MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem14 Structured version   Unicode version

Theorem 4sqlem14 14871
Description: Lemma for 4sq 14877. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
4sq.1  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
4sq.2  |-  ( ph  ->  N  e.  NN )
4sq.3  |-  ( ph  ->  P  =  ( ( 2  x.  N )  +  1 ) )
4sq.4  |-  ( ph  ->  P  e.  Prime )
4sq.5  |-  ( ph  ->  ( 0 ... (
2  x.  N ) )  C_  S )
4sq.6  |-  T  =  { i  e.  NN  |  ( i  x.  P )  e.  S }
4sq.7  |-  M  = inf ( T ,  RR ,  <  )
4sq.m  |-  ( ph  ->  M  e.  ( ZZ>= ` 
2 ) )
4sq.a  |-  ( ph  ->  A  e.  ZZ )
4sq.b  |-  ( ph  ->  B  e.  ZZ )
4sq.c  |-  ( ph  ->  C  e.  ZZ )
4sq.d  |-  ( ph  ->  D  e.  ZZ )
4sq.e  |-  E  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
4sq.f  |-  F  =  ( ( ( B  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
4sq.g  |-  G  =  ( ( ( C  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
4sq.h  |-  H  =  ( ( ( D  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
4sq.r  |-  R  =  ( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  +  ( ( G ^
2 )  +  ( H ^ 2 ) ) )  /  M
)
4sq.p  |-  ( ph  ->  ( M  x.  P
)  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) )
Assertion
Ref Expression
4sqlem14  |-  ( ph  ->  R  e.  NN0 )
Distinct variable groups:    w, n, x, y, z    B, n   
n, E    n, G    n, H    A, n    C, n    D, n    n, F    i, n, M    n, N    P, i, n    ph, n    S, i, n    R, i
Allowed substitution hints:    ph( x, y, z, w, i)    A( x, y, z, w, i)    B( x, y, z, w, i)    C( x, y, z, w, i)    D( x, y, z, w, i)    P( x, y, z, w)    R( x, y, z, w, n)    S( x, y, z, w)    T( x, y, z, w, i, n)    E( x, y, z, w, i)    F( x, y, z, w, i)    G( x, y, z, w, i)    H( x, y, z, w, i)    M( x, y, z, w)    N( x, y, z, w, i)

Proof of Theorem 4sqlem14
StepHypRef Expression
1 4sq.r . 2  |-  R  =  ( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  +  ( ( G ^
2 )  +  ( H ^ 2 ) ) )  /  M
)
2 4sq.6 . . . . . . . . . 10  |-  T  =  { i  e.  NN  |  ( i  x.  P )  e.  S }
3 ssrab2 3552 . . . . . . . . . 10  |-  { i  e.  NN  |  ( i  x.  P )  e.  S }  C_  NN
42, 3eqsstri 3500 . . . . . . . . 9  |-  T  C_  NN
5 4sq.7 . . . . . . . . . 10  |-  M  = inf ( T ,  RR ,  <  )
6 nnuz 11194 . . . . . . . . . . . 12  |-  NN  =  ( ZZ>= `  1 )
74, 6sseqtri 3502 . . . . . . . . . . 11  |-  T  C_  ( ZZ>= `  1 )
8 4sq.1 . . . . . . . . . . . . 13  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
9 4sq.2 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  NN )
10 4sq.3 . . . . . . . . . . . . 13  |-  ( ph  ->  P  =  ( ( 2  x.  N )  +  1 ) )
11 4sq.4 . . . . . . . . . . . . 13  |-  ( ph  ->  P  e.  Prime )
