MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem4 Unicode version

Theorem 4sqlem4 13275
Description: Lemma for 4sq 13287. We can express the four-square property more compactly in terms of gaussian integers, because the norms of gaussian integers are exactly sums of two squares. (Contributed by Mario Carneiro, 14-Jul-2014.)
Hypothesis
Ref Expression
4sq.1  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
Assertion
Ref Expression
4sqlem4  |-  ( A  e.  S  <->  E. u  e.  ZZ [ _i ]  E. v  e.  ZZ [ _i ]  A  =  ( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) )
Distinct variable groups:    w, n, x, y, z    v, n, A, u    S, n, u, v    u, A
Allowed substitution hints:    A( x, y, z, w)    S( x, y, z, w)

Proof of Theorem 4sqlem4
Dummy variables  a 
b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4sq.1 . . . 4  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
214sqlem2 13272 . . 3  |-  ( A  e.  S  <->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )
3 gzreim 13262 . . . . . . . 8  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( a  +  ( _i  x.  b ) )  e.  ZZ [
_i ] )
43adantr 452 . . . . . . 7  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( a  +  ( _i  x.  b ) )  e.  ZZ [
_i ] )
5 gzreim 13262 . . . . . . . 8  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( c  +  ( _i  x.  d ) )  e.  ZZ [
_i ] )
65adantl 453 . . . . . . 7  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( c  +  ( _i  x.  d ) )  e.  ZZ [
_i ] )
7 gzcn 13255 . . . . . . . . . . . 12  |-  ( ( a  +  ( _i  x.  b ) )  e.  ZZ [ _i ]  ->  ( a  +  ( _i  x.  b
) )  e.  CC )
83, 7syl 16 . . . . . . . . . . 11  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( a  +  ( _i  x.  b ) )  e.  CC )
98absvalsq2d 12200 . . . . . . . . . 10  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( abs `  (
a  +  ( _i  x.  b ) ) ) ^ 2 )  =  ( ( ( Re `  ( a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( Im `  ( a  +  ( _i  x.  b ) ) ) ^ 2 ) ) )
10 zre 10242 . . . . . . . . . . . . 13  |-  ( a  e.  ZZ  ->  a  e.  RR )
11 zre 10242 . . . . . . . . . . . . 13  |-  ( b  e.  ZZ  ->  b  e.  RR )
12 crre 11874 . . . . . . . . . . . . 13  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( Re `  (
a  +  ( _i  x.  b ) ) )  =  a )
1310, 11, 12syl2an 464 . . . . . . . . . . . 12  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( Re `  (
a  +  ( _i  x.  b ) ) )  =  a )
1413oveq1d 6055 . . . . . . . . . . 11  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( Re `  ( a  +  ( _i  x.  b ) ) ) ^ 2 )  =  ( a ^ 2 ) )
15 crim 11875 . . . . . . . . . . . . 13  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( Im `  (
a  +  ( _i  x.  b ) ) )  =  b )
1610, 11, 15syl2an 464 . . . . . . . . . . . 12  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( Im `  (
a  +  ( _i  x.  b ) ) )  =  b )
1716oveq1d 6055 . . . . . . . . . . 11  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( Im `  ( a  +  ( _i  x.  b ) ) ) ^ 2 )  =  ( b ^ 2 ) )
1814, 17oveq12d 6058 . . . . . . . . . 10  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( ( Re
`  ( a  +  ( _i  x.  b
) ) ) ^
2 )  +  ( ( Im `  (
a  +  ( _i  x.  b ) ) ) ^ 2 ) )  =  ( ( a ^ 2 )  +  ( b ^
2 ) ) )
199, 18eqtrd 2436 . . . . . . . . 9  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( abs `  (
a  +  ( _i  x.  b ) ) ) ^ 2 )  =  ( ( a ^ 2 )  +  ( b ^ 2 ) ) )
20 gzcn 13255 . . . . . . . . . . . 12  |-  ( ( c  +  ( _i  x.  d ) )  e.  ZZ [ _i ]  ->  ( c  +  ( _i  x.  d
) )  e.  CC )
