MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem18 Structured version   Visualization version   Unicode version

Theorem 4sqlem18 14991
Description: Lemma for 4sq 14993. Inductive step, odd prime case. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
4sq.1  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
4sq.2  |-  ( ph  ->  N  e.  NN )
4sq.3  |-  ( ph  ->  P  =  ( ( 2  x.  N )  +  1 ) )
4sq.4  |-  ( ph  ->  P  e.  Prime )
4sq.5  |-  ( ph  ->  ( 0 ... (
2  x.  N ) )  C_  S )
4sq.6  |-  T  =  { i  e.  NN  |  ( i  x.  P )  e.  S }
4sq.7  |-  M  = inf ( T ,  RR ,  <  )
Assertion
Ref Expression
4sqlem18  |-  ( ph  ->  P  e.  S )
Distinct variable groups:    w, n, x, y, z    i, n, M    n, N    P, i, n    ph, n    S, i, n
Allowed substitution hints:    ph( x, y, z, w, i)    P( x, y, z, w)    S( x, y, z, w)    T( x, y, z, w, i, n)    M( x, y, z, w)    N( x, y, z, w, i)

Proof of Theorem 4sqlem18
Dummy variables  a 
b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4sq.4 . . . . 5  |-  ( ph  ->  P  e.  Prime )
2 prmnn 14704 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  NN )
31, 2syl 17 . . . 4  |-  ( ph  ->  P  e.  NN )
43nncnd 10647 . . 3  |-  ( ph  ->  P  e.  CC )
54mulid2d 9679 . 2  |-  ( ph  ->  ( 1  x.  P
)  =  P )
6 4sq.7 . . . . . . . . . . . 12  |-  M  = inf ( T ,  RR ,  <  )
7 4sq.6 . . . . . . . . . . . . . . 15  |-  T  =  { i  e.  NN  |  ( i  x.  P )  e.  S }
8 ssrab2 3500 . . . . . . . . . . . . . . 15  |-  { i  e.  NN  |  ( i  x.  P )  e.  S }  C_  NN
97, 8eqsstri 3448 . . . . . . . . . . . . . 14  |-  T  C_  NN
10 nnuz 11218 . . . . . . . . . . . . . 14  |-  NN  =  ( ZZ>= `  1 )
119, 10sseqtri 3450 . . . . . . . . . . . . 13  |-  T  C_  ( ZZ>= `  1 )
12 4sq.1 . . . . . . . . . . . . . . 15  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
13 4sq.2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  N  e.  NN )
14 4sq.3 . . . . . . . . . . . . . . 15  |-  ( ph  ->  P  =  ( ( 2  x.  N )  +  1 ) )
15 4sq.5 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 0 ... (
2  x.  N ) )  C_  S )
1612, 13, 14, 1, 15, 7, 64sqlem13 14986 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( T  =/=  (/)  /\  M  <  P ) )
1716simpld 466 . . . . . . . . . . . . 13  |-  ( ph  ->  T  =/=  (/) )
18 infssuzcl 11268 . . . . . . . . . . . . 13  |-  ( ( T  C_  ( ZZ>= ` 
1 )  /\  T  =/=  (/) )  -> inf ( T ,  RR ,  <  )  e.  T )
1911, 17, 18sylancr 676 . . . . . . . . . . . 12  |-  ( ph  -> inf ( T ,  RR ,  <  )  e.  T
)
206, 19syl5eqel 2553 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  T )
21 oveq1 6315 . . . . . . . . . . . . 13  |-  ( i  =  M  ->  (
i  x.  P )  =  ( M  x.  P ) )
2221eleq1d 2533 . . . . . . . . . . . 12  |-  ( i  =  M  ->  (
( i  x.  P
)  e.  S  <->  ( M  x.  P )  e.  S
) )
2322, 7elrab2 3186 . . . . . . . . . . 11  |-  ( M  e.  T  <->  ( M  e.  NN  /\  ( M  x.  P )  e.  S ) )
2420, 23sylib 201 . . . . . . . . . 10  |-  ( ph  ->  ( M  e.  NN  /\  ( M  x.  P
)  e.  S ) )
2524simprd 470 . . . . . . . . 9  |-  ( ph  ->  ( M  x.  P
)  e.  S )
26124sqlem2 14972 . . . . . . . . 9  |-  ( ( M  x.  P )  e.  S  <->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  ( M  x.  P )  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )
2725, 26sylib 201 . . . . . . . 8  |-  ( ph  ->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  ( M  x.  P )  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )
2827adantr 472 . . . . . . 7  |-  ( (
ph  /\  M  e.  ( ZZ>= `  2 )
)  ->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  ( M  x.  P )  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )
29 simp1l 1054 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  ph )
3029, 13syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  N  e.  NN )
3129, 14syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  P  =  ( ( 2  x.  N )  +  1 ) )
3229, 1syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  P  e.  Prime )
3329, 15syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  (
0 ... ( 2  x.  N ) )  C_  S )
34 simp1r 1055 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  M  e.  ( ZZ>= `  2 )
)
35 simp2ll 1097 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  a  e.  ZZ )
36 simp2lr 1098 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  b  e.  ZZ )
37 simp2rl 1099 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  c  e.  ZZ )
38 simp2rr 1100 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  d  e.  ZZ )
39 eqid 2471 . . . . . . . . . . . . 13  |-  ( ( ( a  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  =  ( ( ( a  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