12 4sq.5 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 0 ... (
2  x.  N ) )  C_  S )
138, 9, 10, 11, 12, 2, 54sqlem13 14870 . . . . . . . . . . . 12  |-  ( ph  ->  ( T  =/=  (/)  /\  M  <  P ) )
1413simpld 460 . . . . . . . . . . 11  |-  ( ph  ->  T  =/=  (/) )
15 infssuzcl 11245 . . . . . . . . . . 11  |-  ( ( T  C_  ( ZZ>= ` 
1 )  /\  T  =/=  (/) )  -> inf ( T ,  RR ,  <  )  e.  T )
167, 14, 15sylancr 667 . . . . . . . . . 10  |-  ( ph  -> inf ( T ,  RR ,  <  )  e.  T
)
175, 16syl5eqel 2521 . . . . . . . . 9  |-  ( ph  ->  M  e.  T )
184, 17sseldi 3468 . . . . . . . 8  |-  ( ph  ->  M  e.  NN )
1918nnzd 11039 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
20 prmz 14597 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  ZZ )
2111, 20syl 17 . . . . . . 7  |-  ( ph  ->  P  e.  ZZ )
22 dvdsmul1 14302 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  P  e.  ZZ )  ->  M  ||  ( M  x.  P ) )
2319, 21, 22syl2anc 665 . . . . . 6  |-  ( ph  ->  M  ||  ( M  x.  P ) )
24 4sq.a . . . . . . . . . . 11  |-  ( ph  ->  A  e.  ZZ )
25 4sq.e . . . . . . . . . . 11  |-  E  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
2624, 18, 254sqlem8 14852 . . . . . . . . . 10  |-  ( ph  ->  M  ||  ( ( A ^ 2 )  -  ( E ^
2 ) ) )
27 4sq.b . . . . . . . . . . 11  |-  ( ph  ->  B  e.  ZZ )
28 4sq.f . . . . . . . . . . 11  |-  F  =  ( ( ( B  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
2927, 18, 284sqlem8 14852 . . . . . . . . . 10  |-  ( ph  ->  M  ||  ( ( B ^ 2 )  -  ( F ^
2 ) ) )
30 zsqcl 12342 . . . . . . . . . . . . 13  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e.  ZZ )
3124, 30syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( A ^ 2 )  e.  ZZ )
3224, 18, 254sqlem5 14849 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( E  e.  ZZ  /\  ( ( A  -  E )  /  M
)  e.  ZZ ) )
3332simpld 460 . . . . . . . . . . . . . 14  |-  ( ph  ->  E  e.  ZZ )
34 zsqcl2 12349 . . . . . . . . . . . . . 14  |-  ( E  e.  ZZ  ->  ( E ^ 2 )  e. 
NN0 )
3533, 34syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( E ^ 2 )  e.  NN0 )
3635nn0zd 11038 . . . . . . . . . . . 12  |-  ( ph  ->  ( E ^ 2 )  e.  ZZ )
3731, 36zsubcld 11045 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A ^
2 )  -  ( E ^ 2 ) )  e.  ZZ )
38 zsqcl 12342 . . . . . . . . . . . . 13  |-  ( B  e.  ZZ  ->  ( B ^ 2 )  e.  ZZ )
3927, 38syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( B ^ 2 )  e.  ZZ )
4027, 18, 284sqlem5 14849 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( F  e.  ZZ  /\  ( ( B  -  F )  /  M
)  e.  ZZ ) )
4140simpld 460 . . . . . . . . . . . . . 14  |-  ( ph  ->  F  e.  ZZ )
42 zsqcl2 12349 . . . . . . . . . . . . . 14  |-  ( F  e.  ZZ  ->  ( F ^ 2 )  e. 
NN0 )
4341, 42syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F ^ 2 )  e.  NN0 )
4443nn0zd 11038 . . . . . . . . . . . 12  |-  ( ph  ->  ( F ^ 2 )  e.  ZZ )
4539, 44zsubcld 11045 . . . . . . . . . . 11  |-  ( ph  ->  ( ( B ^
2 )  -  ( F ^ 2 ) )  e.  ZZ )
46 dvds2add 14312 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  ( ( A ^
2 )  -  ( E ^ 2 ) )  e.  ZZ  /\  (
( B ^ 2 )  -  ( F ^ 2 ) )  e.  ZZ )  -> 
( ( M  ||  ( ( A ^
2 )  -  ( E ^ 2 ) )  /\  M  ||  (
( B ^ 2 )  -  ( F ^ 2 ) ) )  ->  M  ||  (
( ( A ^
2 )  -  ( E ^ 2 ) )  +  ( ( B ^ 2 )  -  ( F ^ 2 ) ) ) ) )
4719, 37, 45, 46syl3anc 1264 . . . . . . . . . 10  |-  ( ph  ->  ( ( M  ||  ( ( A ^
2 )  -  ( E ^ 2 ) )  /\  M  ||  (
( B ^ 2 )  -  ( F ^ 2 ) ) )  ->  M  ||  (
( ( A ^
2 )  -  ( E ^ 2 ) )  +  ( ( B ^ 2 )  -  ( F ^ 2 ) ) ) ) )
4826, 29, 47mp2and 683 . . . . . . . . 9  |-  ( ph  ->  M  ||  ( ( ( A ^ 2 )  -  ( E ^ 2 ) )  +  ( ( B ^ 2 )  -  ( F ^ 2 ) ) ) )
4924zcnd 11041 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  CC )
5049sqcld 12411 . . . . . . . . . 10  |-  ( ph  ->  ( A ^ 2 )  e.  CC )
5127zcnd 11041 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  CC )
5251sqcld 12411 . . . . . . . . . 10  |-  ( ph  ->  ( B ^ 2 )  e.  CC )
5333zcnd 11041 . . . . . . . . . . 11  |-  ( ph  ->  E  e.  CC )
5453sqcld 12411 . . . . . . . . . 10  |-  ( ph  ->  ( E ^ 2 )  e.  CC )
5541zcnd 11041 . . . . . . . . . . 11  |-  ( ph  ->  F  e.  CC )
5655sqcld 12411 . . . . . . . . . 10  |-  ( ph  ->  ( F ^ 2 )  e.  CC )
5750, 52, 54, 56addsub4d 10032 . . . . . . . . 9  |-  ( ph  ->  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  -  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  =  ( ( ( A ^ 2 )  -  ( E ^ 2 ) )  +  ( ( B ^ 2 )  -  ( F ^ 2 ) ) ) )
5848, 57breqtrrd 4452 . . . . . . . 8  |-  ( ph  ->  M  ||  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  -  ( ( E ^ 2 )  +  ( F ^ 2 ) ) ) )
59 4sq.c . . . . . . . . . . 11  |-  ( ph  ->  C  e.  ZZ )
60 4sq.g . . . . . . . . . . 11  |-  G  =  ( ( ( C  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
6159, 18, 604sqlem8 14852 . . . . . . . . . 10  |-  ( ph  ->  M  ||  ( ( C ^ 2 )  -  ( G ^
2 ) ) )
62 4sq.d . . . . . . . . . . 11  |-  ( ph  ->  D  e.  ZZ )
63 4sq.h . . . . . . . . . . 11  |-  H  =  ( ( ( D  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
6462, 18, 634sqlem8 14852 . . . . . . . . . 10  |-  ( ph  ->  M  ||  ( ( D ^ 2 )  -  ( H ^
2 ) ) )
65 zsqcl 12342 . . . . . . . . . . . . 13  |-  ( C  e.  ZZ  ->  ( C ^ 2 )  e.  ZZ )
6659, 65syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( C ^ 2 )  e.  ZZ )
6759, 18, 604sqlem5 14849 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( G  e.  ZZ  /\  ( ( C  -  G )  /  M
)  e.  ZZ ) )
6867simpld 460 . . . . . . . . . . . . . 14  |-  ( ph  ->  G  e.  ZZ )
69 zsqcl2 12349 . . . . . . . . . . . . . 14  |-  ( G  e.  ZZ  ->  ( G ^ 2 )  e. 
NN0 )
7068, 69syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( G ^ 2 )  e.  NN0 )
7170nn0zd 11038 . . . . . . . . . . . 12  |-  ( ph  ->  ( G ^ 2 )  e.  ZZ )
7266, 71zsubcld 11045 . . . . . . . . . . 11  |-  ( ph  ->  ( ( C ^
2 )  -  ( G ^ 2 ) )  e.  ZZ )
73 zsqcl 12342 . . . . . . . . . . . . 13  |-  ( D  e.  ZZ  ->  ( D ^ 2 )  e.  ZZ )
7462, 73syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( D ^ 2 )  e.  ZZ )
7562, 18, 634sqlem5 14849 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( H  e.  ZZ  /\  ( ( D  -  H )  /  M
)  e.  ZZ ) )
7675simpld 460 . . . . . . . . . . . . . 14  |-  ( ph  ->  H  e.  ZZ )
77 zsqcl2 12349 . . . . . . . . . . . . . 14  |-  ( H  e.  ZZ  ->  ( H ^ 2 )  e. 
NN0 )
7876, 77syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( H ^ 2 )  e.  NN0 )
7978nn0zd 11038 . . . . . . . . . . . 12  |-  ( ph  ->  ( H ^ 2 )  e.  ZZ )
8074, 79zsubcld 11045 . . . . . . . . . . 11  |-  ( ph  ->  ( ( D ^
2 )  -  ( H ^ 2 ) )  e.  ZZ )
81 dvds2add 14312 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  ( ( C ^
2 )  -  ( G ^ 2 ) )  e.  ZZ  /\  (
( D ^ 2 )  -  ( H ^ 2 ) )  e.  ZZ )  -> 
( ( M  ||  ( ( C ^
2 )  -  ( G ^ 2 ) )  /\  M  ||  (
( D ^ 2 )  -  ( H ^ 2 ) ) )  ->  M  ||  (
( ( C ^
2 )  -  ( G ^ 2 ) )  +  ( ( D ^ 2 )  -  ( H ^ 2 ) ) ) ) )
8219, 72, 80, 81syl3anc 1264 . . . . . . . . . 10  |-  ( ph  ->  ( ( M  ||  ( ( C ^
2 )  -  ( G ^ 2 ) )  /\  M  ||  (
( D ^ 2 )  -  ( H ^ 2 ) ) )  ->  M  ||  (
( ( C ^
2 )  -  ( G ^ 2 ) )  +  ( ( D ^ 2 )  -  ( H ^ 2 ) ) ) ) )
8361, 64, 82mp2and 683 . . . . . . . . 9  |-  ( ph  ->  M  ||  ( ( ( C ^ 2 )  -  ( G ^ 2 ) )  +  ( ( D ^ 2 )  -  ( H ^ 2 ) ) ) )
8459zcnd 11041 . . . . . . . . . . 11  |-  ( ph  ->  C  e.  CC )
8584sqcld 12411 . . . . . . . . . 10  |-  ( ph  ->  ( C ^ 2 )  e.  CC )
8662zcnd 11041 . . . . . . . . . . 11  |-  ( ph  ->  D  e.  CC )
8786sqcld 12411 . . . . . . . . . 10  |-  ( ph  ->  ( D ^ 2 )  e.  CC )
8868zcnd 11041 . . . . . . . . . . 11  |-  ( ph  ->  G  e.  CC )
8988sqcld 12411 . . . . . . . . . 10  |-  ( ph  ->  ( G ^ 2 )  e.  CC )
9076zcnd 11041 . . . . . . . . . . 11  |-  ( ph  ->  H  e.  CC )
9190sqcld 12411 . . . . . . . . . 10  |-  ( ph  ->  ( H ^ 2 )  e.  CC )
9285, 87, 89, 91addsub4d 10032 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C ^ 2 )  +  ( D ^ 2 ) )  -  (
( G ^ 2 )  +  ( H ^ 2 ) ) )  =  ( ( ( C ^ 2 )  -  ( G ^ 2 ) )  +  ( ( D ^ 2 )  -  ( H ^ 2 ) ) ) )
9383, 92breqtrrd 4452 . . . . . . . 8  |-  ( ph  ->  M  ||  ( ( ( C ^ 2 )  +  ( D ^ 2 ) )  -  ( ( G ^ 2 )  +  ( H ^ 2 ) ) ) )
9431, 39zaddcld 11044 . . . . . . . . . 10  |-  ( ph  ->  ( ( A ^
2 )  +  ( B ^ 2 ) )  e.  ZZ )
9535, 43nn0addcld 10929 . . . . . . . . . . 11  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  NN0 )
9695nn0zd 11038 . . . . . . . . . 10  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  ZZ )
