MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem4 Structured version   Unicode version

Theorem 4sqlem4 14839
Description: Lemma for 4sq 14857. We can express the four-square property more compactly in terms of gaussian integers, because the norms of gaussian integers are exactly sums of two squares. (Contributed by Mario Carneiro, 14-Jul-2014.)
Hypothesis
Ref Expression
4sq.1  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
Assertion
Ref Expression
4sqlem4  |-  ( A  e.  S  <->  E. u  e.  ZZ[_i]  E. v  e.  ZZ[_i]  A  =  ( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  v
) ^ 2 ) ) )
Distinct variable groups:    w, n, x, y, z    v, n, A, u    S, n, u, v    u, A
Allowed substitution hints:    A( x, y, z, w)    S( x, y, z, w)

Proof of Theorem 4sqlem4
Dummy variables  a 
b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4sq.1 . . . 4  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
214sqlem2 14836 . . 3  |-  ( A  e.  S  <->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )
3 gzreim 14826 . . . . . . . 8  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( a  +  ( _i  x.  b ) )  e.  ZZ[_i] )
43adantr 466 . . . . . . 7  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( a  +  ( _i  x.  b ) )  e.  ZZ[_i] )
5 gzreim 14826 . . . . . . . 8  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( c  +  ( _i  x.  d ) )  e.  ZZ[_i] )
65adantl 467 . . . . . . 7  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( c  +  ( _i  x.  d ) )  e.  ZZ[_i] )
7 gzcn 14819 . . . . . . . . . . . 12  |-  ( ( a  +  ( _i  x.  b ) )  e.  ZZ[_i]  ->  ( a  +  ( _i  x.  b ) )  e.  CC )
83, 7syl 17 . . . . . . . . . . 11  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( a  +  ( _i  x.  b ) )  e.  CC )
98absvalsq2d 13448 . . . . . . . . . 10  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( abs `  (
a  +  ( _i  x.  b ) ) ) ^ 2 )  =  ( ( ( Re `  ( a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( Im `  ( a  +  ( _i  x.  b ) ) ) ^ 2 ) ) )
10 zre 10892 . . . . . . . . . . . . 13  |-  ( a  e.  ZZ  ->  a  e.  RR )
11 zre 10892 . . . . . . . . . . . . 13  |-  ( b  e.  ZZ  ->  b  e.  RR )
12 crre 13121 . . . . . . . . . . . . 13  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( Re `  (
a  +  ( _i  x.  b ) ) )  =  a )
1310, 11, 12syl2an 479 . . . . . . . . . . . 12  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( Re `  (
a  +  ( _i  x.  b ) ) )  =  a )
1413oveq1d 6264 . . . . . . . . . . 11  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( Re `  ( a  +  ( _i  x.  b ) ) ) ^ 2 )  =  ( a ^ 2 ) )
15 crim 13122 . . . . . . . . . . . . 13  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( Im `  (
a  +  ( _i  x.  b ) ) )  =  b )
1610, 11, 15syl2an 479 . . . . . . . . . . . 12  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( Im `  (
a  +  ( _i  x.  b ) ) )  =  b )
1716oveq1d 6264 . . . . . . . . . . 11  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( Im `  ( a  +  ( _i  x.  b ) ) ) ^ 2 )  =  ( b ^ 2 ) )
1814, 17oveq12d 6267 . . . . . . . . . 10  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( ( Re
`  ( a  +  ( _i  x.  b
) ) ) ^
2 )  +  ( ( Im `  (
a  +  ( _i  x.  b ) ) ) ^ 2 ) )  =  ( ( a ^ 2 )  +  ( b ^
2 ) ) )
199, 18eqtrd 2462 . . . . . . . . 9  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( abs `  (
a  +  ( _i  x.  b ) ) ) ^ 2 )  =  ( ( a ^ 2 )  +  ( b ^ 2 ) ) )
20 gzcn 14819 . . . . . . . . . . . 12  |-  ( ( c  +  ( _i  x.  d ) )  e.  ZZ[_i]  ->  ( c  +  ( _i  x.  d ) )  e.  CC )
215, 20syl 17 . . . . . . . . . . 11  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( c  +  ( _i  x.  d ) )  e.  CC )
2221absvalsq2d 13448 . . . . . . . . . 10  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( ( abs `  (
c  +  ( _i  x.  d ) ) ) ^ 2 )  =  ( ( ( Re `  ( c  +  ( _i  x.  d ) ) ) ^ 2 )  +  ( ( Im `  ( c  +  ( _i  x.  d ) ) ) ^ 2 ) ) )