40 eqid 2471 . . . . . . . . . . . . 13  |-  ( ( ( b  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  =  ( ( ( b  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
41 eqid 2471 . . . . . . . . . . . . 13  |-  ( ( ( c  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  =  ( ( ( c  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
42 eqid 2471 . . . . . . . . . . . . 13  |-  ( ( ( d  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  =  ( ( ( d  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
43 eqid 2471 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( a  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) ) ^
2 )  +  ( ( ( ( b  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) ) ^ 2 ) )  +  ( ( ( ( ( c  +  ( M  /  2
) )  mod  M
)  -  ( M  /  2 ) ) ^ 2 )  +  ( ( ( ( d  +  ( M  /  2 ) )  mod  M )  -  ( M  /  2
) ) ^ 2 ) ) )  /  M )  =  ( ( ( ( ( ( ( a  +  ( M  /  2
) )  mod  M
)  -  ( M  /  2 ) ) ^ 2 )  +  ( ( ( ( b  +  ( M  /  2 ) )  mod  M )  -  ( M  /  2
) ) ^ 2 ) )  +  ( ( ( ( ( c  +  ( M  /  2 ) )  mod  M )  -  ( M  /  2
) ) ^ 2 )  +  ( ( ( ( d  +  ( M  /  2
) )  mod  M
)  -  ( M  /  2 ) ) ^ 2 ) ) )  /  M )
44 simp3 1032 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) ) )
4512, 30, 31, 32, 33, 7, 6, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 444sqlem17 14990 . . . . . . . . . . . 12  |-  -.  (
( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )
4645pm2.21i 136 . . . . . . . . . . 11  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( M  x.  P )  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) )  ->  -.  M  e.  ( ZZ>= ` 
2 ) )
47463expia 1233 . . . . . . . . . 10  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( (
a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) ) )  ->  (
( M  x.  P
)  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  ->  -.  M  e.  ( ZZ>=
`  2 ) ) )
4847anassrs 660 . . . . . . . . 9  |-  ( ( ( ( ph  /\  M  e.  ( ZZ>= ` 
2 ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( ( M  x.  P )  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  -.  M  e.  ( ZZ>= `  2 )
) )
4948rexlimdvva 2878 . . . . . . . 8  |-  ( ( ( ph  /\  M  e.  ( ZZ>= `  2 )
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( E. c  e.  ZZ  E. d  e.  ZZ  ( M  x.  P )  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  -.  M  e.  ( ZZ>= `  2 )
) )
5049rexlimdvva 2878 . . . . . . 7  |-  ( (
ph  /\  M  e.  ( ZZ>= `  2 )
)  ->  ( E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  ( M  x.  P )  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  -.  M  e.  ( ZZ>= `  2 )
) )
5128, 50mpd 15 . . . . . 6  |-  ( (
ph  /\  M  e.  ( ZZ>= `  2 )
)  ->  -.  M  e.  ( ZZ>= `  2 )
)
5251pm2.01da 449 . . . . 5  |-  ( ph  ->  -.  M  e.  (
ZZ>= `  2 ) )
5324simpld 466 . . . . . . 7  |-  ( ph  ->  M  e.  NN )
54 elnn1uz2 11258 . . . . . . 7  |-  ( M  e.  NN  <->  ( M  =  1  \/  M  e.  ( ZZ>= `  2 )
) )
5553, 54sylib 201 . . . . . 6  |-  ( ph  ->  ( M  =  1  \/  M  e.  (
ZZ>= `  2 ) ) )
5655ord 384 . . . . 5  |-  ( ph  ->  ( -.  M  =  1  ->  M  e.  ( ZZ>= `  2 )
) )
5752, 56mt3d 130 . . . 4  |-  ( ph  ->  M  =  1 )
5857, 20eqeltrrd 2550 . . 3  |-  ( ph  ->  1  e.  T )
59 oveq1 6315 . . . . . 6  |-  ( i  =  1  ->  (
i  x.  P )  =  ( 1  x.  P ) )
6059eleq1d 2533 . . . . 5  |-  ( i  =  1  ->  (
( i  x.  P
)  e.  S  <->  ( 1  x.  P )  e.  S ) )
6160, 7elrab2 3186 . . . 4  |-  ( 1  e.  T  <->  ( 1  e.  NN  /\  (
1  x.  P )  e.  S ) )
6261simprbi 471 . . 3  |-  ( 1  e.  T  ->  (
1  x.  P )  e.  S )
6358, 62syl 17 . 2  |-  ( ph  ->  ( 1  x.  P
)  e.  S )
645, 63eqeltrrd 2550 1  |-  ( ph  ->  P  e.  S )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 375    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904   {cab 2457    =/= wne 2641   E.wrex 2757   {crab 2760    C_ wss 3390   (/)c0 3722   class class class wbr 4395   ` cfv 5589  (class class class)co 6308  infcinf 7973   RRcr 9556   0cc0 9557   1c1 9558    + caddc 9560    x. cmul 9562    < clt 9693    - cmin 9880    / cdiv 10291   NNcn 10631   2c2 10681   ZZcz 10961   ZZ>=cuz 11182   ...cfz 11810    mod cmo 12129   ^cexp 12310   Primecprime 14701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-sup 7974  df-inf 7975  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-n0 10894  df-z 10962  df-uz 11183  df-rp 11326  df-fz 11811  df-fl 12061  df-mod 12130  df-seq 12252  df-exp 12311  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-dvds 14383  df-gcd 14548  df-prm 14702  df-gz 14953
This theorem is referenced by:  4sqlem19  14992
  Copyright terms: Public domain W3C validator