MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem16 Structured version   Unicode version

Theorem 4sqlem16 14480
Description: Lemma for 4sq 14484. (Contributed by Mario Carneiro, 16-Jul-2014.)
Hypotheses
Ref Expression
4sq.1  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
4sq.2  |-  ( ph  ->  N  e.  NN )
4sq.3  |-  ( ph  ->  P  =  ( ( 2  x.  N )  +  1 ) )
4sq.4  |-  ( ph  ->  P  e.  Prime )
4sq.5  |-  ( ph  ->  ( 0 ... (
2  x.  N ) )  C_  S )
4sq.6  |-  T  =  { i  e.  NN  |  ( i  x.  P )  e.  S }
4sq.7  |-  M  =  sup ( T ,  RR ,  `'  <  )
4sq.m  |-  ( ph  ->  M  e.  ( ZZ>= ` 
2 ) )
4sq.a  |-  ( ph  ->  A  e.  ZZ )
4sq.b  |-  ( ph  ->  B  e.  ZZ )
4sq.c  |-  ( ph  ->  C  e.  ZZ )
4sq.d  |-  ( ph  ->  D  e.  ZZ )
4sq.e  |-  E  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
4sq.f  |-  F  =  ( ( ( B  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
4sq.g  |-  G  =  ( ( ( C  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
4sq.h  |-  H  =  ( ( ( D  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
4sq.r  |-  R  =  ( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  +  ( ( G ^
2 )  +  ( H ^ 2 ) ) )  /  M
)
4sq.p  |-  ( ph  ->  ( M  x.  P
)  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) )
Assertion
Ref Expression
4sqlem16  |-  ( ph  ->  ( R  <_  M  /\  ( ( R  =  0  \/  R  =  M )  ->  ( M ^ 2 )  ||  ( M  x.  P
) ) ) )
Distinct variable groups:    w, n, x, y, z    B, n   
n, E    n, G    n, H    A, n    C, n    D, n    n, F    i, n, M    n, N    P, i, n    ph, n    S, i, n    R, i
Allowed substitution hints:    ph( x, y, z, w, i)    A( x, y, z, w, i)    B( x, y, z, w, i)    C( x, y, z, w, i)    D( x, y, z, w, i)    P( x, y, z, w)    R( x, y, z, w, n)    S( x, y, z, w)    T( x, y, z, w, i, n)    E( x, y, z, w, i)    F( x, y, z, w, i)    G( x, y, z, w, i)    H( x, y, z, w, i)    M( x, y, z, w)    N( x, y, z, w, i)

Proof of Theorem 4sqlem16
StepHypRef Expression
1 4sq.r . . 3  |-  R  =  ( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  +  ( ( G ^
2 )  +  ( H ^ 2 ) ) )  /  M
)
2 4sq.a . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  ZZ )
3 4sq.m . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  ( ZZ>= ` 
2 ) )
4 eluz2nn 11039 . . . . . . . . . . . . 13  |-  ( M  e.  ( ZZ>= `  2
)  ->  M  e.  NN )
53, 4syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  NN )
6 4sq.e . . . . . . . . . . . 12  |-  E  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
72, 5, 64sqlem5 14462 . . . . . . . . . . 11  |-  ( ph  ->  ( E  e.  ZZ  /\  ( ( A  -  E )  /  M
)  e.  ZZ ) )
87simpld 457 . . . . . . . . . 10  |-  ( ph  ->  E  e.  ZZ )
9 zsqcl 12141 . . . . . . . . . 10  |-  ( E  e.  ZZ  ->  ( E ^ 2 )  e.  ZZ )
108, 9syl 16 . . . . . . . . 9  |-  ( ph  ->  ( E ^ 2 )  e.  ZZ )
1110zred 10884 . . . . . . . 8  |-  ( ph  ->  ( E ^ 2 )  e.  RR )
12 4sq.b . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  ZZ )
13 4sq.f . . . . . . . . . . . 12  |-  F  =  ( ( ( B  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
1412, 5, 134sqlem5 14462 . . . . . . . . . . 11  |-  ( ph  ->  ( F  e.  ZZ  /\  ( ( B  -  F )  /  M
)  e.  ZZ ) )
1514simpld 457 . . . . . . . . . 10  |-  ( ph  ->  F  e.  ZZ )
16 zsqcl 12141 . . . . . . . . . 10  |-  ( F  e.  ZZ  ->  ( F ^ 2 )  e.  ZZ )
1715, 16syl 16 . . . . . . . . 9  |-  ( ph  ->  ( F ^ 2 )  e.  ZZ )
1817zred 10884 . . . . . . . 8  |-  ( ph  ->  ( F ^ 2 )  e.  RR )
1911, 18readdcld 9534 . . . . . . 7  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  RR )
20 4sq.c . . . . . . . . . . . 12  |-  ( ph  ->  C  e.  ZZ )
21 4sq.g . . . . . . . . . . . 12  |-  G  =  ( ( ( C  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
2220, 5, 214sqlem5 14462 . . . . . . . . . . 11  |-  ( ph  ->  ( G  e.  ZZ  /\  ( ( C  -  G )  /  M
)  e.  ZZ ) )
2322simpld 457 . . . . . . . . . 10  |-  ( ph  ->  G  e.  ZZ )
24 zsqcl 12141 . . . . . . . . . 10  |-  ( G  e.  ZZ  ->  ( G ^ 2 )  e.  ZZ )
2523, 24syl 16 . . . . . . . . 9  |-  ( ph  ->  ( G ^ 2 )  e.  ZZ )
2625zred 10884 . . . . . . . 8  |-  ( ph  ->  ( G ^ 2 )  e.  RR )
27 4sq.d . . . . . . . . . . . 12  |-  ( ph  ->  D  e.  ZZ )
28 4sq.h . . . . . . . . . . . 12  |-  H  =  ( ( ( D  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