23 zre 10892 . . . . . . . . . . . . 13  |-  ( c  e.  ZZ  ->  c  e.  RR )
24 zre 10892 . . . . . . . . . . . . 13  |-  ( d  e.  ZZ  ->  d  e.  RR )
25 crre 13121 . . . . . . . . . . . . 13  |-  ( ( c  e.  RR  /\  d  e.  RR )  ->  ( Re `  (
c  +  ( _i  x.  d ) ) )  =  c )
2623, 24, 25syl2an 479 . . . . . . . . . . . 12  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( Re `  (
c  +  ( _i  x.  d ) ) )  =  c )
2726oveq1d 6264 . . . . . . . . . . 11  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( ( Re `  ( c  +  ( _i  x.  d ) ) ) ^ 2 )  =  ( c ^ 2 ) )
28 crim 13122 . . . . . . . . . . . . 13  |-  ( ( c  e.  RR  /\  d  e.  RR )  ->  ( Im `  (
c  +  ( _i  x.  d ) ) )  =  d )
2923, 24, 28syl2an 479 . . . . . . . . . . . 12  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( Im `  (
c  +  ( _i  x.  d ) ) )  =  d )
3029oveq1d 6264 . . . . . . . . . . 11  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( ( Im `  ( c  +  ( _i  x.  d ) ) ) ^ 2 )  =  ( d ^ 2 ) )
3127, 30oveq12d 6267 . . . . . . . . . 10  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( ( ( Re
`  ( c  +  ( _i  x.  d
) ) ) ^
2 )  +  ( ( Im `  (
c  +  ( _i  x.  d ) ) ) ^ 2 ) )  =  ( ( c ^ 2 )  +  ( d ^
2 ) ) )
3222, 31eqtrd 2462 . . . . . . . . 9  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( ( abs `  (
c  +  ( _i  x.  d ) ) ) ^ 2 )  =  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )
3319, 32oveqan12d 6268 . . . . . . . 8  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( ( ( abs `  ( a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  ( c  +  ( _i  x.  d ) ) ) ^ 2 ) )  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) ) )
3433eqcomd 2434 . . . . . . 7  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  (
a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  ( c  +  ( _i  x.  d ) ) ) ^ 2 ) ) )
35 fveq2 5825 . . . . . . . . . . 11  |-  ( u  =  ( a  +  ( _i  x.  b
) )  ->  ( abs `  u )  =  ( abs `  (
a  +  ( _i  x.  b ) ) ) )
3635oveq1d 6264 . . . . . . . . . 10  |-  ( u  =  ( a  +  ( _i  x.  b
) )  ->  (
( abs `  u
) ^ 2 )  =  ( ( abs `  ( a  +  ( _i  x.  b ) ) ) ^ 2 ) )
3736oveq1d 6264 . . . . . . . . 9  |-  ( u  =  ( a  +  ( _i  x.  b
) )  ->  (
( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  =  ( ( ( abs `  (
a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) )
3837eqeq2d 2438 . . . . . . . 8  |-  ( u  =  ( a  +  ( _i  x.  b
) )  ->  (
( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  <->  ( (
( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  ( a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) ) )
39 fveq2 5825 . . . . . . . . . . 11  |-  ( v  =  ( c  +  ( _i  x.  d
) )  ->  ( abs `  v )  =  ( abs `  (
c  +  ( _i  x.  d ) ) ) )
4039oveq1d 6264 . . . . . . . . . 10  |-  ( v  =  ( c  +  ( _i  x.  d
) )  ->  (
( abs `  v
) ^ 2 )  =  ( ( abs `  ( c  +  ( _i  x.  d ) ) ) ^ 2 ) )
4140oveq2d 6265 . . . . . . . . 9  |-  ( v  =  ( c  +  ( _i  x.  d
) )  ->  (
( ( abs `  (
a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  =  ( ( ( abs `  (
a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  ( c  +  ( _i  x.  d ) ) ) ^ 2 ) ) )
4241eqeq2d 2438 . . . . . . . 8  |-  ( v  =  ( c  +  ( _i  x.  d
) )  ->  (
( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  (
a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  <->  ( (
( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  ( a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  ( c  +  ( _i  x.  d ) ) ) ^ 2 ) ) ) )
4338, 42rspc2ev 3136 . . . . . . 7  |-  ( ( ( a  +  ( _i  x.  b ) )  e.  ZZ[_i]  /\  (
c  +  ( _i  x.  d ) )  e.  ZZ[_i]  /\  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  ( a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  ( c  +  ( _i  x.  d ) ) ) ^ 2 ) ) )  ->  E. u  e.  ZZ[_i]  E. v  e.  ZZ[_i]  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  =  ( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  v
