162sstri 3426 1  |-  ( ( ( A  vH  B
)  i^i  ( C  vH  D ) )  i^i  ( ( F  vH  G )  i^i  ( R  vH  S ) ) )  C_  ( B  vH  ( A  i^i  ( C  vH  ( ( ( ( A  vH  C
)  i^i  ( B  vH  D ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S
) )  vH  (
( C  vH  R
)  i^i  ( D  vH  S ) ) ) )  i^i  ( ( ( ( A  vH  F )  i^i  ( B  vH  G ) )  i^i  ( ( ( A  vH  R )  i^i  ( B  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) )  vH  (
( ( C  vH  F )  i^i  ( D  vH  G ) )  i^i  ( ( ( C  vH  R )  i^i  ( D  vH  S ) )  vH  ( ( F  vH  R )  i^i  ( G  vH  S ) ) ) ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1399    e. wcel 1826    i^i cin 3388    C_ wss 3389   ` cfv 5496  (class class class)co 6196   CHcch 25963   _|_cort 25964    +H cph 25965    vH chj 25967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-inf2 7972  ax-cc 8728  ax-cnex 9459  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479  ax-pre-mulgt0 9480  ax-pre-sup 9481  ax-addf 9482  ax-mulf 9483  ax-hilex 26033  ax-hfvadd 26034  ax-hvcom 26035  ax-hvass 26036  ax-hv0cl 26037  ax-hvaddid 26038  ax-hfvmul 26039  ax-hvmulid 26040  ax-hvmulass 26041  ax-hvdistr1 26042  ax-hvdistr2 26043  ax-hvmul0 26044  ax-hfi 26113  ax-his1 26116  ax-his2 26117  ax-his3 26118  ax-his4 26119  ax-hcompl 26236
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-fal 1405  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-int 4200  df-iun 4245  df-iin 4246  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-se 4753  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-isom 5505  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-of 6439  df-om 6600  df-1st 6699  df-2nd 6700  df-supp 6818  df-recs 6960  df-rdg 6994  df-1o 7048  df-2o 7049  df-oadd 7052  df-omul 7053  df-er 7229  df-map 7340  df-pm 7341  df-ixp 7389  df-en 7436  df-dom 7437  df-sdom 7438  df-fin 7439  df-fsupp 7745  df-fi 7786  df-sup 7816  df-oi 7850  df-card 8233  df-acn 8236  df-cda 8461  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-sub 9720  df-neg 9721  df-div 10124  df-nn 10453  df-2 10511  df-3 10512  df-4 10513  df-5 10514  df-6 10515  df-7 10516  df-8 10517  df-9 10518  df-10 10519  df-n0 10713  df-z 10782  df-dec 10896  df-uz 11002  df-q 11102  df-rp 11140  df-xneg 11239  df-xadd 11240  df-xmul 11241  df-ioo 11454  df-ico 11456  df-icc 11457  df-fz 11594  df-fzo 11718  df-fl 11828  df-seq 12011  df-exp 12070  df-hash 12308  df-cj 12934  df-re 12935  df-im 12936  df-sqrt 13070  df-abs 13071  df-clim 13313  df-rlim 13314  df-sum 13511  df-struct 14636  df-ndx 14637  df-slot 14638  df-base 14639  df-sets 14640  df-ress 14641  df-plusg 14715  df-mulr 14716  df-starv 14717  df-sca 14718  df-vsca 14719  df-ip 14720  df-tset 14721  df-ple 14722  df-ds 14724  df-unif 14725  df-hom 14726  df-cco 14727  df-rest 14830  df-topn 14831  df-0g 14849  df-gsum 14850  df-topgen 14851  df-pt 14852  df-prds 14855  df-xrs 14909  df-qtop 14914  df-imas 14915  df-xps 14917  df-mre 14993  df-mrc 14994  df-acs 14996  df-mgm 15989  df-sgrp 16028  df-mnd 16038  df-submnd 16084  df-mulg 16177  df-cntz 16472  df-cmn 16917  df-psmet 18524  df-xmet 18525  df-met 18526  df-bl 18527  df-mopn 18528  df-fbas 18529  df-fg 18530  df-cnfld 18534  df-top 19484  df-bases 19486  df-topon 19487  df-topsp 19488  df-cld 19605  df-ntr 19606  df-cls 19607  df-nei 19685  df-cn 19814  df-cnp 19815  df-lm 19816  df-haus 19902  df-tx 20148  df-hmeo 20341  df-fil 20432  df-fm 20524  df-flim 20525  df-flf 20526  df-xms 20908  df-ms 20909  df-tms 20910  df-cfil 21779  df-cau 21780  df-cmet 21781  df-grpo 25310  df-gid 25311  df-ginv 25312  df-gdiv 25313  df-ablo 25401  df-subgo 25421  df-vc 25556  df-nv 25602  df-va 25605  df-ba 25606  df-sm 25607  df-0v 25608  df-vs 25609  df-nmcv 25610  df-ims 25611  df-dip 25728  df-ssp 25752  df-ph 25845  df-cbn 25896  df-hnorm 26002  df-hba 26003  df-hvsub 26005  df-hlim 26006  df-hcau 26007  df-sh 26241  df-ch 26256  df-oc 26287  df-ch0 26288  df-shs 26343  df-chj 26345  df-pjh 26430
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator