MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem12 Structured version   Visualization version   Unicode version

Theorem 4sqlem12 14979
Description: Lemma for 4sq 14993. For any odd prime  P, there is a  k  <  P such that  k P  -  1 is a sum of two squares. (Contributed by Mario Carneiro, 15-Jul-2014.)
Hypotheses
Ref Expression
4sq.1  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
4sq.2  |-  ( ph  ->  N  e.  NN )
4sq.3  |-  ( ph  ->  P  =  ( ( 2  x.  N )  +  1 ) )
4sq.4  |-  ( ph  ->  P  e.  Prime )
4sqlem11.5  |-  A  =  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) }
4sqlem11.6  |-  F  =  ( v  e.  A  |->  ( ( P  - 
1 )  -  v
) )
Assertion
Ref Expression
4sqlem12  |-  ( ph  ->  E. k  e.  ( 1 ... ( P  -  1 ) ) E. u  e.  ZZ[_i]  ( ( ( abs `  u
) ^ 2 )  +  1 )  =  ( k  x.  P
) )
Distinct variable groups:    w, n, x, y, z    k, n, v, A    n, F    u, k, n, m, N, v    P, k, m, n, u, v    ph, k, m, n, u, v    S, k, m, n, u, v
Allowed substitution hints:    ph( x, y, z, w)    A( x, y, z, w, u, m)    P( x, y, z, w)    S( x, y, z, w)    F( x, y, z, w, v, u, k, m)    N( x, y, z, w)

Proof of Theorem 4sqlem12
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 4sq.1 . . . 4  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
2 4sq.2 . . . 4  |-  ( ph  ->  N  e.  NN )
3 4sq.3 . . . 4  |-  ( ph  ->  P  =  ( ( 2  x.  N )  +  1 ) )
4 4sq.4 . . . 4  |-  ( ph  ->  P  e.  Prime )
5 4sqlem11.5 . . . 4  |-  A  =  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) }
6 4sqlem11.6 . . . 4  |-  F  =  ( v  e.  A  |->  ( ( P  - 
1 )  -  v
) )
71, 2, 3, 4, 5, 64sqlem11 14978 . . 3  |-  ( ph  ->  ( A  i^i  ran  F )  =/=  (/) )
8 n0 3732 . . 3  |-  ( ( A  i^i  ran  F
)  =/=  (/)  <->  E. j 
j  e.  ( A  i^i  ran  F )
)
97, 8sylib 201 . 2  |-  ( ph  ->  E. j  j  e.  ( A  i^i  ran  F ) )
10 vex 3034 . . . . . . 7  |-  j  e. 
_V
11 eqeq1 2475 . . . . . . . 8  |-  ( u  =  j  ->  (
u  =  ( ( m ^ 2 )  mod  P )  <->  j  =  ( ( m ^
2 )  mod  P
) ) )
1211rexbidv 2892 . . . . . . 7  |-  ( u  =  j  ->  ( E. m  e.  (
0 ... N ) u  =  ( ( m ^ 2 )  mod 
P )  <->  E. m  e.  ( 0 ... N
) j  =  ( ( m ^ 2 )  mod  P ) ) )
1310, 12, 5elab2 3176 . . . . . 6  |-  ( j  e.  A  <->  E. m  e.  ( 0 ... N
) j  =  ( ( m ^ 2 )  mod  P ) )
14 abid 2459 . . . . . . . . 9  |-  ( j  e.  { j  |  E. v  e.  A  j  =  ( ( P  -  1 )  -  v ) }  <->  E. v  e.  A  j  =  ( ( P  -  1 )  -  v ) )
155rexeqi 2978 . . . . . . . . 9  |-  ( E. v  e.  A  j  =  ( ( P  -  1 )  -  v )  <->  E. v  e.  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) } j  =  ( ( P  -  1 )  -  v ) )
16 oveq1 6315 . . . . . . . . . . . . . 14  |-  ( m  =  n  ->  (
m ^ 2 )  =  ( n ^
2 ) )
1716oveq1d 6323 . . . . . . . . . . . . 13  |-  ( m  =  n  ->  (
( m ^ 2 )  mod  P )  =  ( ( n ^ 2 )  mod 
P ) )
1817eqeq2d 2481 . . . . . . . . . . . 12  |-  ( m  =  n  ->  (
u  =  ( ( m ^ 2 )  mod  P )  <->  u  =  ( ( n ^
2 )  mod  P
) ) )
1918cbvrexv 3006 . . . . . . . . . . 11  |-  ( E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P )  <->  E. n  e.  ( 0 ... N
) u  =  ( ( n ^ 2 )  mod  P ) )
20 eqeq1 2475 . . . . . . . . . . . 12  |-  ( u  =  v  ->  (
u  =  ( ( n ^ 2 )  mod  P )  <->  v  =  ( ( n ^
2 )  mod  P
) ) )
2120rexbidv 2892 . . . . . . . . . . 11  |-  ( u  =  v  ->  ( E. n  e.  (
0 ... N ) u  =  ( ( n ^ 2 )  mod 
P )  <->  E. n  e.  ( 0 ... N
) v  =  ( ( n ^ 2 )  mod  P ) ) )
2219, 21syl5bb 265 . . . . . . . . . 10  |-  ( u  =  v  ->  ( E. m  e.  (
0 ... N ) u  =  ( ( m ^ 2 )  mod 
P )  <->  E. n  e.  ( 0 ... N
) v  =  ( ( n ^ 2 )  mod  P ) ) )
2322rexab 3189 . . . . . . . . 9  |-  ( E. v  e.  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod  P ) } j  =  ( ( P  -  1 )  -  v )  <->  E. v
( E. n  e.  ( 0 ... N
) v  =  ( ( n ^ 2 )  mod  P )  /\  j  =  ( ( P  -  1 )  -  v ) ) )
2414, 15, 233bitri 279 . . . . . . . 8  |-  ( j  e.  { j  |  E. v  e.  A  j  =  ( ( P  -  1 )  -  v ) }  <->  E. v ( E. n  e.  ( 0 ... N
) v  =  ( ( n ^ 2 )  mod  P )  /\  j  =  ( ( P  -  1 )  -  v ) ) )
256rnmpt 5086 . . . . . . . . 9  |-  ran  F  =  { j  |  E. v  e.  A  j  =  ( ( P  -  1 )  -  v ) }
2625eleq2i 2541 . . . . . . . 8  |-  ( j  e.  ran  F  <->  j  e.  { j  |  E. v  e.  A  j  =  ( ( P  - 