2927, 5, 284sqlem5 14462 . . . . . . . . . . 11  |-  ( ph  ->  ( H  e.  ZZ  /\  ( ( D  -  H )  /  M
)  e.  ZZ ) )
3029simpld 457 . . . . . . . . . 10  |-  ( ph  ->  H  e.  ZZ )
31 zsqcl 12141 . . . . . . . . . 10  |-  ( H  e.  ZZ  ->  ( H ^ 2 )  e.  ZZ )
3230, 31syl 16 . . . . . . . . 9  |-  ( ph  ->  ( H ^ 2 )  e.  ZZ )
3332zred 10884 . . . . . . . 8  |-  ( ph  ->  ( H ^ 2 )  e.  RR )
3426, 33readdcld 9534 . . . . . . 7  |-  ( ph  ->  ( ( G ^
2 )  +  ( H ^ 2 ) )  e.  RR )
355nnred 10467 . . . . . . . . 9  |-  ( ph  ->  M  e.  RR )
3635resqcld 12238 . . . . . . . 8  |-  ( ph  ->  ( M ^ 2 )  e.  RR )
3736rehalfcld 10702 . . . . . . 7  |-  ( ph  ->  ( ( M ^
2 )  /  2
)  e.  RR )
3837rehalfcld 10702 . . . . . . . . 9  |-  ( ph  ->  ( ( ( M ^ 2 )  / 
2 )  /  2
)  e.  RR )
392, 5, 64sqlem7 14464 . . . . . . . . 9  |-  ( ph  ->  ( E ^ 2 )  <_  ( (
( M ^ 2 )  /  2 )  /  2 ) )
4012, 5, 134sqlem7 14464 . . . . . . . . 9  |-  ( ph  ->  ( F ^ 2 )  <_  ( (
( M ^ 2 )  /  2 )  /  2 ) )
4111, 18, 38, 38, 39, 40le2addd 10087 . . . . . . . 8  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  <_  ( (
( ( M ^
2 )  /  2
)  /  2 )  +  ( ( ( M ^ 2 )  /  2 )  / 
2 ) ) )
4237recnd 9533 . . . . . . . . 9  |-  ( ph  ->  ( ( M ^
2 )  /  2
)  e.  CC )
43422halvesd 10701 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  +  ( ( ( M ^
2 )  /  2
)  /  2 ) )  =  ( ( M ^ 2 )  /  2 ) )
4441, 43breqtrd 4391 . . . . . . 7  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  <_  ( ( M ^ 2 )  / 
2 ) )
4520, 5, 214sqlem7 14464 . . . . . . . . 9  |-  ( ph  ->  ( G ^ 2 )  <_  ( (
( M ^ 2 )  /  2 )  /  2 ) )
4627, 5, 284sqlem7 14464 . . . . . . . . 9  |-  ( ph  ->  ( H ^ 2 )  <_  ( (
( M ^ 2 )  /  2 )  /  2 ) )
4726, 33, 38, 38, 45, 46le2addd 10087 . . . . . . . 8  |-  ( ph  ->  ( ( G ^
2 )  +  ( H ^ 2 ) )  <_  ( (
( ( M ^
2 )  /  2
)  /  2 )  +  ( ( ( M ^ 2 )  /  2 )  / 
2 ) ) )
4847, 43breqtrd 4391 . . . . . . 7  |-  ( ph  ->  ( ( G ^
2 )  +  ( H ^ 2 ) )  <_  ( ( M ^ 2 )  / 
2 ) )
4919, 34, 37, 37, 44, 48le2addd 10087 . . . . . 6  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  <_  ( (
( M ^ 2 )  /  2 )  +  ( ( M ^ 2 )  / 
2 ) ) )
5036recnd 9533 . . . . . . 7  |-  ( ph  ->  ( M ^ 2 )  e.  CC )
51502halvesd 10701 . . . . . 6  |-  ( ph  ->  ( ( ( M ^ 2 )  / 
2 )  +  ( ( M ^ 2 )  /  2 ) )  =  ( M ^ 2 ) )
5249, 51breqtrd 4391 . . . . 5  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  <_  ( M ^ 2 ) )
5335recnd 9533 . . . . . 6  |-  ( ph  ->  M  e.  CC )
5453sqvald 12209 . . . . 5  |-  ( ph  ->  ( M ^ 2 )  =  ( M  x.  M ) )
5552, 54breqtrd 4391 . . . 4  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  <_  ( M  x.  M ) )
5619, 34readdcld 9534 . . . . 5  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  e.  RR )
575nngt0d 10496 . . . . 5  |-  ( ph  ->  0  <  M )
58 ledivmul 10335 . . . . 5  |-  ( ( ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  e.  RR  /\  M  e.  RR  /\  ( M  e.  RR  /\  0  <  M ) )  -> 
( ( ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  /  M )  <_  M  <->  ( ( ( E ^
2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^
2 ) ) )  <_  ( M  x.  M ) ) )
5956, 35, 35, 57, 58syl112anc 1230 . . . 4  |-  ( ph  ->  ( ( ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  /  M )  <_  M  <->  ( ( ( E ^
2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^
2 ) ) )  <_  ( M  x.  M ) ) )
6055, 59mpbird 232 . . 3  |-  ( ph  ->  ( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  +  ( ( G ^
2 )  +  ( H ^ 2 ) ) )  /  M
)  <_  M )
611, 60syl5eqbr 4400 . 2  |-  ( ph  ->  R  <_  M )
62 simpr 459 . . . . . . . . . . . . 13  |-  ( (
ph  /\  R  = 
0 )  ->  R  =  0 )
631, 62syl5eqr 2437 . . . . . . . . . . . 12  |-  ( (
ph  /\  R  = 
0 )  ->  (
( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  /  M )  =  0 )
6456recnd 9533 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  e.  CC )
655nnne0d 10497 . . . . . . . . . . . . . . 15  |-  ( ph  ->  M  =/=  0 )
6664, 53, 65diveq0ad 10247 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  /  M )  =  0  <-> 
( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  =  0 ) )
67 zsqcl2 12148 . . . . . . . . . . . . . . . . . 18  |-  ( E  e.  ZZ  ->  ( E ^ 2 )  e. 