) ^ 2 ) ) )
444, 6, 34, 43syl3anc 1264 . . . . . 6  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  ->  E. u  e.  ZZ[_i]  E. v  e.  ZZ[_i]  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) )
45 eqeq1 2432 . . . . . . 7  |-  ( A  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) )  ->  ( A  =  ( (
( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  <->  ( (
( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) ) )
46452rexbidv 2885 . . . . . 6  |-  ( A  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) )  ->  ( E. u  e.  ZZ[_i]  E. v  e.  ZZ[_i]  A  =  ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  <->  E. u  e.  ZZ[_i]  E. v  e.  ZZ[_i]  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  =  ( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  v
) ^ 2 ) ) ) )
4744, 46syl5ibrcom 225 . . . . 5  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  E. u  e.  ZZ[_i]  E. v  e.  ZZ[_i]  A  =  ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) ) )
4847rexlimdvva 2863 . . . 4  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  E. u  e.  ZZ[_i]  E. v  e.  ZZ[_i]  A  =  ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) ) )
4948rexlimivv 2861 . . 3  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  E. u  e.  ZZ[_i]  E. v  e.  ZZ[_i]  A  =  ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) )
502, 49sylbi 198 . 2  |-  ( A  e.  S  ->  E. u  e.  ZZ[_i]  E. v  e.  ZZ[_i]  A  =  ( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  v
) ^ 2 ) ) )
5114sqlem4a 14838 . . . 4  |-  ( ( u  e.  ZZ[_i]  /\  v  e.  ZZ[_i]
)  ->  ( (
( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  e.  S
)
52 eleq1a 2501 . . . 4  |-  ( ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  e.  S  ->  ( A  =  ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  ->  A  e.  S ) )
5351, 52syl 17 . . 3  |-  ( ( u  e.  ZZ[_i]  /\  v  e.  ZZ[_i]
)  ->  ( A  =  ( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  v
) ^ 2 ) )  ->  A  e.  S ) )
5453rexlimivv 2861 . 2  |-  ( E. u  e.  ZZ[_i]  E. v  e.  ZZ[_i]  A  =  ( (
( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  ->  A  e.  S )
5550, 54impbii 190 1  |-  ( A  e.  S  <->  E. u  e.  ZZ[_i]  E. v  e.  ZZ[_i]  A  =  ( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  v
) ^ 2 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1872   {cab 2414   E.wrex 2715   ` cfv 5544  (class class class)co 6249   CCcc 9488   RRcr 9489   _ici 9492    + caddc 9493    x. cmul 9495   2c2 10610   ZZcz 10888   ^cexp 12222   Recre 13104   Imcim 13105   abscabs 13241   ZZ[_i]cgz 14816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567  ax-pre-sup 9568
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-nel 2602  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-pss 3395  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-tp 3946  df-op 3948  df-uni 4163  df-iun 4244  df-br 4367  df-opab 4426  df-mpt 4427  df-tr 4462  df-eprel 4707  df-id 4711  df-po 4717  df-so 4718  df-fr 4755  df-we 4757  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-pred 5342  df-ord 5388  df-on 5389  df-lim 5390  df-suc 5391  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-riota 6211  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-om 6651  df-2nd 6752  df-wrecs 6983  df-recs 7045  df-rdg 7083  df-er 7318  df-en 7525  df-dom 7526  df-sdom 7527  df-sup 7909  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9813  df-neg 9814  df-div 10221  df-nn 10561  df-2 10619  df-3 10620  df-n0 10821  df-z 10889  df-uz 11111  df-rp 11254  df-seq 12164  df-exp 12223  df-cj 13106  df-re 13107  df-im 13108  df-sqrt 13242  df-abs 13243  df-gz 14817
This theorem is referenced by:  mul4sq  14841
  Copyright terms: Public domain W3C validator