1 )  -  v
) } )
27 rexcom4 3053 . . . . . . . . 9  |-  ( E. n  e.  ( 0 ... N ) E. v ( v  =  ( ( n ^
2 )  mod  P
)  /\  j  =  ( ( P  - 
1 )  -  v
) )  <->  E. v E. n  e.  (
0 ... N ) ( v  =  ( ( n ^ 2 )  mod  P )  /\  j  =  ( ( P  -  1 )  -  v ) ) )
28 r19.41v 2928 . . . . . . . . . 10  |-  ( E. n  e.  ( 0 ... N ) ( v  =  ( ( n ^ 2 )  mod  P )  /\  j  =  ( ( P  -  1 )  -  v ) )  <-> 
( E. n  e.  ( 0 ... N
) v  =  ( ( n ^ 2 )  mod  P )  /\  j  =  ( ( P  -  1 )  -  v ) ) )
2928exbii 1726 . . . . . . . . 9  |-  ( E. v E. n  e.  ( 0 ... N
) ( v  =  ( ( n ^
2 )  mod  P
)  /\  j  =  ( ( P  - 
1 )  -  v
) )  <->  E. v
( E. n  e.  ( 0 ... N
) v  =  ( ( n ^ 2 )  mod  P )  /\  j  =  ( ( P  -  1 )  -  v ) ) )
3027, 29bitri 257 . . . . . . . 8  |-  ( E. n  e.  ( 0 ... N ) E. v ( v  =  ( ( n ^
2 )  mod  P
)  /\  j  =  ( ( P  - 
1 )  -  v
) )  <->  E. v
( E. n  e.  ( 0 ... N
) v  =  ( ( n ^ 2 )  mod  P )  /\  j  =  ( ( P  -  1 )  -  v ) ) )
3124, 26, 303bitr4i 285 . . . . . . 7  |-  ( j  e.  ran  F  <->  E. n  e.  ( 0 ... N
) E. v ( v  =  ( ( n ^ 2 )  mod  P )  /\  j  =  ( ( P  -  1 )  -  v ) ) )
32 ovex 6336 . . . . . . . . 9  |-  ( ( n ^ 2 )  mod  P )  e. 
_V
33 oveq2 6316 . . . . . . . . . 10  |-  ( v  =  ( ( n ^ 2 )  mod 
P )  ->  (
( P  -  1 )  -  v )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )
3433eqeq2d 2481 . . . . . . . . 9  |-  ( v  =  ( ( n ^ 2 )  mod 
P )  ->  (
j  =  ( ( P  -  1 )  -  v )  <->  j  =  ( ( P  - 
1 )  -  (
( n ^ 2 )  mod  P ) ) ) )
3532, 34ceqsexv 3070 . . . . . . . 8  |-  ( E. v ( v  =  ( ( n ^
2 )  mod  P
)  /\  j  =  ( ( P  - 
1 )  -  v
) )  <->  j  =  ( ( P  - 
1 )  -  (
( n ^ 2 )  mod  P ) ) )
3635rexbii 2881 . . . . . . 7  |-  ( E. n  e.  ( 0 ... N ) E. v ( v  =  ( ( n ^
2 )  mod  P
)  /\  j  =  ( ( P  - 
1 )  -  v
) )  <->  E. n  e.  ( 0 ... N
) j  =  ( ( P  -  1 )  -  ( ( n ^ 2 )  mod  P ) ) )
3731, 36bitri 257 . . . . . 6  |-  ( j  e.  ran  F  <->  E. n  e.  ( 0 ... N
) j  =  ( ( P  -  1 )  -  ( ( n ^ 2 )  mod  P ) ) )
3813, 37anbi12i 711 . . . . 5  |-  ( ( j  e.  A  /\  j  e.  ran  F )  <-> 
( E. m  e.  ( 0 ... N
) j  =  ( ( m ^ 2 )  mod  P )  /\  E. n  e.  ( 0 ... N
) j  =  ( ( P  -  1 )  -  ( ( n ^ 2 )  mod  P ) ) ) )
39 elin 3608 . . . . 5  |-  ( j  e.  ( A  i^i  ran 
F )  <->  ( j  e.  A  /\  j  e.  ran  F ) )
40 reeanv 2944 . . . . 5  |-  ( E. m  e.  ( 0 ... N ) E. n  e.  ( 0 ... N ) ( j  =  ( ( m ^ 2 )  mod  P )  /\  j  =  ( ( P  -  1 )  -  ( ( n ^ 2 )  mod 
P ) ) )  <-> 
( E. m  e.  ( 0 ... N
) j  =  ( ( m ^ 2 )  mod  P )  /\  E. n  e.  ( 0 ... N
) j  =  ( ( P  -  1 )  -  ( ( n ^ 2 )  mod  P ) ) ) )
4138, 39, 403bitr4i 285 . . . 4  |-  ( j  e.  ( A  i^i  ran 
F )  <->  E. m  e.  ( 0 ... N
) E. n  e.  ( 0 ... N
) ( j  =  ( ( m ^
2 )  mod  P
)  /\  j  =  ( ( P  - 
1 )  -  (
( n ^ 2 )  mod  P ) ) ) )
42 eqtr2 2491 . . . . . 6  |-  ( ( j  =  ( ( m ^ 2 )  mod  P )  /\  j  =  ( ( P  -  1 )  -  ( ( n ^ 2 )  mod 
P ) ) )  ->  ( ( m ^ 2 )  mod 
P )  =  ( ( P  -  1 )  -  ( ( n ^ 2 )  mod  P ) ) )
4343ad2ant1 1051 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  ->  P  e.  Prime )
44 prmnn 14704 . . . . . . . . . . . . . . . . . . 19  |-  ( P  e.  Prime  ->  P  e.  NN )
4543, 44syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  ->  P  e.  NN )
46 nnm1nn0 10935 . . . . . . . . . . . . . . . . . 18  |-  ( P  e.  NN  ->  ( P  -  1 )  e.  NN0 )
4745, 46syl 17 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( P  -  1 )  e.  NN0 )
4847nn0red 10950 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( P  -  1 )  e.  RR )
4945nnrpd 11362 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  ->  P  e.  RR+ )
5047nn0ge0d 10952 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
0  <_  ( P  -  1 ) )
5145nnred 10646 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  ->  P  e.  RR )
5251ltm1d 10561 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( P  -  1 )  <  P )
53 modid 12154 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( P  - 
1 )  e.  RR  /\  P  e.  RR+ )  /\  ( 0  <_  ( P  -  1 )  /\  ( P  - 
1 )  <  P
) )  ->  (
( P  -  1 )  mod  P )  =  ( P  - 
1 ) )