9794, 96zsubcld 11045 . . . . . . . . 9  |-  ( ph  ->  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  -  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  e.  ZZ )
9866, 74zaddcld 11044 . . . . . . . . . 10  |-  ( ph  ->  ( ( C ^
2 )  +  ( D ^ 2 ) )  e.  ZZ )
9970, 78nn0addcld 10929 . . . . . . . . . . 11  |-  ( ph  ->  ( ( G ^
2 )  +  ( H ^ 2 ) )  e.  NN0 )
10099nn0zd 11038 . . . . . . . . . 10  |-  ( ph  ->  ( ( G ^
2 )  +  ( H ^ 2 ) )  e.  ZZ )
10198, 100zsubcld 11045 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C ^ 2 )  +  ( D ^ 2 ) )  -  (
( G ^ 2 )  +  ( H ^ 2 ) ) )  e.  ZZ )
102 dvds2add 14312 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  -  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  e.  ZZ  /\  ( ( ( C ^ 2 )  +  ( D ^ 2 ) )  -  (
( G ^ 2 )  +  ( H ^ 2 ) ) )  e.  ZZ )  ->  ( ( M 
||  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  -  ( ( E ^
2 )  +  ( F ^ 2 ) ) )  /\  M  ||  ( ( ( C ^ 2 )  +  ( D ^ 2 ) )  -  (
( G ^ 2 )  +  ( H ^ 2 ) ) ) )  ->  M  ||  ( ( ( ( A ^ 2 )  +  ( B ^
2 ) )  -  ( ( E ^
2 )  +  ( F ^ 2 ) ) )  +  ( ( ( C ^
2 )  +  ( D ^ 2 ) )  -  ( ( G ^ 2 )  +  ( H ^
2 ) ) ) ) ) )
10319, 97, 101, 102syl3anc 1264 . . . . . . . 8  |-  ( ph  ->  ( ( M  ||  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  -  (
( E ^ 2 )  +  ( F ^ 2 ) ) )  /\  M  ||  ( ( ( C ^ 2 )  +  ( D ^ 2 ) )  -  (
( G ^ 2 )  +  ( H ^ 2 ) ) ) )  ->  M  ||  ( ( ( ( A ^ 2 )  +  ( B ^
2 ) )  -  ( ( E ^
2 )  +  ( F ^ 2 ) ) )  +  ( ( ( C ^
2 )  +  ( D ^ 2 ) )  -  ( ( G ^ 2 )  +  ( H ^
2 ) ) ) ) ) )
10458, 93, 103mp2and 683 . . . . . . 7  |-  ( ph  ->  M  ||  ( ( ( ( A ^
2 )  +  ( B ^ 2 ) )  -  ( ( E ^ 2 )  +  ( F ^
2 ) ) )  +  ( ( ( C ^ 2 )  +  ( D ^
2 ) )  -  ( ( G ^
2 )  +  ( H ^ 2 ) ) ) ) )
105 4sq.p . . . . . . . . 9  |-  ( ph  ->  ( M  x.  P
)  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) )
106105oveq1d 6320 . . . . . . . 8  |-  ( ph  ->  ( ( M  x.  P )  -  (
( ( E ^
2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^
2 ) ) ) )  =  ( ( ( ( A ^
2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^
2 ) ) )  -  ( ( ( E ^ 2 )  +  ( F ^
2 ) )  +  ( ( G ^
2 )  +  ( H ^ 2 ) ) ) ) )
10750, 52addcld 9661 . . . . . . . . 9  |-  ( ph  ->  ( ( A ^
2 )  +  ( B ^ 2 ) )  e.  CC )
10885, 87addcld 9661 . . . . . . . . 9  |-  ( ph  ->  ( ( C ^
2 )  +  ( D ^ 2 ) )  e.  CC )
10954, 56addcld 9661 . . . . . . . . 9  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  CC )
11089, 91addcld 9661 . . . . . . . . 9  |-  ( ph  ->  ( ( G ^
2 )  +  ( H ^ 2 ) )  e.  CC )
111107, 108, 109, 110addsub4d 10032 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( C ^
2 )  +  ( D ^ 2 ) ) )  -  (
( ( E ^
2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^
2 ) ) ) )  =  ( ( ( ( A ^
2 )  +  ( B ^ 2 ) )  -  ( ( E ^ 2 )  +  ( F ^
2 ) ) )  +  ( ( ( C ^ 2 )  +  ( D ^
2 ) )  -  ( ( G ^
2 )  +  ( H ^ 2 ) ) ) ) )
112106, 111eqtrd 2470 . . . . . . 7  |-  ( ph  ->  ( ( M  x.  P )  -  (