NN0 )
688, 67syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( E ^ 2 )  e.  NN0 )
69 zsqcl2 12148 . . . . . . . . . . . . . . . . . 18  |-  ( F  e.  ZZ  ->  ( F ^ 2 )  e. 
NN0 )
7015, 69syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( F ^ 2 )  e.  NN0 )
7168, 70nn0addcld 10773 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  NN0 )
7271nn0ge0d 10772 . . . . . . . . . . . . . . 15  |-  ( ph  ->  0  <_  ( ( E ^ 2 )  +  ( F ^ 2 ) ) )
73 zsqcl2 12148 . . . . . . . . . . . . . . . . . 18  |-  ( G  e.  ZZ  ->  ( G ^ 2 )  e. 
NN0 )
7423, 73syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( G ^ 2 )  e.  NN0 )
75 zsqcl2 12148 . . . . . . . . . . . . . . . . . 18  |-  ( H  e.  ZZ  ->  ( H ^ 2 )  e. 
NN0 )
7630, 75syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( H ^ 2 )  e.  NN0 )
7774, 76nn0addcld 10773 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( G ^
2 )  +  ( H ^ 2 ) )  e.  NN0 )
7877nn0ge0d 10772 . . . . . . . . . . . . . . 15  |-  ( ph  ->  0  <_  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )
79 add20 9982 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  e.  RR  /\  0  <_  ( ( E ^ 2 )  +  ( F ^ 2 ) ) )  /\  ( ( ( G ^ 2 )  +  ( H ^ 2 ) )  e.  RR  /\  0  <_  ( ( G ^ 2 )  +  ( H ^ 2 ) ) ) )  ->  ( ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  =  0  <->  ( ( ( E ^ 2 )  +  ( F ^
2 ) )  =  0  /\  ( ( G ^ 2 )  +  ( H ^
2 ) )  =  0 ) ) )
8019, 72, 34, 78, 79syl22anc 1227 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  +  ( ( G ^
2 )  +  ( H ^ 2 ) ) )  =  0  <-> 
( ( ( E ^ 2 )  +  ( F ^ 2 ) )  =  0  /\  ( ( G ^ 2 )  +  ( H ^ 2 ) )  =  0 ) ) )
8166, 80bitrd 253 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  /  M )  =  0  <-> 
( ( ( E ^ 2 )  +  ( F ^ 2 ) )  =  0  /\  ( ( G ^ 2 )  +  ( H ^ 2 ) )  =  0 ) ) )
8281biimpa 482 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
( ( E ^
2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^
2 ) ) )  /  M )  =  0 )  ->  (
( ( E ^
2 )  +  ( F ^ 2 ) )  =  0  /\  ( ( G ^
2 )  +  ( H ^ 2 ) )  =  0 ) )
8363, 82syldan 468 . . . . . . . . . . 11  |-  ( (
ph  /\  R  = 
0 )  ->  (
( ( E ^
2 )  +  ( F ^ 2 ) )  =  0  /\  ( ( G ^
2 )  +  ( H ^ 2 ) )  =  0 ) )
8483simpld 457 . . . . . . . . . 10  |-  ( (
ph  /\  R  = 
0 )  ->  (
( E ^ 2 )  +  ( F ^ 2 ) )  =  0 )
8568nn0ge0d 10772 . . . . . . . . . . . 12  |-  ( ph  ->  0  <_  ( E ^ 2 ) )
8670nn0ge0d 10772 . . . . . . . . . . . 12  |-  ( ph  ->  0  <_  ( F ^ 2 ) )
87 add20 9982 . . . . . . . . . . . 12  |-  ( ( ( ( E ^
2 )  e.  RR  /\  0  <_  ( E ^ 2 ) )  /\  ( ( F ^ 2 )  e.  RR  /\  0  <_ 
( F ^ 2 ) ) )  -> 
( ( ( E ^ 2 )  +  ( F ^ 2 ) )  =  0  <-> 
( ( E ^
2 )  =  0  /\  ( F ^
2 )  =  0 ) ) )
8811, 85, 18, 86, 87syl22anc 1227 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  =  0  <-> 
( ( E ^
2 )  =  0  /\  ( F ^
2 )  =  0 ) ) )
8988biimpa 482 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( E ^ 2 )  +  ( F ^ 2 ) )  =  0 )  ->  ( ( E ^ 2 )  =  0  /\  ( F ^ 2 )  =  0 ) )
9084, 89syldan 468 . . . . . . . . 9  |-  ( (
ph  /\  R  = 
0 )  ->  (
( E ^ 2 )  =  0  /\  ( F ^ 2 )  =  0 ) )
9190simpld 457 . . . . . . . 8  |-  ( (
ph  /\  R  = 
0 )  ->  ( E ^ 2 )  =  0 )
922, 5, 6, 914sqlem9 14466 . . . . . . 7  |-  ( (
ph  /\  R  = 
0 )  ->  ( M ^ 2 )  ||  ( A ^ 2 ) )
9390simprd 461 . . . . . . . 8  |-  ( (
ph  /\  R  = 
0 )  ->  ( F ^ 2 )  =  0 )
9412, 5, 13, 934sqlem9 14466 . . . . . . 7  |-  ( (
ph  /\  R  = 
0 )  ->  ( M ^ 2 )  ||  ( B ^ 2 ) )
955nnsqcld 12232 . . . . . . . . . 10  |-  ( ph  ->  ( M ^ 2 )  e.  NN )
9695nnzd 10883 . . . . . . . . 9  |-  ( ph  ->  ( M ^ 2 )  e.  ZZ )
97 zsqcl 12141 . . . . . . . . . 10  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e.  ZZ )
982, 97syl 16 . . . . . . . . 9  |-  ( ph  ->  ( A ^ 2 )  e.  ZZ )
99 zsqcl 12141 . . . . . . . . . 10  |-  ( B  e.  ZZ  ->  ( B ^ 2 )  e.  ZZ )
10012, 99syl 16 . . . . . . . . 9  |-  ( ph  ->  ( B ^ 2 )  e.  ZZ )
101 dvds2add 14017 . . . . . . . . 9  |-  ( ( ( M ^ 2 )  e.  ZZ  /\  ( A ^ 2 )  e.  ZZ  /\  ( B ^ 2 )  e.  ZZ )  ->  (