5448, 49, 50, 52, 53syl22anc 1293 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( P  - 
1 )  mod  P
)  =  ( P  -  1 ) )
5554oveq1d 6323 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( ( P  -  1 )  mod 
P )  -  (
( n ^ 2 )  mod  P ) )  =  ( ( P  -  1 )  -  ( ( n ^ 2 )  mod 
P ) ) )
56 simp2r 1057 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  ->  n  e.  ( 0 ... N ) )
57 elfzelz 11826 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  ( 0 ... N )  ->  n  e.  ZZ )
5856, 57syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  ->  n  e.  ZZ )
59 zsqcl2 12390 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  e.  ZZ  ->  (
n ^ 2 )  e.  NN0 )
6058, 59syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( n ^ 2 )  e.  NN0 )
6160nn0red 10950 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( n ^ 2 )  e.  RR )
62 modlt 12140 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( n ^ 2 )  e.  RR  /\  P  e.  RR+ )  -> 
( ( n ^
2 )  mod  P
)  <  P )
6361, 49, 62syl2anc 673 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( n ^
2 )  mod  P
)  <  P )
64 zsqcl 12383 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  ZZ  ->  (
n ^ 2 )  e.  ZZ )
6558, 64syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( n ^ 2 )  e.  ZZ )
6665, 45zmodcld 12150 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( n ^
2 )  mod  P
)  e.  NN0 )
6766nn0zd 11061 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( n ^
2 )  mod  P
)  e.  ZZ )
68 prmz 14705 . . . . . . . . . . . . . . . . . . 19  |-  ( P  e.  Prime  ->  P  e.  ZZ )
6943, 68syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  ->  P  e.  ZZ )
70 zltlem1 11013 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n ^
2 )  mod  P
)  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( ( n ^ 2 )  mod 
P )  <  P  <->  ( ( n ^ 2 )  mod  P )  <_  ( P  - 
1 ) ) )
7167, 69, 70syl2anc 673 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( ( n ^ 2 )  mod 
P )  <  P  <->  ( ( n ^ 2 )  mod  P )  <_  ( P  - 
1 ) ) )
7263, 71mpbid 215 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( n ^
2 )  mod  P
)  <_  ( P  -  1 ) )
7372, 54breqtrrd 4422 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( n ^
2 )  mod  P
)  <_  ( ( P  -  1 )  mod  P ) )
74 modsubdir 12192 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  -  1 )  e.  RR  /\  ( n ^ 2 )  e.  RR  /\  P  e.  RR+ )  -> 
( ( ( n ^ 2 )  mod 
P )  <_  (
( P  -  1 )  mod  P )  <-> 
( ( ( P  -  1 )  -  ( n ^ 2 ) )  mod  P
)  =  ( ( ( P  -  1 )  mod  P )  -  ( ( n ^ 2 )  mod 
P ) ) ) )
7548, 61, 49, 74syl3anc 1292 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( ( n ^ 2 )  mod 
P )  <_  (
( P  -  1 )  mod  P )  <-> 
( ( ( P  -  1 )  -  ( n ^ 2 ) )  mod  P
)  =  ( ( ( P  -  1 )  mod  P )  -  ( ( n ^ 2 )  mod 
P ) ) ) )
7673, 75mpbid 215 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( ( P  -  1 )  -  ( n ^ 2 ) )  mod  P
)  =  ( ( ( P  -  1 )  mod  P )  -  ( ( n ^ 2 )  mod 
P ) ) )
77 simp3 1032 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( m ^
2 )  mod  P
)  =  ( ( P  -  1 )  -  ( ( n ^ 2 )  mod 
P ) ) )
7855, 76, 773eqtr4rd 2516 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( m ^
2 )  mod  P
)  =  ( ( ( P  -  1 )  -  ( n ^ 2 ) )  mod  P ) )
79 simp2l 1056 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  ->  m  e.  ( 0 ... N ) )
80 elfzelz 11826 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ( 0 ... N )  ->  m  e.  ZZ )
8179, 80syl 17 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  ->  m  e.  ZZ )
82 zsqcl 12383 . . . . . . . . . . . . . . 15  |-  ( m  e.  ZZ  ->  (
m ^ 2 )  e.  ZZ )
8381, 82syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( m ^ 2 )  e.  ZZ )
8447nn0zd 11061 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( P  -  1 )  e.  ZZ )
8584, 65zsubcld 11068 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( P  - 
1 )  -  (
n ^ 2 ) )  e.  ZZ )
86 moddvds 14389 . . . . . . . . . . . . . 14  |-  ( ( P  e.  NN  /\  ( m ^ 2 )  e.  ZZ  /\  ( ( P  - 
1 )  -  (
n ^ 2 ) )  e.  ZZ )  ->  ( ( ( m ^ 2 )  mod  P )  =  ( ( ( P  -  1 )  -  ( n ^ 2 ) )  mod  P
)  <->  P  ||  ( ( m ^ 2 )  -  ( ( P  -  1 )  -  ( n ^ 2 ) ) ) ) )
8745, 83, 85, 86syl3anc 1292 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( ( m ^ 2 )  mod 
P )  =  ( ( ( P  - 
1 )  -  (
n ^ 2 ) )  mod  P )  <-> 
P  ||  ( (
m ^ 2 )  -  ( ( P  -  1 )  -  ( n ^ 2 ) ) ) ) )
8878, 87mpbid 215 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  ->  P  ||  ( ( m ^ 2 )  -  ( ( P  - 
1 )  -  (
n ^ 2 ) ) ) )
89 zsqcl2 12390 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ZZ  ->  (
m ^ 2 )  e.  NN0 )
9081, 89syl 17 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( m ^ 2 )  e.  NN0 )
9190nn0cnd 10951 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( m ^ 2 )  e.  CC )
9247nn0cnd 10951 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( P  -  1 )  e.  CC )
9360nn0cnd 10951 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( n ^ 2 )  e.  CC )
9491, 92, 93subsub3d 10035 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( m ^
2 )  -  (
( P  -  1 )  -  ( n ^ 2 ) ) )  =  ( ( ( m ^ 2 )  +  ( n ^ 2 ) )  -  ( P  - 
1 ) ) )
9590, 60nn0addcld 10953 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( m ^
2 )  +  ( n ^ 2 ) )  e.  NN0 )
9695nn0cnd 10951 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( m ^
2 )  +  ( n ^ 2 ) )  e.  CC )
9745nncnd 10647 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  ->  P  e.  CC )
98 1cnd 9677 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
1  e.  CC )
9996, 97, 98subsub3d 10035 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( ( m ^ 2 )  +  ( n ^ 2 ) )  -  ( P  -  1 ) )  =  ( ( ( ( m ^
2 )  +  ( n ^ 2 ) )  +  1 )  -  P ) )
10094, 99eqtrd 2505 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( m ^
2 )  -  (
( P  -  1 )  -  ( n ^ 2 ) ) )  =  ( ( ( ( m ^
2 )  +  ( n ^ 2 ) )  +  1 )  -  P ) )
10188, 100breqtrd 4420 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  ->  P  ||  ( ( ( ( m ^ 2 )  +  ( n ^ 2 ) )  +  1 )  -  P ) )
102 nn0p1nn 10933 . . . . . . . . . . . . . 14  |-  ( ( ( m ^ 2 )  +  ( n ^ 2 ) )  e.  NN0  ->  ( ( ( m ^ 2 )  +  ( n ^ 2 ) )  +  1 )  e.  NN )
10395, 102syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( ( m ^ 2 )  +  ( n ^ 2 ) )  +  1 )  e.  NN )
104103nnzd 11062 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( ( m ^ 2 )  +  ( n ^ 2 ) )  +  1 )  e.  ZZ )
105 dvdssubr 14423 . . . . . . . . . . . 12  |-  ( ( P  e.  ZZ  /\  ( ( ( m ^ 2 )  +  ( n ^ 2 ) )  +  1 )  e.  ZZ )  ->  ( P  ||  ( ( ( m ^ 2 )  +  ( n ^ 2 ) )  +  1 )  <->  P  ||  ( ( ( ( m ^
2 )  +  ( n ^ 2 ) )  +  1 )  -  P ) ) )
10669, 104, 105syl2anc 673 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( P  ||  (
( ( m ^
2 )  +  ( n ^ 2 ) )  +  1 )  <-> 
P  ||  ( (
( ( m ^
2 )  +  ( n ^ 2 ) )  +  1 )  -  P ) ) )
107101, 106mpbird 240 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  ->  P  ||  ( ( ( m ^ 2 )  +  ( n ^
2 ) )  +  1 ) )
10845nnne0d 10676 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  ->  P  =/=  0 )
109 dvdsval2 14385 . . . . . . . . . . 11  |-  ( ( P  e.  ZZ  /\  P  =/=  0  /\  (
( ( m ^
2 )  +  ( n ^ 2 ) )  +  1 )  e.  ZZ )  -> 
( P  ||  (
( ( m ^
2 )  +  ( n ^ 2 ) )  +  1 )  <-> 
( ( ( ( m ^ 2 )  +  ( n ^
2 ) )  +  1 )  /  P
)  e.  ZZ ) )
11069, 108, 104, 109syl3anc 1292 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( P  ||  (
( ( m ^
2 )  +  ( n ^ 2 ) )  +  1 )  <-> 
( ( ( ( m ^ 2 )  +  ( n ^
2 ) )  +  1 )  /  P
)  e.  ZZ ) )
111107, 110mpbid 215 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( ( ( m ^ 2 )  +  ( n ^
2 ) )  +  1 )  /  P
)  e.  ZZ )
112 nnrp 11334 . . . . . . . . . . . . . 14  |-  ( ( ( ( m ^
2 )  +  ( n ^ 2 ) )  +  1 )  e.  NN  ->  (
( ( m ^
2 )  +  ( n ^ 2 ) )  +  1 )  e.  RR+ )
113 nnrp 11334 . . . . . . . . . . . . . 14  |-  ( P  e.  NN  ->  P  e.  RR+ )
114 rpdivcl 11348 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( m ^ 2 )  +  ( n ^ 2 ) )  +  1 )  e.  RR+  /\  P  e.  RR+ )  ->  (
( ( ( m ^ 2 )  +  ( n ^ 2 ) )  +  1 )  /  P )  e.  RR+ )
115112, 113, 114syl2an 485 . . . . . . . . . . . . 13  |-  ( ( ( ( ( m ^ 2 )  +  ( n ^ 2 ) )  +  1 )  e.  NN  /\  P  e.  NN )  ->  ( ( ( ( m ^ 2 )  +  ( n ^
2 ) )  +  1 )  /  P
)  e.  RR+ )
116103, 45, 115syl2anc 673 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( ( ( m ^ 2 )  +  ( n ^