215, 20syl 16 . . . . . . . . . . 11  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( c  +  ( _i  x.  d ) )  e.  CC )
2221absvalsq2d 12200 . . . . . . . . . 10  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( ( abs `  (
c  +  ( _i  x.  d ) ) ) ^ 2 )  =  ( ( ( Re `  ( c  +  ( _i  x.  d ) ) ) ^ 2 )  +  ( ( Im `  ( c  +  ( _i  x.  d ) ) ) ^ 2 ) ) )
23 zre 10242 . . . . . . . . . . . . 13  |-  ( c  e.  ZZ  ->  c  e.  RR )
24 zre 10242 . . . . . . . . . . . . 13  |-  ( d  e.  ZZ  ->  d  e.  RR )
25 crre 11874 . . . . . . . . . . . . 13  |-  ( ( c  e.  RR  /\  d  e.  RR )  ->  ( Re `  (
c  +  ( _i  x.  d ) ) )  =  c )
2623, 24, 25syl2an 464 . . . . . . . . . . . 12  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( Re `  (
c  +  ( _i  x.  d ) ) )  =  c )
2726oveq1d 6055 . . . . . . . . . . 11  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( ( Re `  ( c  +  ( _i  x.  d ) ) ) ^ 2 )  =  ( c ^ 2 ) )
28 crim 11875 . . . . . . . . . . . . 13  |-  ( ( c  e.  RR  /\  d  e.  RR )  ->  ( Im `  (
c  +  ( _i  x.  d ) ) )  =  d )
2923, 24, 28syl2an 464 . . . . . . . . . . . 12  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( Im `  (
c  +  ( _i  x.  d ) ) )  =  d )
3029oveq1d 6055 . . . . . . . . . . 11  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( ( Im `  ( c  +  ( _i  x.  d ) ) ) ^ 2 )  =  ( d ^ 2 ) )
3127, 30oveq12d 6058 . . . . . . . . . 10  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( ( ( Re
`  ( c  +  ( _i  x.  d
) ) ) ^
2 )  +  ( ( Im `  (
c  +  ( _i  x.  d ) ) ) ^ 2 ) )  =  ( ( c ^ 2 )  +  ( d ^
2 ) ) )
3222, 31eqtrd 2436 . . . . . . . . 9  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  ( ( abs `  (
c  +  ( _i  x.  d ) ) ) ^ 2 )  =  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )
3319, 32oveqan12d 6059 . . . . . . . 8  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( ( ( abs `  ( a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  ( c  +  ( _i  x.  d ) ) ) ^ 2 ) )  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) ) )
3433eqcomd 2409 . . . . . . 7  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  (
a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  ( c  +  ( _i  x.  d ) ) ) ^ 2 ) ) )
35 fveq2 5687 . . . . . . . . . . 11  |-  ( u  =  ( a  +  ( _i  x.  b
) )  ->  ( abs `  u )  =  ( abs `  (
a  +  ( _i  x.  b ) ) ) )
3635oveq1d 6055 . . . . . . . . . 10  |-  ( u  =  ( a  +  ( _i  x.  b
) )  ->  (
( abs `  u
) ^ 2 )  =  ( ( abs `  ( a  +  ( _i  x.  b ) ) ) ^ 2 ) )
3736oveq1d 6055 . . . . . . . . 9  |-  ( u  =  ( a  +  ( _i  x.  b
) )  ->  (
( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  =  ( ( ( abs `  (
a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) )
3837eqeq2d 2415 . . . . . . . 8  |-  ( u  =  ( a  +  ( _i  x.  b
) )  ->  (
( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  <->  ( (
( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  ( a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) ) )
39 fveq2 5687 . . . . . . . . . . 11  |-  ( v  =  ( c  +  ( _i  x.  d
) )  ->  ( abs `  v )  =  ( abs `  (
c  +  ( _i  x.  d ) ) ) )
4039oveq1d 6055 . . . . . . . . . 10  |-  ( v  =  ( c  +  ( _i  x.  d
) )  ->  (
( abs `  v
) ^ 2 )  =  ( ( abs `  ( c  +  ( _i  x.  d ) ) ) ^ 2 ) )
4140oveq2d 6056 . . . . . . . . 9  |-  ( v  =  ( c  +  ( _i  x.  d
) )  ->  (
( ( abs `  (
a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  =  ( ( ( abs `  (
a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  ( c  +  ( _i  x.  d ) ) ) ^ 2 ) ) )
4241eqeq2d 2415 . . . . . . . 8  |-  ( v  =  ( c  +  ( _i  x.  d