( ( E ^
2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^
2 ) ) ) )  =  ( ( ( ( A ^
2 )  +  ( B ^ 2 ) )  -  ( ( E ^ 2 )  +  ( F ^
2 ) ) )  +  ( ( ( C ^ 2 )  +  ( D ^
2 ) )  -  ( ( G ^
2 )  +  ( H ^ 2 ) ) ) ) )
113104, 112breqtrrd 4452 . . . . . 6  |-  ( ph  ->  M  ||  ( ( M  x.  P )  -  ( ( ( E ^ 2 )  +  ( F ^
2 ) )  +  ( ( G ^
2 )  +  ( H ^ 2 ) ) ) ) )
11419, 21zmulcld 11046 . . . . . . 7  |-  ( ph  ->  ( M  x.  P
)  e.  ZZ )
11596, 100zaddcld 11044 . . . . . . . 8  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  e.  ZZ )
116114, 115zsubcld 11045 . . . . . . 7  |-  ( ph  ->  ( ( M  x.  P )  -  (
( ( E ^
2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^
2 ) ) ) )  e.  ZZ )
117 dvds2sub 14313 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  ( M  x.  P
)  e.  ZZ  /\  ( ( M  x.  P )  -  (
( ( E ^
2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^
2 ) ) ) )  e.  ZZ )  ->  ( ( M 
||  ( M  x.  P )  /\  M  ||  ( ( M  x.  P )  -  (
( ( E ^
2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^
2 ) ) ) ) )  ->  M  ||  ( ( M  x.  P )  -  (
( M  x.  P
)  -  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) ) ) ) ) )
11819, 114, 116, 117syl3anc 1264 . . . . . 6  |-  ( ph  ->  ( ( M  ||  ( M  x.  P
)  /\  M  ||  (
( M  x.  P
)  -  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) ) ) )  ->  M  ||  (
( M  x.  P
)  -  ( ( M  x.  P )  -  ( ( ( E ^ 2 )  +  ( F ^
2 ) )  +  ( ( G ^
2 )  +  ( H ^ 2 ) ) ) ) ) ) )
11923, 113, 118mp2and 683 . . . . 5  |-  ( ph  ->  M  ||  ( ( M  x.  P )  -  ( ( M  x.  P )  -  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) ) ) ) )
12018nncnd 10625 . . . . . . 7  |-  ( ph  ->  M  e.  CC )
121 prmnn 14596 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  NN )
12211, 121syl 17 . . . . . . . 8  |-  ( ph  ->  P  e.  NN )
123122nncnd 10625 . . . . . . 7  |-  ( ph  ->  P  e.  CC )
124120, 123mulcld 9662 . . . . . 6  |-  ( ph  ->  ( M  x.  P
)  e.  CC )
125109, 110addcld 9661 . . . . . 6  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  e.  CC )
126124, 125nncand 9990 . . . . 5  |-  ( ph  ->  ( ( M  x.  P )  -  (
( M  x.  P
)  -  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) ) ) )  =  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) ) )
127119, 126breqtrd 4450 . . . 4  |-  ( ph  ->  M  ||  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) ) )
12818nnne0d 10654 . . . . 5  |-  ( ph  ->  M  =/=  0 )
12995, 99nn0addcld 10929 . . . . . 6  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  e.  NN0 )
130129nn0zd 11038 . . . . 5  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  e.  ZZ )
131 dvdsval2 14286 . . . . 5  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  (
( ( E ^
2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^
2 ) ) )  e.  ZZ )  -> 
( M  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^
2 ) ) )  <-> 
( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  +  ( ( G ^
2 )  +  ( H ^ 2 ) ) )  /  M
)  e.  ZZ ) )
13219, 128, 130, 131syl3anc 1264 . . . 4  |-  ( ph  ->  ( M  ||  (
( ( E ^
2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^
2 ) ) )  <-> 
( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  +  ( ( G ^
2 )  +  ( H ^ 2 ) ) )  /  M
)  e.  ZZ ) )
133127, 132mpbid 213 . . 3  |-  ( ph  ->  ( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  +  ( ( G ^
2 )  +  ( H ^ 2 ) ) )  /  M
)  e.  ZZ )
134129nn0red 10926 . . . 4  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  e.  RR )
135129nn0ge0d 10928 . . . 4  |-  ( ph  ->  0  <_  ( (
( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) ) )
13618nnred 10624 . . . 4  |-  ( ph  ->  M  e.  RR )
13718nngt0d 10653 . . . 4  |-  ( ph  ->  0  <  M )
138 divge0 10473 . . . 4  |-  ( ( ( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  +  ( ( G ^
2 )  +  ( H ^ 2 ) ) )  e.  RR  /\  0  <_  ( (
( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) ) )  /\  ( M  e.  RR  /\  0  < 
M ) )  -> 
0  <_  ( (
( ( E ^
2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^
2 ) ) )  /  M ) )
139134, 135, 136, 137, 138syl22anc 1265 . . 3  |-  ( ph  ->  0  <_  ( (
( ( E ^
2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^
2 ) ) )  /  M ) )
140 elnn0z 10950 . . 3  |-  ( ( ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  /  M )  e.  NN0  <->  ( ( ( ( ( E ^
2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^
2 ) ) )  /  M )  e.  ZZ  /\  0  <_ 
( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  +  ( ( G ^
2 )  +  ( H ^ 2 ) ) )  /  M
) ) )
141133, 139, 140sylanbrc 668 . 2  |-  ( ph  ->  ( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  +  ( ( G ^
2 )  +  ( H ^ 2 ) ) )  /  M
)  e.  NN0 )
1421, 141syl5eqel 2521 1  |-  ( ph  ->  R  e.  NN0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1870   {cab 2414    =/= wne 2625   E.wrex 2783   {crab 2786    C_ wss 3442   (/)c0 3767   class class class wbr 4426   ` cfv 5601  (class class class)co 6305  infcinf 7961   RRcr 9537   0cc0 9538   1c1 9539    + caddc 9541    x. cmul 9543    < clt 9674    <_ cle 9675    - cmin 9859    / cdiv 10268   NNcn 10609   2c2 10659   NN0cn0 10869   ZZcz 10937   ZZ>=cuz 11159   ...cfz 11782    mod cmo 12093   ^cexp 12269    || cdvds 14283   Primecprime 14593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-2o 7191  df-oadd 7194  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-sup 7962  df-inf 7963  df-card 8372  df-cda 8596  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-n0 10870  df-z 10938  df-uz 11160  df-rp 11303  df-fz 11783  df-fl 12025  df-mod 12094  df-seq 12211  df-exp 12270  df-hash 12513  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278  df-dvds 14284  df-gcd 14443  df-prm 14594  df-gz 14837
This theorem is referenced by:  4sqlem17  14874
  Copyright terms: Public domain W3C validator