2 ) )  +  1 )  /  P
)  e.  RR+ )
117116rpgt0d 11367 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
0  <  ( (
( ( m ^
2 )  +  ( n ^ 2 ) )  +  1 )  /  P ) )
118 elnnz 10971 . . . . . . . . . . 11  |-  ( ( ( ( ( m ^ 2 )  +  ( n ^ 2 ) )  +  1 )  /  P )  e.  NN  <->  ( (
( ( ( m ^ 2 )  +  ( n ^ 2 ) )  +  1 )  /  P )  e.  ZZ  /\  0  <  ( ( ( ( m ^ 2 )  +  ( n ^
2 ) )  +  1 )  /  P
) ) )
119111, 117, 118sylanbrc 677 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( ( ( m ^ 2 )  +  ( n ^
2 ) )  +  1 )  /  P
)  e.  NN )
120119nnge1d 10674 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
1  <_  ( (
( ( m ^
2 )  +  ( n ^ 2 ) )  +  1 )  /  P ) )
12195nn0red 10950 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( m ^
2 )  +  ( n ^ 2 ) )  e.  RR )
122 2nn 10790 . . . . . . . . . . . . . . . 16  |-  2  e.  NN
12323ad2ant1 1051 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  ->  N  e.  NN )
124 nnmulcl 10654 . . . . . . . . . . . . . . . 16  |-  ( ( 2  e.  NN  /\  N  e.  NN )  ->  ( 2  x.  N
)  e.  NN )
125122, 123, 124sylancr 676 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( 2  x.  N
)  e.  NN )
126125nnred 10646 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( 2  x.  N
)  e.  RR )
127126resqcld 12480 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( 2  x.  N ) ^ 2 )  e.  RR )
128 nnmulcl 10654 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  NN  /\  ( 2  x.  N
)  e.  NN )  ->  ( 2  x.  ( 2  x.  N
) )  e.  NN )
129122, 125, 128sylancr 676 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( 2  x.  (
2  x.  N ) )  e.  NN )
130129nnred 10646 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( 2  x.  (
2  x.  N ) )  e.  RR )
131127, 130readdcld 9688 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( ( 2  x.  N ) ^
2 )  +  ( 2  x.  ( 2  x.  N ) ) )  e.  RR )
132 1red 9676 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
1  e.  RR )
133123nnsqcld 12474 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( N ^ 2 )  e.  NN )
134 nnmulcl 10654 . . . . . . . . . . . . . . . 16  |-  ( ( 2  e.  NN  /\  ( N ^ 2 )  e.  NN )  -> 
( 2  x.  ( N ^ 2 ) )  e.  NN )
135122, 133, 134sylancr 676 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( 2  x.  ( N ^ 2 ) )  e.  NN )
136135nnred 10646 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( 2  x.  ( N ^ 2 ) )  e.  RR )
13790nn0red 10950 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( m ^ 2 )  e.  RR )
138133nnred 10646 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( N ^ 2 )  e.  RR )
13981zred 11063 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  ->  m  e.  RR )
140 elfzle1 11828 . . . . . . . . . . . . . . . . . 18  |-  ( m  e.  ( 0 ... N )  ->  0  <_  m )
14179, 140syl 17 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
0  <_  m )
142123nnred 10646 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  ->  N  e.  RR )
143 elfzle2 11829 . . . . . . . . . . . . . . . . . 18  |-  ( m  e.  ( 0 ... N )  ->  m  <_  N )
14479, 143syl 17 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  ->  m  <_  N )
145 le2sq2 12388 . . . . . . . . . . . . . . . . 17  |-  ( ( ( m  e.  RR  /\  0  <_  m )  /\  ( N  e.  RR  /\  m  <_  N )
)  ->  ( m ^ 2 )  <_ 
( N ^ 2 ) )
146139, 141, 142, 144, 145syl22anc 1293 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( m ^ 2 )  <_  ( N ^ 2 ) )
14758zred 11063 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  ->  n  e.  RR )
148 elfzle1 11828 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( 0 ... N )  ->  0  <_  n )
14956, 148syl 17 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
0  <_  n )
150 elfzle2 11829 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( 0 ... N )  ->  n  <_  N )
15156, 150syl 17 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  ->  n  <_  N )
152 le2sq2 12388 . . . . . . . . . . . . . . . . 17  |-  ( ( ( n  e.  RR  /\  0  <_  n )  /\  ( N  e.  RR  /\  n  <_  N )
)  ->  ( n ^ 2 )  <_ 
( N ^ 2 ) )
153147, 149, 142, 151, 152syl22anc 1293 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( n ^ 2 )  <_  ( N ^ 2 ) )
154137, 61, 138, 138, 146, 153le2addd 10253 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( m ^