( ( M ^
2 )  ||  ( A ^ 2 )  /\  ( M ^ 2 ) 
||  ( B ^
2 ) )  -> 
( M ^ 2 )  ||  ( ( A ^ 2 )  +  ( B ^
2 ) ) ) )
10296, 98, 100, 101syl3anc 1226 . . . . . . . 8  |-  ( ph  ->  ( ( ( M ^ 2 )  ||  ( A ^ 2 )  /\  ( M ^
2 )  ||  ( B ^ 2 ) )  ->  ( M ^
2 )  ||  (
( A ^ 2 )  +  ( B ^ 2 ) ) ) )
103102adantr 463 . . . . . . 7  |-  ( (
ph  /\  R  = 
0 )  ->  (
( ( M ^
2 )  ||  ( A ^ 2 )  /\  ( M ^ 2 ) 
||  ( B ^
2 ) )  -> 
( M ^ 2 )  ||  ( ( A ^ 2 )  +  ( B ^
2 ) ) ) )
10492, 94, 103mp2and 677 . . . . . 6  |-  ( (
ph  /\  R  = 
0 )  ->  ( M ^ 2 )  ||  ( ( A ^
2 )  +  ( B ^ 2 ) ) )
10583simprd 461 . . . . . . . . . 10  |-  ( (
ph  /\  R  = 
0 )  ->  (
( G ^ 2 )  +  ( H ^ 2 ) )  =  0 )
10674nn0ge0d 10772 . . . . . . . . . . . 12  |-  ( ph  ->  0  <_  ( G ^ 2 ) )
10776nn0ge0d 10772 . . . . . . . . . . . 12  |-  ( ph  ->  0  <_  ( H ^ 2 ) )
108 add20 9982 . . . . . . . . . . . 12  |-  ( ( ( ( G ^
2 )  e.  RR  /\  0  <_  ( G ^ 2 ) )  /\  ( ( H ^ 2 )  e.  RR  /\  0  <_ 
( H ^ 2 ) ) )  -> 
( ( ( G ^ 2 )  +  ( H ^ 2 ) )  =  0  <-> 
( ( G ^
2 )  =  0  /\  ( H ^
2 )  =  0 ) ) )
10926, 106, 33, 107, 108syl22anc 1227 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( G ^ 2 )  +  ( H ^ 2 ) )  =  0  <-> 
( ( G ^
2 )  =  0  /\  ( H ^
2 )  =  0 ) ) )
110109biimpa 482 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( G ^ 2 )  +  ( H ^ 2 ) )  =  0 )  ->  ( ( G ^ 2 )  =  0  /\  ( H ^ 2 )  =  0 ) )
111105, 110syldan 468 . . . . . . . . 9  |-  ( (
ph  /\  R  = 
0 )  ->  (
( G ^ 2 )  =  0  /\  ( H ^ 2 )  =  0 ) )
112111simpld 457 . . . . . . . 8  |-  ( (
ph  /\  R  = 
0 )  ->  ( G ^ 2 )  =  0 )
11320, 5, 21, 1124sqlem9 14466 . . . . . . 7  |-  ( (
ph  /\  R  = 
0 )  ->  ( M ^ 2 )  ||  ( C ^ 2 ) )
114111simprd 461 . . . . . . . 8  |-  ( (
ph  /\  R  = 
0 )  ->  ( H ^ 2 )  =  0 )
11527, 5, 28, 1144sqlem9 14466 . . . . . . 7  |-  ( (
ph  /\  R  = 
0 )  ->  ( M ^ 2 )  ||  ( D ^ 2 ) )
116 zsqcl 12141 . . . . . . . . . 10  |-  ( C  e.  ZZ  ->  ( C ^ 2 )  e.  ZZ )
11720, 116syl 16 . . . . . . . . 9  |-  ( ph  ->  ( C ^ 2 )  e.  ZZ )
118 zsqcl 12141 . . . . . . . . . 10  |-  ( D  e.  ZZ  ->  ( D ^ 2 )  e.  ZZ )
11927, 118syl 16 . . . . . . . . 9  |-  ( ph  ->  ( D ^ 2 )  e.  ZZ )
120 dvds2add 14017 . . . . . . . . 9  |-  ( ( ( M ^ 2 )  e.  ZZ  /\  ( C ^ 2 )  e.  ZZ  /\  ( D ^ 2 )  e.  ZZ )  ->  (
( ( M ^
2 )  ||  ( C ^ 2 )  /\  ( M ^ 2 ) 
||  ( D ^
2 ) )  -> 
( M ^ 2 )  ||  ( ( C ^ 2 )  +  ( D ^
2 ) ) ) )
12196, 117, 119, 120syl3anc 1226 . . . . . . . 8  |-  ( ph  ->  ( ( ( M ^ 2 )  ||  ( C ^ 2 )  /\  ( M ^
2 )  ||  ( D ^ 2 ) )  ->  ( M ^
2 )  ||  (
( C ^ 2 )  +  ( D ^ 2 ) ) ) )
122121adantr 463 . . . . . . 7  |-  ( (
ph  /\  R  = 
0 )  ->  (
( ( M ^
2 )  ||  ( C ^ 2 )  /\  ( M ^ 2 ) 
||  ( D ^
2 ) )  -> 
( M ^ 2 )  ||  ( ( C ^ 2 )  +  ( D ^
2 ) ) ) )
123113, 115, 122mp2and 677 . . . . . 6  |-  ( (
ph  /\  R  = 
0 )  ->  ( M ^ 2 )  ||  ( ( C ^
2 )  +  ( D ^ 2 ) ) )
12498, 100zaddcld 10888 . . . . . . . 8  |-  ( ph  ->  ( ( A ^
2 )  +  ( B ^ 2 ) )  e.  ZZ )
125117, 119zaddcld 10888 . . . . . . . 8  |-  ( ph  ->  ( ( C ^
2 )  +  ( D ^ 2 ) )  e.  ZZ )
126 dvds2add 14017 . . . . . . . 8  |-  ( ( ( M ^ 2 )  e.  ZZ  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  e.  ZZ  /\  ( ( C ^
2 )  +  ( D ^ 2 ) )  e.  ZZ )  ->  ( ( ( M ^ 2 ) 
||  ( ( A ^ 2 )  +  ( B ^ 2 ) )  /\  ( M ^ 2 )  ||  ( ( C ^
2 )  +  ( D ^ 2 ) ) )  ->  ( M ^ 2 )  ||  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) ) )
12796, 124, 125, 126syl3anc 1226 . . . . . . 7  |-  ( ph  ->  ( ( ( M ^ 2 )  ||  ( ( A ^
2 )  +  ( B ^ 2 ) )  /\  ( M ^ 2 )  ||  ( ( C ^
2 )  +  ( D ^ 2 ) ) )  ->  ( M ^ 2 )  ||  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) ) )
128127adantr 463 . . . . . 6  |-  ( (
ph  /\  R  = 
0 )  ->  (
( ( M ^
2 )  ||  (
( A ^ 2 )  +  ( B ^ 2 ) )  /\  ( M ^
2 )  ||  (
( C ^ 2 )  +  ( D ^ 2 ) ) )  ->  ( M ^ 2 )  ||  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) ) )
129104, 123, 128mp2and 677 . . . . 5  |-  ( (
ph  /\  R  = 