) )  ->  (
( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  (
a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  <->  ( (
( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  ( a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  ( c  +  ( _i  x.  d ) ) ) ^ 2 ) ) ) )
4338, 42rspc2ev 3020 . . . . . . 7  |-  ( ( ( a  +  ( _i  x.  b ) )  e.  ZZ [
_i ]  /\  (
c  +  ( _i  x.  d ) )  e.  ZZ [ _i ]  /\  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  (
a  +  ( _i  x.  b ) ) ) ^ 2 )  +  ( ( abs `  ( c  +  ( _i  x.  d ) ) ) ^ 2 ) ) )  ->  E. u  e.  ZZ [ _i ]  E. v  e.  ZZ [ _i ] 
( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) )
444, 6, 34, 43syl3anc 1184 . . . . . 6  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  ->  E. u  e.  ZZ [ _i ]  E. v  e.  ZZ [ _i ] 
( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) )
45 eqeq1 2410 . . . . . . 7  |-  ( A  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) )  ->  ( A  =  ( (
( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  <->  ( (
( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) ) )
46452rexbidv 2709 . . . . . 6  |-  ( A  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) )  ->  ( E. u  e.  ZZ [ _i ]  E. v  e.  ZZ [ _i ]  A  =  ( (
( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  <->  E. u  e.  ZZ [ _i ]  E. v  e.  ZZ [ _i ]  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  =  ( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) ) )
4744, 46syl5ibrcom 214 . . . . 5  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  E. u  e.  ZZ [ _i ]  E. v  e.  ZZ [ _i ]  A  =  ( (
( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) ) )
4847rexlimdvva 2797 . . . 4  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  E. u  e.  ZZ [ _i ]  E. v  e.  ZZ [ _i ]  A  =  ( (
( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) ) )
4948rexlimivv 2795 . . 3  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  E. u  e.  ZZ [ _i ]  E. v  e.  ZZ [ _i ]  A  =  ( (
( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) )
502, 49sylbi 188 . 2  |-  ( A  e.  S  ->  E. u  e.  ZZ [ _i ]  E. v  e.  ZZ [ _i ]  A  =  ( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) )
5114sqlem4a 13274 . . . 4  |-  ( ( u  e.  ZZ [
_i ]  /\  v  e.  ZZ [ _i ]
)  ->  ( (
( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  e.  S
)
52 eleq1a 2473 . . . 4  |-  ( ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  e.  S  ->  ( A  =  ( ( ( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  ->  A  e.  S ) )
5351, 52syl 16 . . 3  |-  ( ( u  e.  ZZ [
_i ]  /\  v  e.  ZZ [ _i ]
)  ->  ( A  =  ( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  v
) ^ 2 ) )  ->  A  e.  S ) )
5453rexlimivv 2795 . 2  |-  ( E. u  e.  ZZ [
_i ]  E. v  e.  ZZ [ _i ]  A  =  ( (
( abs `  u
) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) )  ->  A  e.  S )
5550, 54impbii 181 1  |-  ( A  e.  S  <->  E. u  e.  ZZ [ _i ]  E. v  e.  ZZ [ _i ]  A  =  ( ( ( abs `  u ) ^ 2 )  +  ( ( abs `  v ) ^ 2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   {cab 2390   E.wrex 2667   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   _ici 8948    + caddc 8949    x. cmul 8951   2c2 10005   ZZcz 10238   ^cexp 11337   Recre 11857   Imcim 11858   abscabs 11994   ZZ [ _i ]cgz 13252
This theorem is referenced by:  mul4sq  13277
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-seq 11279  df-exp 11338  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-gz 13253
  Copyright terms: Public domain W3C validator