2 )  +  ( n ^ 2 ) )  <_  ( ( N ^ 2 )  +  ( N ^ 2 ) ) )
155133nncnd 10647 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( N ^ 2 )  e.  CC )
1561552timesd 10878 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( 2  x.  ( N ^ 2 ) )  =  ( ( N ^ 2 )  +  ( N ^ 2 ) ) )
157154, 156breqtrrd 4422 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( m ^
2 )  +  ( n ^ 2 ) )  <_  ( 2  x.  ( N ^
2 ) ) )
158 2lt4 10803 . . . . . . . . . . . . . . . 16  |-  2  <  4
159 2re 10701 . . . . . . . . . . . . . . . . . 18  |-  2  e.  RR
160159a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
2  e.  RR )
161 4re 10708 . . . . . . . . . . . . . . . . . 18  |-  4  e.  RR
162161a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
4  e.  RR )
163133nngt0d 10675 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
0  <  ( N ^ 2 ) )
164 ltmul1 10477 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  e.  RR  /\  4  e.  RR  /\  (
( N ^ 2 )  e.  RR  /\  0  <  ( N ^
2 ) ) )  ->  ( 2  <  4  <->  ( 2  x.  ( N ^ 2 ) )  <  (
4  x.  ( N ^ 2 ) ) ) )
165160, 162, 138, 163, 164syl112anc 1296 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( 2  <  4  <->  ( 2  x.  ( N ^ 2 ) )  <  ( 4  x.  ( N ^ 2 ) ) ) )
166158, 165mpbii 216 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( 2  x.  ( N ^ 2 ) )  <  ( 4  x.  ( N ^ 2 ) ) )
167 2cn 10702 . . . . . . . . . . . . . . . . 17  |-  2  e.  CC
168123nncnd 10647 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  ->  N  e.  CC )
169 sqmul 12376 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  e.  CC  /\  N  e.  CC )  ->  ( ( 2  x.  N ) ^ 2 )  =  ( ( 2 ^ 2 )  x.  ( N ^
2 ) ) )
170167, 168, 169sylancr 676 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( 2  x.  N ) ^ 2 )  =  ( ( 2 ^ 2 )  x.  ( N ^
2 ) ) )
171 sq2 12409 . . . . . . . . . . . . . . . . 17  |-  ( 2 ^ 2 )  =  4
172171oveq1i 6318 . . . . . . . . . . . . . . . 16  |-  ( ( 2 ^ 2 )  x.  ( N ^
2 ) )  =  ( 4  x.  ( N ^ 2 ) )
173170, 172syl6eq 2521 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( 2  x.  N ) ^ 2 )  =  ( 4  x.  ( N ^
2 ) ) )
174166, 173breqtrrd 4422 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( 2  x.  ( N ^ 2 ) )  <  ( ( 2  x.  N ) ^
2 ) )
175121, 136, 127, 157, 174lelttrd 9810 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( m ^
2 )  +  ( n ^ 2 ) )  <  ( ( 2  x.  N ) ^ 2 ) )
176129nnrpd 11362 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( 2  x.  (
2  x.  N ) )  e.  RR+ )
177127, 176ltaddrpd 11394 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( 2  x.  N ) ^ 2 )  <  ( ( ( 2  x.  N
) ^ 2 )  +  ( 2  x.  ( 2  x.  N
) ) ) )
178121, 127, 131, 175, 177lttrd 9813 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( m ^
2 )  +  ( n ^ 2 ) )  <  ( ( ( 2  x.  N
) ^ 2 )  +  ( 2  x.  ( 2  x.  N
) ) ) )
179121, 131, 132, 178ltadd1dd 10245 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( ( m ^ 2 )  +  ( n ^ 2 ) )  +  1 )  <  ( ( ( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  ( 2  x.  N ) ) )  +  1 ) )
18033ad2ant1 1051 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  ->  P  =  ( (
2  x.  N )  +  1 ) )
181180oveq1d 6323 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( P ^ 2 )  =  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) )
18297sqvald 12451 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( P ^ 2 )  =  ( P  x.  P ) )
183125nncnd 10647 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( 2  x.  N
)  e.  CC )
184 binom21 12428 . . . . . . . . . . . . 13  |-  ( ( 2  x.  N )  e.  CC  ->  (
( ( 2  x.  N )  +  1 ) ^ 2 )  =  ( ( ( ( 2  x.  N
) ^ 2 )  +  ( 2  x.  ( 2  x.  N
) ) )  +  1 ) )
185183, 184syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( ( 2  x.  N )  +  1 ) ^ 2 )  =  ( ( ( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  ( 2  x.  N ) ) )  +  1 ) )
186181, 182, 1853eqtr3d 2513 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( P  x.  P
)  =  ( ( ( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  ( 2  x.  N ) ) )  +  1 ) )
187179, 186breqtrrd 4422 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( ( m ^ 2 )  +  ( n ^ 2 ) )  +  1 )  <  ( P  x.  P ) )