0 )  ->  ( M ^ 2 )  ||  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) )
130 4sq.1 . . . . . . . . . . . . . 14  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
131 4sq.2 . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  NN )
132 4sq.3 . . . . . . . . . . . . . 14  |-  ( ph  ->  P  =  ( ( 2  x.  N )  +  1 ) )
133 4sq.4 . . . . . . . . . . . . . 14  |-  ( ph  ->  P  e.  Prime )
134 4sq.5 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 0 ... (
2  x.  N ) )  C_  S )
135 4sq.6 . . . . . . . . . . . . . 14  |-  T  =  { i  e.  NN  |  ( i  x.  P )  e.  S }
136 4sq.7 . . . . . . . . . . . . . 14  |-  M  =  sup ( T ,  RR ,  `'  <  )
137 4sq.p . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M  x.  P
)  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) )
138130, 131, 132, 133, 134, 135, 136, 3, 2, 12, 20, 27, 6, 13, 21, 28, 1, 1374sqlem15 14479 . . . . . . . . . . . . 13  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( E ^ 2 ) )  =  0  /\  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( F ^ 2 ) )  =  0 )  /\  ( ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( G ^ 2 ) )  =  0  /\  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( H ^ 2 ) )  =  0 ) ) )
139138simpld 457 . . . . . . . . . . . 12  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( E ^ 2 ) )  =  0  /\  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( F ^ 2 ) )  =  0 ) )
140139simpld 457 . . . . . . . . . . 11  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( E ^ 2 ) )  =  0 )
1412, 5, 6, 1404sqlem10 14467 . . . . . . . . . 10  |-  ( (
ph  /\  R  =  M )  ->  ( M ^ 2 )  ||  ( ( A ^
2 )  -  (
( ( M ^
2 )  /  2
)  /  2 ) ) )
142139simprd 461 . . . . . . . . . . 11  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( F ^ 2 ) )  =  0 )
14312, 5, 13, 1424sqlem10 14467 . . . . . . . . . 10  |-  ( (
ph  /\  R  =  M )  ->  ( M ^ 2 )  ||  ( ( B ^
2 )  -  (
( ( M ^
2 )  /  2
)  /  2 ) ) )
14496adantr 463 . . . . . . . . . . 11  |-  ( (
ph  /\  R  =  M )  ->  ( M ^ 2 )  e.  ZZ )
14598adantr 463 . . . . . . . . . . . 12  |-  ( (
ph  /\  R  =  M )  ->  ( A ^ 2 )  e.  ZZ )
14638recnd 9533 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( M ^ 2 )  / 
2 )  /  2
)  e.  CC )
14710zcnd 10885 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( E ^ 2 )  e.  CC )
148146, 147subeq0ad 9854 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( E ^ 2 ) )  =  0  <->  (
( ( M ^
2 )  /  2
)  /  2 )  =  ( E ^
2 ) ) )
149148adantr 463 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( E ^ 2 ) )  =  0  <->  ( (
( M ^ 2 )  /  2 )  /  2 )  =  ( E ^ 2 ) ) )
150140, 149mpbid 210 . . . . . . . . . . . . 13  |-  ( (
ph  /\  R  =  M )  ->  (
( ( M ^
2 )  /  2
)  /  2 )  =  ( E ^
2 ) )
15110adantr 463 . . . . . . . . . . . . 13  |-  ( (
ph  /\  R  =  M )  ->  ( E ^ 2 )  e.  ZZ )
152150, 151eqeltrd 2470 . . . . . . . . . . . 12  |-  ( (
ph  /\  R  =  M )  ->  (
( ( M ^
2 )  /  2
)  /  2 )  e.  ZZ )
153145, 152zsubcld 10889 . . . . . . . . . . 11  |-  ( (
ph  /\  R  =  M )  ->  (
( A ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  /  2 ) )  e.  ZZ )
154100adantr 463 . . . . . . . . . . . 12  |-  ( (
ph  /\  R  =  M )  ->  ( B ^ 2 )  e.  ZZ )
155154, 152zsubcld 10889 . . . . . . . . . . 11  |-  ( (
ph  /\  R  =  M )  ->  (
( B ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  /  2 ) )  e.  ZZ )
156 dvds2add 14017 . . . . . . . . . . 11  |-  ( ( ( M ^ 2 )  e.  ZZ  /\  ( ( A ^
2 )  -  (
( ( M ^
2 )  /  2
)  /  2 ) )  e.  ZZ  /\  ( ( B ^
2 )  -  (
( ( M ^
2 )  /  2
)  /  2 ) )  e.  ZZ )  ->  ( ( ( M ^ 2 ) 
||  ( ( A ^ 2 )  -  ( ( ( M ^ 2 )  / 
2 )  /  2
) )  /\  ( M ^ 2 )  ||  ( ( B ^
2 )  -  (
( ( M ^
2 )  /  2
)  /  2 ) ) )  ->  ( M ^ 2 )  ||  ( ( ( A ^ 2 )  -  ( ( ( M ^ 2 )  / 
2 )  /  2
) )  +  ( ( B ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  /  2 ) ) ) ) )
157144, 153, 155, 156syl3anc 1226 . . . . . . . . . 10  |-  ( (
ph  /\  R  =  M )  ->  (
( ( M ^
2 )  ||  (
( A ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  /  2 ) )  /\  ( M ^
