MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4t3e12 Structured version   Unicode version

Theorem 4t3e12 11067
Description: 4 times 3 equals 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
Assertion
Ref Expression
4t3e12  |-  ( 4  x.  3 )  = ; 1
2

Proof of Theorem 4t3e12
StepHypRef Expression
1 4nn0 10832 . 2  |-  4  e.  NN0
2 2nn0 10830 . 2  |-  2  e.  NN0
3 df-3 10613 . 2  |-  3  =  ( 2  +  1 )
4 4t2e8 10707 . 2  |-  ( 4  x.  2 )  =  8
5 8p4e12 11052 . 2  |-  ( 8  +  4 )  = ; 1
2
61, 2, 3, 4, 54t3lem 11066 1  |-  ( 4  x.  3 )  = ; 1
2
Colors of variables: wff setvar class
Syntax hints:    = wceq 1437  (class class class)co 6242   1c1 9484    x. cmul 9488   2c2 10603   3c3 10604   4c4 10605   8c8 10609  ;cdc 10995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2058  ax-ext 2402  ax-sep 4482  ax-nul 4491  ax-pow 4538  ax-pr 4596  ax-un 6534  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2274  df-mo 2275  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2552  df-ne 2595  df-nel 2596  df-ral 2713  df-rex 2714  df-reu 2715  df-rab 2717  df-v 3018  df-sbc 3236  df-csb 3332  df-dif 3375  df-un 3377  df-in 3379  df-ss 3386  df-pss 3388  df-nul 3698  df-if 3848  df-pw 3919  df-sn 3935  df-pr 3937  df-tp 3939  df-op 3941  df-uni 4156  df-iun 4237  df-br 4360  df-opab 4419  df-mpt 4420  df-tr 4455  df-eprel 4700  df-id 4704  df-po 4710  df-so 4711  df-fr 4748  df-we 4750  df-xp 4795  df-rel 4796  df-cnv 4797  df-co 4798  df-dm 4799  df-rn 4800  df-res 4801  df-ima 4802  df-pred 5335  df-ord 5381  df-on 5382  df-lim 5383  df-suc 5384  df-iota 5501  df-fun 5539  df-fn 5540  df-f 5541  df-f1 5542  df-fo 5543  df-f1o 5544  df-fv 5545  df-ov 6245  df-om 6644  df-wrecs 6976  df-recs 7038  df-rdg 7076  df-er 7311  df-en 7518  df-dom 7519  df-sdom 7520  df-pnf 9621  df-mnf 9622  df-ltxr 9624  df-nn 10554  df-2 10612  df-3 10613  df-4 10614  df-5 10615  df-6 10616  df-7 10617  df-8 10618  df-9 10619  df-10 10620  df-n0 10814  df-dec 10996
This theorem is referenced by:  4t4e16  11068  13prm  15023  43prm  15029  139prm  15031  163prm  15032  317prm  15033  631prm  15034  1259lem4  15041  1259prm  15043  2503lem1  15044  2503lem2  15045  4001lem2  15049  4001lem4  15051  quartlem1  23718
  Copyright terms: Public domain W3C validator