188103nnred 10646 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( ( m ^ 2 )  +  ( n ^ 2 ) )  +  1 )  e.  RR )
18945nngt0d 10675 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
0  <  P )
190 ltdivmul 10502 . . . . . . . . . . 11  |-  ( ( ( ( ( m ^ 2 )  +  ( n ^ 2 ) )  +  1 )  e.  RR  /\  P  e.  RR  /\  ( P  e.  RR  /\  0  <  P ) )  -> 
( ( ( ( ( m ^ 2 )  +  ( n ^ 2 ) )  +  1 )  /  P )  <  P  <->  ( ( ( m ^
2 )  +  ( n ^ 2 ) )  +  1 )  <  ( P  x.  P ) ) )
191188, 51, 51, 189, 190syl112anc 1296 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( ( ( ( m ^ 2 )  +  ( n ^ 2 ) )  +  1 )  /  P )  <  P  <->  ( ( ( m ^
2 )  +  ( n ^ 2 ) )  +  1 )  <  ( P  x.  P ) ) )
192187, 191mpbird 240 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( ( ( m ^ 2 )  +  ( n ^
2 ) )  +  1 )  /  P
)  <  P )
193 1z 10991 . . . . . . . . . 10  |-  1  e.  ZZ
194 elfzm11 11891 . . . . . . . . . 10  |-  ( ( 1  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( ( ( ( m ^ 2 )  +  ( n ^ 2 ) )  +  1 )  /  P )  e.  ( 1 ... ( P  -  1 ) )  <-> 
( ( ( ( ( m ^ 2 )  +  ( n ^ 2 ) )  +  1 )  /  P )  e.  ZZ  /\  1  <_  ( (
( ( m ^
2 )  +  ( n ^ 2 ) )  +  1 )  /  P )  /\  ( ( ( ( m ^ 2 )  +  ( n ^
2 ) )  +  1 )  /  P
)  <  P )
) )
195193, 69, 194sylancr 676 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( ( ( ( m ^ 2 )  +  ( n ^ 2 ) )  +  1 )  /  P )  e.  ( 1 ... ( P  -  1 ) )  <-> 
( ( ( ( ( m ^ 2 )  +  ( n ^ 2 ) )  +  1 )  /  P )  e.  ZZ  /\  1  <_  ( (
( ( m ^
2 )  +  ( n ^ 2 ) )  +  1 )  /  P )  /\  ( ( ( ( m ^ 2 )  +  ( n ^
2 ) )  +  1 )  /  P
)  <  P )
) )
196111, 120, 192, 195mpbir3and 1213 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( ( ( m ^ 2 )  +  ( n ^
2 ) )  +  1 )  /  P
)  e.  ( 1 ... ( P  - 
1 ) ) )
197 gzreim 14962 . . . . . . . . 9  |-  ( ( m  e.  ZZ  /\  n  e.  ZZ )  ->  ( m  +  ( _i  x.  n ) )  e.  ZZ[_i] )
19881, 58, 197syl2anc 673 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( m  +  ( _i  x.  n ) )  e.  ZZ[_i] )
199 gzcn 14955 . . . . . . . . . . . . 13  |-  ( ( m  +  ( _i  x.  n ) )  e.  ZZ[_i]  ->  ( m  +  ( _i  x.  n ) )  e.  CC )
200198, 199syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( m  +  ( _i  x.  n ) )  e.  CC )
201200absvalsq2d 13582 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( abs `  (
m  +  ( _i  x.  n ) ) ) ^ 2 )  =  ( ( ( Re `  ( m  +  ( _i  x.  n ) ) ) ^ 2 )  +  ( ( Im `  ( m  +  (
_i  x.  n )
) ) ^ 2 ) ) )
202139, 147crred 13371 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( Re `  (
m  +  ( _i  x.  n ) ) )  =  m )
203202oveq1d 6323 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( Re `  ( m  +  (
_i  x.  n )
) ) ^ 2 )  =  ( m ^ 2 ) )
204139, 147crimd 13372 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( Im `  (
m  +  ( _i  x.  n ) ) )  =  n )
205204oveq1d 6323 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( Im `  ( m  +  (
_i  x.  n )
) ) ^ 2 )  =  ( n ^ 2 ) )
206203, 205oveq12d 6326 . . . . . . . . . . 11  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( ( Re
`  ( m  +  ( _i  x.  n
) ) ) ^
2 )  +  ( ( Im `  (
m  +  ( _i  x.  n ) ) ) ^ 2 ) )  =  ( ( m ^ 2 )  +  ( n ^
2 ) ) )
207201, 206eqtrd 2505 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( abs `  (
m  +  ( _i  x.  n ) ) ) ^ 2 )  =  ( ( m ^ 2 )  +  ( n ^ 2 ) ) )
208207oveq1d 6323 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( ( abs `  ( m  +  ( _i  x.  n ) ) ) ^ 2 )  +  1 )  =  ( ( ( m ^ 2 )  +  ( n ^
2 ) )  +  1 ) )
209103nncnd 10647 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( ( m ^ 2 )  +  ( n ^ 2 ) )  +  1 )  e.  CC )
210209, 97, 108divcan1d 10406 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( ( ( ( m ^ 2 )  +  ( n ^ 2 ) )  +  1 )  /  P )  x.  P
)  =  ( ( ( m ^ 2 )  +  ( n ^ 2 ) )  +  1 ) )
211208, 210eqtr4d 2508 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  -> 
( ( ( abs `  ( m  +  ( _i  x.  n ) ) ) ^ 2 )  +  1 )  =  ( ( ( ( ( m ^
2 )  +  ( n ^ 2 ) )  +  1 )  /  P )  x.  P ) )
212 oveq1 6315 . . . . . . . . . 10  |-  ( k  =  ( ( ( ( m ^ 2 )  +  ( n ^ 2 ) )  +  1 )  /  P )  ->  (
k  x.  P )  =  ( ( ( ( ( m ^
2 )  +  ( n ^ 2 ) )  +  1 )  /  P )  x.  P ) )