2 )  ||  (
( B ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  /  2 ) ) )  ->  ( M ^ 2 )  ||  ( ( ( A ^ 2 )  -  ( ( ( M ^ 2 )  / 
2 )  /  2
) )  +  ( ( B ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  /  2 ) ) ) ) )
158141, 143, 157mp2and 677 . . . . . . . . 9  |-  ( (
ph  /\  R  =  M )  ->  ( M ^ 2 )  ||  ( ( ( A ^ 2 )  -  ( ( ( M ^ 2 )  / 
2 )  /  2
) )  +  ( ( B ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  /  2 ) ) ) )
15998zcnd 10885 . . . . . . . . . . . 12  |-  ( ph  ->  ( A ^ 2 )  e.  CC )
160100zcnd 10885 . . . . . . . . . . . 12  |-  ( ph  ->  ( B ^ 2 )  e.  CC )
161159, 160, 146, 146addsub4d 9891 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  -  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  +  ( ( ( M ^ 2 )  /  2 )  /  2 ) ) )  =  ( ( ( A ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  /  2 ) )  +  ( ( B ^ 2 )  -  ( ( ( M ^ 2 )  / 
2 )  /  2
) ) ) )
16243oveq2d 6212 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  -  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  +  ( ( ( M ^ 2 )  /  2 )  /  2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  -  ( ( M ^ 2 )  / 
2 ) ) )
163161, 162eqtr3d 2425 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( A ^ 2 )  -  ( ( ( M ^ 2 )  / 
2 )  /  2
) )  +  ( ( B ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  /  2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  -  ( ( M ^ 2 )  / 
2 ) ) )
164163adantr 463 . . . . . . . . 9  |-  ( (
ph  /\  R  =  M )  ->  (
( ( A ^
2 )  -  (
( ( M ^
2 )  /  2
)  /  2 ) )  +  ( ( B ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  / 
2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  -  ( ( M ^
2 )  /  2
) ) )
165158, 164breqtrd 4391 . . . . . . . 8  |-  ( (
ph  /\  R  =  M )  ->  ( M ^ 2 )  ||  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  -  (
( M ^ 2 )  /  2 ) ) )
166138simprd 461 . . . . . . . . . . . 12  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( G ^ 2 ) )  =  0  /\  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( H ^ 2 ) )  =  0 ) )
167166simpld 457 . . . . . . . . . . 11  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( G ^ 2 ) )  =  0 )
16820, 5, 21, 1674sqlem10 14467 . . . . . . . . . 10  |-  ( (
ph  /\  R  =  M )  ->  ( M ^ 2 )  ||  ( ( C ^
2 )  -  (
( ( M ^
2 )  /  2
)  /  2 ) ) )
169166simprd 461 . . . . . . . . . . 11  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( H ^ 2 ) )  =  0 )
17027, 5, 28, 1694sqlem10 14467 . . . . . . . . . 10  |-  ( (
ph  /\  R  =  M )  ->  ( M ^ 2 )  ||  ( ( D ^
2 )  -  (
( ( M ^
2 )  /  2
)  /  2 ) ) )
171117adantr 463 . . . . . . . . . . . 12  |-  ( (
ph  /\  R  =  M )  ->  ( C ^ 2 )  e.  ZZ )
172171, 152zsubcld 10889 . . . . . . . . . . 11  |-  ( (
ph  /\  R  =  M )  ->  (
( C ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  /  2 ) )  e.  ZZ )
173119adantr 463 . . . . . . . . . . . 12  |-  ( (
ph  /\  R  =  M )  ->  ( D ^ 2 )  e.  ZZ )
174173, 152zsubcld 10889 . . . . . . . . . . 11  |-  ( (
ph  /\  R  =  M )  ->  (
( D ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  /  2 ) )  e.  ZZ )
175 dvds2add 14017 . . . . . . . . . . 11  |-  ( ( ( M ^ 2 )  e.  ZZ  /\  ( ( C ^
2 )  -  (
( ( M ^
2 )  /  2
)  /  2 ) )  e.  ZZ  /\  ( ( D ^
2 )  -  (
( ( M ^
2 )  /  2
)  /  2 ) )  e.  ZZ )  ->  ( ( ( M ^ 2 ) 
||  ( ( C ^ 2 )  -  ( ( ( M ^ 2 )  / 
2 )  /  2
) )  /\  ( M ^ 2 )  ||  ( ( D ^
2 )  -  (
( ( M ^
2 )  /  2
)  /  2 ) ) )  ->  ( M ^ 2 )  ||  ( ( ( C ^ 2 )  -  ( ( ( M ^ 2 )  / 
2 )  /  2
) )  +  ( ( D ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  /  2 ) ) ) ) )
176144, 172, 174, 175syl3anc 1226 . . . . . . . . . 10  |-  ( (
ph  /\  R  =  M )  ->  (
( ( M ^
2 )  ||  (
( C ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  /  2 ) )  /\  ( M ^
2 )  ||  (
( D ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  /  2 ) ) )  ->  ( M ^ 2 )  ||  ( ( ( C ^ 2 )  -  ( ( ( M ^ 2 )  / 
2 )  /  2
) )  +  ( ( D ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  /  2 ) ) ) ) )