213212eqeq2d 2481 . . . . . . . . 9  |-  ( k  =  ( ( ( ( m ^ 2 )  +  ( n ^ 2 ) )  +  1 )  /  P )  ->  (
( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P )  <->  ( (
( abs `  u
) ^ 2 )  +  1 )  =  ( ( ( ( ( m ^ 2 )  +  ( n ^ 2 ) )  +  1 )  /  P )  x.  P
) ) )
214 fveq2 5879 . . . . . . . . . . . 12  |-  ( u  =  ( m  +  ( _i  x.  n
) )  ->  ( abs `  u )  =  ( abs `  (
m  +  ( _i  x.  n ) ) ) )
215214oveq1d 6323 . . . . . . . . . . 11  |-  ( u  =  ( m  +  ( _i  x.  n
) )  ->  (
( abs `  u
) ^ 2 )  =  ( ( abs `  ( m  +  ( _i  x.  n ) ) ) ^ 2 ) )
216215oveq1d 6323 . . . . . . . . . 10  |-  ( u  =  ( m  +  ( _i  x.  n
) )  ->  (
( ( abs `  u
) ^ 2 )  +  1 )  =  ( ( ( abs `  ( m  +  ( _i  x.  n ) ) ) ^ 2 )  +  1 ) )
217216eqeq1d 2473 . . . . . . . . 9  |-  ( u  =  ( m  +  ( _i  x.  n
) )  ->  (
( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( ( ( ( ( m ^
2 )  +  ( n ^ 2 ) )  +  1 )  /  P )  x.  P )  <->  ( (
( abs `  (
m  +  ( _i  x.  n ) ) ) ^ 2 )  +  1 )  =  ( ( ( ( ( m ^ 2 )  +  ( n ^ 2 ) )  +  1 )  /  P )  x.  P
) ) )
218213, 217rspc2ev 3149 . . . . . . . 8  |-  ( ( ( ( ( ( m ^ 2 )  +  ( n ^
2 ) )  +  1 )  /  P
)  e.  ( 1 ... ( P  - 
1 ) )  /\  ( m  +  (
_i  x.  n )
)  e.  ZZ[_i]  /\  (
( ( abs `  (
m  +  ( _i  x.  n ) ) ) ^ 2 )  +  1 )  =  ( ( ( ( ( m ^ 2 )  +  ( n ^ 2 ) )  +  1 )  /  P )  x.  P
) )  ->  E. k  e.  ( 1 ... ( P  -  1 ) ) E. u  e.  ZZ[_i] 
( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) )
219196, 198, 211, 218syl3anc 1292 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) )  /\  (
( m ^ 2 )  mod  P )  =  ( ( P  -  1 )  -  ( ( n ^
2 )  mod  P
) ) )  ->  E. k  e.  (
1 ... ( P  - 
1 ) ) E. u  e.  ZZ[_i]  ( (
( abs `  u
) ^ 2 )  +  1 )  =  ( k  x.  P
) )
2202193expia 1233 . . . . . 6  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) ) )  -> 
( ( ( m ^ 2 )  mod 
P )  =  ( ( P  -  1 )  -  ( ( n ^ 2 )  mod  P ) )  ->  E. k  e.  ( 1 ... ( P  -  1 ) ) E. u  e.  ZZ[_i]  ( ( ( abs `  u
) ^ 2 )  +  1 )  =  ( k  x.  P
) ) )
22142, 220syl5 32 . . . . 5  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  n  e.  ( 0 ... N
) ) )  -> 
( ( j  =  ( ( m ^
2 )  mod  P
)  /\  j  =  ( ( P  - 
1 )  -  (
( n ^ 2 )  mod  P ) ) )  ->  E. k  e.  ( 1 ... ( P  -  1 ) ) E. u  e.  ZZ[_i] 
( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) ) )
222221rexlimdvva 2878 . . . 4  |-  ( ph  ->  ( E. m  e.  ( 0 ... N
) E. n  e.  ( 0 ... N
) ( j  =  ( ( m ^
2 )  mod  P
)  /\  j  =  ( ( P  - 
1 )  -  (
( n ^ 2 )  mod  P ) ) )  ->  E. k  e.  ( 1 ... ( P  -  1 ) ) E. u  e.  ZZ[_i] 
( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) ) )
22341, 222syl5bi 225 . . 3  |-  ( ph  ->  ( j  e.  ( A  i^i  ran  F
)  ->  E. k  e.  ( 1 ... ( P  -  1 ) ) E. u  e.  ZZ[_i] 
( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) ) )
224223exlimdv 1787 . 2  |-  ( ph  ->  ( E. j  j  e.  ( A  i^i  ran 
F )  ->  E. k  e.  ( 1 ... ( P  -  1 ) ) E. u  e.  ZZ[_i] 
( ( ( abs `  u ) ^ 2 )  +  1 )  =  ( k  x.  P ) ) )
2259, 224mpd 15 1  |-  ( ph  ->  E. k  e.  ( 1 ... ( P  -  1 ) ) E. u  e.  ZZ[_i]  ( ( ( abs `  u
) ^ 2 )  +  1 )  =  ( k  x.  P
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452   E.wex 1671    e. wcel 1904   {cab 2457    =/= wne 2641   E.wrex 2757    i^i cin 3389   (/)c0 3722   class class class wbr 4395    |-> cmpt 4454   ran crn 4840   ` cfv 5589  (class class class)co 6308   CCcc 9555   RRcr 9556   0cc0 9557   1c1 9558   _ici 9559    + caddc 9560    x. cmul 9562    < clt 9693    <_ cle 9694    - cmin 9880    / cdiv 10291   NNcn 10631   2c2 10681   4c4 10683   NN0cn0 10893   ZZcz 10961   RR+crp 11325   ...cfz 11810    mod cmo 12129   ^cexp 12310   Recre 13237   Imcim 13238   abscabs 13374    || cdvds 14382   Primecprime 14701   ZZ[_i]cgz 14952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-sup 7974  df-inf 7975  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-n0 10894  df-z 10962  df-uz 11183  df-rp 11326  df-fz 11811  df-fl 12061  df-mod 12130  df-seq 12252  df-exp 12311  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-dvds 14383  df-gcd 14548  df-prm 14702  df-gz 14953
This theorem is referenced by:  4sqlem13OLD  14980  4sqlem13  14986
  Copyright terms: Public domain W3C validator