177168, 170, 176mp2and 677 . . . . . . . . 9  |-  ( (
ph  /\  R  =  M )  ->  ( M ^ 2 )  ||  ( ( ( C ^ 2 )  -  ( ( ( M ^ 2 )  / 
2 )  /  2
) )  +  ( ( D ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  /  2 ) ) ) )
178117zcnd 10885 . . . . . . . . . . . 12  |-  ( ph  ->  ( C ^ 2 )  e.  CC )
179119zcnd 10885 . . . . . . . . . . . 12  |-  ( ph  ->  ( D ^ 2 )  e.  CC )
180178, 179, 146, 146addsub4d 9891 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( C ^ 2 )  +  ( D ^ 2 ) )  -  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  +  ( ( ( M ^ 2 )  /  2 )  /  2 ) ) )  =  ( ( ( C ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  /  2 ) )  +  ( ( D ^ 2 )  -  ( ( ( M ^ 2 )  / 
2 )  /  2
) ) ) )
18143oveq2d 6212 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( C ^ 2 )  +  ( D ^ 2 ) )  -  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  +  ( ( ( M ^ 2 )  /  2 )  /  2 ) ) )  =  ( ( ( C ^ 2 )  +  ( D ^ 2 ) )  -  ( ( M ^ 2 )  / 
2 ) ) )
182180, 181eqtr3d 2425 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( C ^ 2 )  -  ( ( ( M ^ 2 )  / 
2 )  /  2
) )  +  ( ( D ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  /  2 ) ) )  =  ( ( ( C ^ 2 )  +  ( D ^ 2 ) )  -  ( ( M ^ 2 )  / 
2 ) ) )
183182adantr 463 . . . . . . . . 9  |-  ( (
ph  /\  R  =  M )  ->  (
( ( C ^
2 )  -  (
( ( M ^
2 )  /  2
)  /  2 ) )  +  ( ( D ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  / 
2 ) ) )  =  ( ( ( C ^ 2 )  +  ( D ^
2 ) )  -  ( ( M ^
2 )  /  2
) ) )
184177, 183breqtrd 4391 . . . . . . . 8  |-  ( (
ph  /\  R  =  M )  ->  ( M ^ 2 )  ||  ( ( ( C ^ 2 )  +  ( D ^ 2 ) )  -  (
( M ^ 2 )  /  2 ) ) )
185124adantr 463 . . . . . . . . . 10  |-  ( (
ph  /\  R  =  M )  ->  (
( A ^ 2 )  +  ( B ^ 2 ) )  e.  ZZ )
18643adantr 463 . . . . . . . . . . 11  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  +  ( ( ( M ^ 2 )  /  2 )  /  2 ) )  =  ( ( M ^ 2 )  / 
2 ) )
187152, 152zaddcld 10888 . . . . . . . . . . 11  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  +  ( ( ( M ^ 2 )  /  2 )  /  2 ) )  e.  ZZ )
188186, 187eqeltrrd 2471 . . . . . . . . . 10  |-  ( (
ph  /\  R  =  M )  ->  (
( M ^ 2 )  /  2 )  e.  ZZ )
189185, 188zsubcld 10889 . . . . . . . . 9  |-  ( (
ph  /\  R  =  M )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  -  ( ( M ^ 2 )  /  2 ) )  e.  ZZ )
190125adantr 463 . . . . . . . . . 10  |-  ( (
ph  /\  R  =  M )  ->  (
( C ^ 2 )  +  ( D ^ 2 ) )  e.  ZZ )
191190, 188zsubcld 10889 . . . . . . . . 9  |-  ( (
ph  /\  R  =  M )  ->  (
( ( C ^
2 )  +  ( D ^ 2 ) )  -  ( ( M ^ 2 )  /  2 ) )  e.  ZZ )
192 dvds2add 14017 . . . . . . . . 9  |-  ( ( ( M ^ 2 )  e.  ZZ  /\  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  -  (
( M ^ 2 )  /  2 ) )  e.  ZZ  /\  ( ( ( C ^ 2 )  +  ( D ^ 2 ) )  -  (
( M ^ 2 )  /  2 ) )  e.  ZZ )  ->  ( ( ( M ^ 2 ) 
||  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  -  ( ( M ^
2 )  /  2
) )  /\  ( M ^ 2 )  ||  ( ( ( C ^ 2 )  +  ( D ^ 2 ) )  -  (
( M ^ 2 )  /  2 ) ) )  ->  ( M ^ 2 )  ||  ( ( ( ( A ^ 2 )  +  ( B ^
2 ) )  -  ( ( M ^
2 )  /  2
) )  +  ( ( ( C ^
2 )  +  ( D ^ 2 ) )  -  ( ( M ^ 2 )  /  2 ) ) ) ) )
193144, 189, 191, 192syl3anc 1226 . . . . . . . 8  |-  ( (
ph  /\  R  =  M )  ->  (
( ( M ^
2 )  ||  (
( ( A ^
2 )  +  ( B ^ 2 ) )  -  ( ( M ^ 2 )  /  2 ) )  /\  ( M ^
2 )  ||  (
( ( C ^
2 )  +  ( D ^ 2 ) )  -  ( ( M ^ 2 )  /  2 ) ) )  ->  ( M ^ 2 )  ||  ( ( ( ( A ^ 2 )  +  ( B ^
2 ) )  -  ( ( M ^
2 )  /  2
) )  +  ( ( ( C ^
2 )  +  ( D ^ 2 ) )  -  ( ( M ^ 2 )  /  2 ) ) ) ) )
194165, 184, 193mp2and 677 . . . . . . 7  |-  ( (
ph  /\  R  =  M )  ->  ( M ^ 2 )  ||  ( ( ( ( A ^ 2 )  +  ( B ^
2 ) )  -  ( ( M ^
2 )  /  2
) )  +  ( ( ( C ^
2 )  +  ( D ^ 2 ) )  -  ( ( M ^ 2 )  /  2 ) ) ) )
195124zcnd 10885 . . . . . . . . . 10  |-  ( ph  ->  ( ( A ^
2 )  +  ( B ^ 2 ) )  e.  CC )
196125zcnd 10885 . . . . . . . . . 10  |-  ( ph  ->  ( ( C ^
2 )  +  ( D ^ 2 ) )  e.  CC )
197195, 196, 42, 42addsub4d 9891 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( C ^
2 )  +  ( D ^ 2 ) ) )  -  (
( ( M ^
2 )  /  2
)  +  ( ( M ^ 2 )  /  2 ) ) )  =  ( ( ( ( A ^
2 )  +  ( B ^ 2 ) )  -  ( ( M ^ 2 )  /  2 ) )  +  ( ( ( C ^ 2 )  +  ( D ^
2 ) )  -  ( ( M ^
2 )  /  2
) ) ) )
19851oveq2d 6212 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( C ^
2 )  +  ( D ^ 2 ) ) )  -  (
( ( M ^
2 )  /  2
)  +  ( ( M ^ 2 )  /  2 ) ) )  =  ( ( ( ( A ^
2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^
2 ) ) )  -  ( M ^
2 ) ) )
199197, 198eqtr3d 2425 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( A ^ 2 )  +  ( B ^
2 ) )  -  ( ( M ^
2 )  /  2
) )  +  ( ( ( C ^
2 )  +  ( D ^ 2 ) )  -  ( ( M ^ 2 )  /  2 ) ) )  =  ( ( ( ( A ^
2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^
2 ) ) )  -  ( M ^
2 ) ) )
200199adantr 463 . . . . . . 7  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( A ^ 2 )  +  ( B ^ 2 ) )  -  (
( M ^ 2 )  /  2 ) )  +  ( ( ( C ^ 2 )  +  ( D ^ 2 ) )  -  ( ( M ^ 2 )  / 
2 ) ) )  =  ( ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )  -  ( M ^ 2 ) ) )
201194, 200breqtrd 4391 . . . . . 6  |-  ( (
ph  /\  R  =  M )  ->  ( M ^ 2 )  ||  ( ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( C ^
2 )  +  ( D ^ 2 ) ) )  -  ( M ^ 2 ) ) )
202124, 125zaddcld 10888 . . . . . . . 8  |-  ( ph  ->  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )  e.  ZZ )
203202adantr 463 . . . . . . 7  |-  ( (
ph  /\  R  =  M )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^
2 ) ) )  e.  ZZ )
204 dvdssubr 14029 . . . . . . 7  |-  ( ( ( M ^ 2 )  e.  ZZ  /\  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )  e.  ZZ )  ->  ( ( M ^ 2 )  ||  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )  <->  ( M ^
2 )  ||  (
( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )  -  ( M ^ 2 ) ) ) )
205144, 203, 204syl2anc 659 . . . . . 6  |-  ( (
ph  /\  R  =  M )  ->  (
( M ^ 2 )  ||  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )  <->  ( M ^ 2 )  ||  ( ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( C ^
2 )  +  ( D ^ 2 ) ) )  -  ( M ^ 2 ) ) ) )
206201, 205mpbird 232 . . . . 5  |-  ( (
ph  /\  R  =  M )  ->  ( M ^ 2 )  ||  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) )
207129, 206jaodan 783 . . . 4  |-  ( (
ph  /\  ( R  =  0  \/  R  =  M ) )  -> 
( M ^ 2 )  ||  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) )
208137adantr 463 . . . 4  |-  ( (
ph  /\  ( R  =  0  \/  R  =  M ) )  -> 
( M  x.  P
)  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) )
209207, 208breqtrrd 4393 . . 3  |-  ( (
ph  /\  ( R  =  0  \/  R  =  M ) )  -> 
( M ^ 2 )  ||  ( M  x.  P ) )
210209ex 432 . 2  |-  ( ph  ->  ( ( R  =  0  \/  R  =  M )  ->  ( M ^ 2 )  ||  ( M  x.  P
) ) )
21161, 210jca 530 1  |-  ( ph  ->  ( R  <_  M  /\  ( ( R  =  0  \/  R  =  M )  ->  ( M ^ 2 )  ||  ( M  x.  P
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    = wceq 1399    e. wcel 1826   {cab 2367   E.wrex 2733   {crab 2736    C_ wss 3389   class class class wbr 4367   `'ccnv 4912   ` cfv 5496  (class class class)co 6196   supcsup 7815   RRcr 9402   0cc0 9403   1c1 9404    + caddc 9406    x. cmul 9408    < clt 9539    <_ cle 9540    - cmin 9718    / cdiv 10123   NNcn 10452   2c2 10502   NN0cn0 10712   ZZcz 10781   ZZ>=cuz 11001   ...cfz 11593    mod cmo 11896   ^cexp 12069    || cdvds 13988   Primecprime 14219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-cnex 9459  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479  ax-pre-mulgt0 9480  ax-pre-sup 9481
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-om 6600  df-2nd 6700  df-recs 6960  df-rdg 6994  df-er 7229  df-en 7436  df-dom 7437  df-sdom 7438  df-sup 7816  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-sub 9720  df-neg 9721  df-div 10124  df-nn 10453  df-2 10511  df-3 10512  df-n0 10713  df-z 10782  df-uz 11002  df-rp 11140  df-fl 11828  df-mod 11897  df-seq 12011  df-exp 12070  df-cj 12934  df-re 12935  df-im 12936  df-sqrt 13070  df-abs 13071  df-dvds 13989  df-gcd 14147
This theorem is referenced by:  4sqlem17  14481
  Copyright terms: Public domain W3C validator